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A “stable” version of the
Gromov-Lawson conjecture

JONATHAN ROSENBERG AND STEPHAN STOLZ

Abstract. We discuss a conjecture of Gromov and Lawson, later modified

by Rosenberg, concerning the existence of positive scalar curvature metrics.

It says that a closed spin manifold M of dimension n ≥ 5 has a positive
scalar curvature metric if and only if the index of a suitable “Dirac” op-
erator in KOn(C∗(π1(M))), the real K-theory of the group C∗-algebra of

the fundamental group of M , vanishes. It is known that the vanishing of
the index is necessary for existence of a positive scalar curvature metric

on M , but this is known to be a sufficient condition only if π1(M) is the

trivial group, Z/2, an odd order cyclic group, or one of a fairly small class
of torsion-free groups.

We note that the groups KOn(C∗(π)) are periodic in n with period 8,
whereas there is no obvious periodicity in the original geometric problem.

This leads us to introduce a “stable” version of the Gromov-Lawson con-

jecture, which makes the weaker statement that the product of M with
enough copies of the “Bott manifold” B has a positive scalar curvature

metric if and only if the index of the Dirac operator on M vanishes. (Here

B is a simply connected 8-manifold which represents the periodicity ele-
ment in KO8(pt).) We prove the stable Gromov-Lawson conjecture for all

spin manifolds with finite fundamental group and for many spin manifolds

with infinite fundamental group.

Introduction

Let M be an n-dimensional manifold (all manifolds considered in this paper

are smooth, compact, and, unless otherwise specified, they are connected and

their boundary is empty). In this note we study the following
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Question. Under which (topological) conditions does M admit a positive

scalar curvature metric, i.e. a Riemannian metric whose scalar curvature function

is positive everywhere?

This question has certainly a more differential geometric flavor then one would

expect at a conference on homotopy theory. However, thanks to results of

Gromov-Lawson and (independently) Schoen-Yau, the answer to the above ques-

tion depends only on the bordism class of M in a suitable bordism group. Via

the Pontrjagin-Thom construction, this bordism group can be interpreted as a

homotopy group of a Thom spectrum, and then homotopy theoretic techniques,

notably the Adams spectral sequence, are used to get (partial) results to the

above question.

1. Constructions of positive scalar curvature metrics

Let g be a Riemannian metric on a manifold M of dimension n. The scalar

curvature is a smooth function s:M −→ R, which is obtained from the curvature

tensor by contracting twice. More geometrically, the scalar curvature at a point

p is a measure of how fast the volume of the ball of radius r around p is growing

with r. More precisely, we compare VolBr(M,p), the volume of the ball of

radius r around p, with VolBr(Rn, 0), the volume of the ball of radius r in n-

dimensional Euclidean space Rn, by expressing their quotient as a power series

in r. We get:

(1.1)
VolBr(M,p)

VolBr(Rn, 0)
= 1− s(p)

6(n+ 2)
r2 + . . . .

In particular, if a Riemannian manifold has positive scalar curvature then the

volume of (small) balls grows slower than the volume of the corresponding Eu-

clidean balls. Examples of manifolds with positive scalar curvature are the n-

dimensional sphere Sn, with its usual metric, as well as certain quotients of Sn,

like projective spaces (real, complex, or quaternionic), equipped with the metric

induced by the standard metric on Sn. Here, we assume of course n ≥ 2, since

the scalar curvature of a 1-dimensional manifold is identically zero, as one can

see immediately from equation (1.1).

One possible approach to the question of the introduction is to study whether

the answer changes when we modify M . A modification of manifolds which is

popular among geometric topologists and has been very successful in the dif-

feomorphism classification of manifolds is “surgery”. Given a manifold M of

dimension n, and an embedding Sk ×Dn−k ↪→ M , we remove from M the open

subset Sk×Ḋn−k to get a manifold with boundary Sk×Sn−k−1 and glue it with

Dk+1 ×Sn−k−1 along their common boundary to get a closed manifold M̂ . One

says that M̂ is the result of a k-surgery on M . A crucial result in the subject is

the following “Surgery Theorem” proved independently by Gromov-Lawson and

Schoen-Yau.



A “STABLE” VERSION OF THE GROMOV-LAWSON CONJECTURE 3

1.2 Surgery Theorem (Gromov-Lawson [GL2], Schoen-Yau [SY]).

Let M be an n-dimensional manifold (not necessarily connected) which admits

a positive scalar curvature metric, and suppose that M̂ is obtained from M by a

k-surgery. If n− k, the “codimension” of the surgery, is greater than or equal to

3, then M̂ carries a positive scalar curvature metric.

Sketch of proof. The key step in the proof of this result is a careful

deformation of the original metric on M \ Sk × Ḋn−k in a neighbourhood of its

boundary in such a way that

(1) The deformed metric has still positive scalar curvature.

(2) The deformed metric fits together with the “standard metric” on Dk+1×
Sn−k−1 to give a metric on M̂ .

Here the “standard metric” is the product of the usual metrics on Dk+1 and

on Sn−k−1. We observe that this metric has positive scalar curvature provided

n−k ≥ 3, which explains the codimension condition in the Surgery Theorem. □
For applications of this result, it is important to characterize those manifolds

obtainable from a given manifold N by a sequence of surgeries of codimension

≥ 3. Morse theory implies that a manifold M can be obtained from N by a

sequence of surgeries (without restrictions on the codimension) if and only if N

is bordant to M , i.e. if there is a manifold W whose boundary is the disjoint

union of M and N . The crucial ‘if’ part of this assertion can be seen as follows:

Given a bordism W between M and N , we can find a “Morse function” on W ,

that is, a smooth function h:W −→ [0, 1] satisfying the following conditions:

(1.3a) h−1(0) = M, h−1(1) = N .

(1.3b) The Hessian of h at a critical point is non-degenerate.

(1.3c) There is at most one critical point on on each level set h−1(t), 0 < t < 1,

and none for t = 0, 1.

Given a subinterval [t1, t2] ⊆ [0, 1] the level sets h−1(t1) and h−1(t2) are

diffeomorphic, provided there is no critical point in h−1([t1, t2]). If there is

exactly one critical point in h−1([t1, t2]), then h−1(t1) is obtained from h−1(t2)

by a surgery whose codimension is the index of this critical point (cf. [Mi]).

In particular, we get the following result which we state as a lemma for future

reference.

1.4 Lemma. A manifold M can be obtained from another manifold N by a

sequence of surgeries of codimension ≥ 3, if we can find a bordism W between

them and a Morse function h:W −→ [0, 1] whose critical points have index ≥ 3.

Gromov and Lawson noticed that one can find such a pair (W,h), provided M

and N represent the same element in a suitable bordism group. Before stating

their result, we introduce some notation. Given a topological space X, we denote

by Ωn(X) the bordism classes of pairs (Mn, f), where M is an n-dimensional

closed manifold, and f :M −→ X is a map (two such pairs (M1, f1), (M2, f2) are

bordant if there is a bordism W between M1 and M2, and a map F :W −→ X
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whose restriction to Mi is fi for i = 1, 2). Disjoint union of such pairs gives

Ωn(X) the structure of an abelian group. We are actually interested in varia-

tions of this bordism group where all manifolds are equipped with compatible

orientations resp. spin structures. The usual notation for these bordism groups

is ΩSO
n (X) resp. Ωspin

n (X). Let PosSO
n (X) (resp. Posspinn (X)) be the subgroup

of ΩSO
n (X) (resp. Ωspin

n (X)) consisting of bordism classes represented by pairs

(M,f) for which M admits a positive scalar curvature metric.

1.5 Bordism Theorem (Gromov-Lawson [GL2]). Let M be a manifold

of dimension n ≥ 5 with fundamental group π. Let u:M −→ Bπ be the classifying

map of the universal covering M̃ −→ M . Then M has a positive scalar curvature

metric if and only if

[M,u] ∈
{

Posspinn (Bπ) if M is spin,

PosSO
n (Bπ) if M is oriented and M̃ is not spin.

Remark. This result doesn’t cover non-orientable manifolds or manifolds

which are non-spin, but whose universal cover is spin. There is however a general

result [RS1] covering all manifolds of dimension n ≥ 5, where the bordism groups

ΩSO
n (X) resp. Ωspin

n (X) have to be replaced by more general bordism groups.

Proof. We have to show that if (M,u) is bordant to (N, f), and N has

a positive scalar curvature metric, then so does M . Combining the Surgery

Theorem with Lemma 1.4 we see that it suffices to find a bordism W between

M and N and a Morse function h:W −→ [0, 1] whose critical points have index

≥ 3.

We recall from Morse theory that W is homotopy equivalent to a space ob-

tained by attaching cells to M , with each cell of dimension i corresponding to

a critical point of index i of a Morse function on W . In particular, if there is a

Morse function whose critical points have index ≥ 3, then the inclusion M ↪→ W

is a 2-equivalence (i.e. it induces an isomorphism on the i-th homotopy group for

i < 2 and a surjection for i = 2). Conversely, the techniques used in the proof of

the s-Cobordism Theorem show that if the dimension of M is greater or equal

to 5 and the inclusion i:M ↪→ W is a 2-equivalence, then one can in fact find a

Morse function on W whose critical points have index ≥ 3.

Now let’s assume that M is a spin manifold, and that (W,F ) is a bordism

between (M,u) and (N, f). Changing the bordism (W,F ) if necessary by surg-

eries in the interior of W , we can assume that F :W −→ Bπ is a 3-equivalence.

Since F ◦ i = u, and u is a 2-equivalence, this implies that i is a 2-equivalence

and proves the theorem in this case.

If M and hence W are not spin, this argument doesn’t work, since there

might be a non-trivial class in π2(W ) which can’t be killed by surgery since an

embedded 2-sphere representing it has a non-trivial normal bundle. In this case

we replace u by u′ = u× νM :M −→ Bπ×BSO, where νM is the classifying map

of the stable normal bundle of M . The assumption that M̃ is not spin guarantees

that u′ is a 2-equivalence. Moreover, u′ = F ′ ◦ i, where F ′ = F × νW :W −→
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Bπ×BSO, and as before we can make F ′ a 3-equivalence by surgeries onW , since

any element in the kernel of F ′
∗:π2(W ) −→ π2(Bπ×BSO) can be represented by

an embedded 2-sphere with trivial normal bundle. □
The Bordism Theorem shows that classifying all manifolds of positive scalar

curvature of dimension n with fundamental group π, which are spin mani-

folds (resp. orientable with M̃ non-spin) is equivalent to determining the group

Posspinn (Bπ) (resp. PosSO
n (Bπ)). The following two observations turn out to be

very useful for constructing elements of Posn(Bπ).

1.6 Observation. If M , N are manifolds, and M admits a positive scalar

curvature metric, then so does M ×N .

Proof. Let g be a positive scalar curvature metric on M and let h be any

Riemannian metric on N . The scalar curvature of the product metric g ⊕ h on

M × N is not necessarily positive. However, if we ‘shrink’ M by replacing the

metric g by tg for some real number 0 < t < 1, the scalar curvature at a point

(p, q) of M ×N is given by

stg⊕h(p, q) = stg(p) + sh(q) =
1

t
sg(p) + sh(q),

which is positive for t sufficiently small. Since our manifolds are compact, we

can choose t such that the scalar curvature of tg ⊕ h is positive everywhere. □
This observation shows in particular that PosSO

∗ (pt)
def
=

⊕
n Pos

SO
n (pt) is

an ideal in the oriented bordism ring ΩSO
∗ (pt)

def
=

⊕
n Ω

SO
n (pt) (multiplication

induced by Cartesian product of manifolds), and the analogous statement for

Posspin∗ (pt).

The “shrinking” argument also works in the case of a “twisted product” [St1].

1.7 Proposition. Let g be a positive scalar curvature metric on a manifold

M , and let p:E −→ N be a fiber bundle with fiber M whose structure group acts

on M by isometries. Then E admits a positive scalar curvature metric.

Now let’s consider positive scalar curvature metrics on simply connected man-

ifolds. The relevant bordism group then is Ωspin
n for spin manifolds and ΩSO

n for

non-spin manifolds. The oriented bordism ring ΩSO
∗ was computed by Wall

[Wa], who also constructed manifolds which represent multiplicative generators

of this ring. The nice thing is that all these manifolds are projective bundles

of (real or complex) vector bundles. In particular, they carry positive scalar

curvature metrics by Proposition 1.7, and hence the Bordism Theorem implies

the following result.

1.8 Theorem (Gromov-Lawson [GL2, Cor. C]). Let M be a simply con-

nected manifold of dimension n ≥ 5, which does not admit a spin structure.

Then M carries a positive scalar curvature metric.

For spin manifolds the story is more complicated, since not every spin manifold

has a positive scalar curvature metric, as we’ll see in the next section.
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2. Obstructions to positive scalar curvature metrics

2.1 Theorem (Lichnerowicz [Li], 1963). Let M be a spin manifold of

dimension n = 4k, which has a positive scalar curvature metric g. Then the

Â-genus Â(M) vanishes.

The Â-genus of an orientable manifold M is a rational number, obtained by

evaluating a certain polynomial in the Pontrjagin classes of M on the fundamen-

tal class of M .

Proof. If M is a spin manifold, the Atiyah-Singer Index Theorem implies

Â(M) = index(D)
def
= dim ker D − dim coker D,

where D is the “Dirac operator” on M . On the other hand, it follows from

the “Weitzenböck formula” that the Dirac operator is invertible if the Riemann-

ian metric used in the construction of D has positive scalar curvature, and in

particular the index of D is zero in that case. □
Later Hitchin found additional obstructions to the existence of positive scalar

curvature metrics on spin manifolds of dimension n ≡ 1, 2 mod 8 [Hi]. Hitchin

uses a generalization of the Dirac operator which is called the “C`n-linear Atiyah-

Singer operator” in the book of Lawson-Michelsohn [LM]. It commutes with

an action of the Clifford algebra C`n and has a “Clifford index” in KOn(pt)

(cf. [LM], Ch. II, §7). We will use the notation α(M) ∈ KOn(pt) for the

(Clifford) index of the Atiyah-Singer operator on an n-dimensional spin manifold

M . Making use again of the “Weitzenböck formula” one concludes:

2.2 Theorem (Hitchin [Hi]). If M is a spin manifold which admits a pos-

itive scalar curvature, then α(M) vanishes.

2.3 Remark. To compare Theorems 2.1 and 2.2, we recall that by Bott

periodicity the groups KOn(pt) are as follows.

KOn(pt) =


Z n ≡ 0 mod 4

Z/2 n ≡ 1, 2 mod 8

0 otherwise

.

If n is divisible by 4, Â(M) and α(M) agree up to a factor (cf. [LM], Ch.

II, Thm. 7.10), and hence Hitchin’s result implies Lichnerowicz’s result. But

Hitchin’s result is more general, since in dimensions n ≡ 1, 2 mod 8, there are

spin manifolds M with α(M) ̸= 0. In fact, every spin manifold of dimension

n ≡ 1, 2 mod 8, n ≥ 9, is homeomorphic to one with non-trivial α-invariant

[LM], Ch. IV, Cor. 4.2. This follows from the fact that the homotopy sphere Σn

corresponding to an element in Adams’ µ-family has non-trivial α-invariant, and

hence for any spin manifold M either M or the connected sum M#Σ (which is

homeomorphic to M) has a non-trivial α-invariant. This shows that the question

whether a manifold admits a positive scalar curvature metric is pretty subtle:

the answer in general depends on the differentiable structure of M .
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Hitchin’s result was generalized by Rosenberg who constructs a “Dirac opera-

tor” whose index is an element of the K-theory of a C∗-algebra. More precisely,

let M be a spin manifold of dimension n, and let f :M −→ Bπ be a map to the

classifying space of a discrete group π (not necessarily the fundamental group of

M , but that is the main case of interest). Then Rosenberg constructs a “Dirac

operator” D with index(D) in KOn(C
∗(π))

def
= πn(BGL(C∗(π))). Here C∗(π) is

the (reduced) group C∗-algebra of π, which is a suitable completion of the real

group ring Rπ, and BGL(C∗(π)) is the classifying space of the general linear

group of C∗(π) (regarded as a topological group).

It turns out that index(D) ∈ KOn(C
∗(π)) is independent of the metric used

in the construction of D. We will use the notation α(M,f) for index(D), which

agrees with α(M) if π is the trivial group. The Weitzenböck formula shows again

that the index vanishes if the metric has positive scalar curvature, which proves:

2.4 Theorem (Rosenberg [Ro3]). If M is a spin manifold of positive

scalar curvature, and f :M −→ Bπ is a map to the classifying space of a dis-

crete group π, then α(M,f) vanishes.

3. The Gromov-Lawson-Rosenberg conjecture

3.1 Conjecture (Gromov-Lawson [GL3], Rosenberg [Ro2]). Let M

be a spin manifold of dimension n ≥ 5 with fundamental group π, and let

u:M −→ Bπ be the classifying map of the universal covering M̃ −→ M . Then

M has a positive scalar curvature metric if and only if the element α(M,u) in

KOn(C
∗(π)) vanishes.

Using the Bordism Theorem 1.5 and the fact that α(M,f) depends only on

the bordism class [M,f ] we can formulate the conjecture equivalently as follows:

3.2 Conjecture. Posspinn (Bπ) is the kernel of the homomorphism

α: Ωspin
n (Bπ) −→ KOn(C

∗(π)).

We note that Posspinn (Bπ) is contained in kerα by Theorem 2.4. To prove

the converse, one has to show that every class in kerα can be represented by a

manifold with positive scalar curvature. The problem is that even for π = {1}
we don’t have explicit manifolds which generate kerα (or Ωspin

∗ , for that matter,

unlike the case of the oriented bordism ring). There are however partial results:

the kernel of α is trivial in dimensions n < 8, and is the infinite cyclic group

generated by the bordism class of the quaternionic projective space HP2 for

n = 8. It follows that the conjecture is true for n ≤ 8. By finding explicit

positive scalar curvature manifolds generating kerα for n < 23, Rosenberg [Ro3]

proved the conjecture in that range. Similarly, Miyazaki [Miy] found positive

scalar curvature manifolds generating kerα ⊗ Z[ 12 ], thus proving the conjecture

after “inverting 2”.

Later Stolz gave the following characterization of the kernel of α.
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3.3 Theorem (Stolz [St1]). The kernel of α: Ωspin
n −→ KOn(pt) is equal to

the subgroup Tn consisting of those bordism classes represented by total spaces of

HP2-bundles, i.e. fiber bundles with fiber HP2 and structure group the projective

symplectic group PSp(3).

We note that the group G = PSp(3) acts by isometries on HP2 equipped

with its standard metric. Hence these total spaces have positive scalar curvature

metrics by Proposition 1.7, and thus the above result implies the conjecture in

the simply connected case. In [St1], the equality [kerα]n = Tn is actually only

proved localized at 2. This is enough for the proof of the conjecture by Miyazaki’s

result. Localized at odd primes, the above theorem was proved in [KrSt], using

explicit manifold constructions (HP2-bundles over products of two quaternionic

projective spaces).

Sketch of proof. The proof at the prime 2 is much more indirect and

proceeds by first translating the problem into stable homotopy theory.

The group Tn can be described as the image of the homomorphism

Ψ:Ωspin
n−8(BG) −→ Ωspin

n ,

which maps a bordism class [Nn−8, f ] to [N̂ ], where N̂ −→ N is the pull back of

the ‘universal’ HP2-bundle EG×G HP2 −→ BG via f .

Now consider the following commutative diagram.

(3.4)

Ωspin
n−8(BG)

Ψ−−−−→ Ωspin
n

α−−−−→ KOn(pt)

∼=
y ∼=

y ∼=
y

πn(MSpin ∧ Σ8BG+)
T∗−−−−→ πn(MSpin)

D∗−−−−→ πn(ko)

T̂∗

y ∥∥∥ ∥∥∥
πn(M̂Spin) −−−−→ πn(MSpin)

D∗−−−−→ πn(ko).

Here the second row is the homotopy theoretic interpretation of the first row; the

left and middle vertical isomorphism is given by the Pontrjagin-Thom construc-

tion. We recall that the Pontrjagin-Thom construction gives an isomorphism

between the spin bordism group Ωspin
n (X) of a space X and the n-th homotopy

group of the spectrum MSpin ∧X+, where MSpin is the Thom spectrum over

BSpin, and X+ is the union of X and a disjoint base point. For n ≥ 0, KOn(pt)

is isomorphic to the n-th homotopy group of a connective spectrum ko, called

the connective real K-theory spectrum. Moreover, there are spectrum maps T

(a kind of transfer map) and D (the ko-orientation of MSpin), whose induced

maps in homotopy make the upper two squares commutative.

Using the families index theorem, it is proved that the composition D ◦ T

is homotopic to the constant map, and hence T factors through a map T̂ from

MSpin ∧Σ8BG+ to M̂Spin, the homotopy fiber of D. The bottom row is part

of the long exact homotopy sequence of this fibration.
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The statement of the theorem is equivalent to saying that the top row of the

diagram is exact. By exactness of the bottom row it suffices to show that T̂∗ is

surjective at the prime 2. The proof of this uses the following facts.

(1) The homomorphism induced by T̂ on Z/2-cohomology is a split injection

of modules over the Steenrod algebra.

(2) The Adams spectral sequence converging to the 2-local homotopy groups

of MSpin ∧BG+ collapses.

By (1) the map of Adams spectral sequences induced by T̂ is a surjection on

the E2-level, by (2) on the E∞-level, and hence T̂ is surjective on the 2-local

homotopy groups. □
Now we turn to discuss Conjecture 3.1 in the case of a non-trivial fundamental

group. It might be tempting to think that a manifold M has a positive scalar

curvature metric if and only if its universal covering does, at least if π1(M) is

finite, by arguing one should be able to “average” a positive scalar curvature

metric on the universal covering of M to get a π1(M)-equivariant positive scalar

curvature metric which then descends to a positive scalar curvature metric on M .

However, averaging a positive scalar curvature metric might not give a positive

scalar curvature metric as the example below shows. On the other hand, if

π1(M) is finite of odd order, then it can be shown that the vanishing of α(M̃)

implies the vanishing of α(M,u), and hence Conjecture 3.1 claims in this case

that M has a positive scalar curvature metric if and only if M̃ does!

3.5 Example (Bergery-Berard [BB], Example 9.1). Let Σ be a 9-di-

mensional homotopy sphere with α(Σ) ̸= 0 (cf. Remark 2.3), and let M be the

connected sum (RP7 × S2)#Σ. We note that the real projective space RP7 and

hence RP7 × S2 are spin manifolds. It follows that the α-invariant of RP7 × S2

vanishes, since it has a positive scalar curvature metric. Noting that α is additive

with respect to connected sum (α is a bordism invariant, and the connected sum

is bordant to the disjoint union), we get:

α(M) = α(RP7 × S2) + α(Σ) ≠ 0.

Hence by Theorem 2.2 M does not admit a positive scalar curvature metric. On

the other hand, we have

M̃ ∼= S7 × S2#Σ#Σ ∼= S7 × S2,

since the group of 9-dimensional homotopy spheres is isomorphic to (Z/2)3, and
hence Σ#Σ is diffeomorphic to S7. So we see that M̃ has a positive scalar

curvature metric.

Attempting to prove Conjecture 3.1/3.2, an understanding of kerα is crucial.

Hence the following factorization of α is useful.

(3.6) Ωspin
n (Bπ)

D∗−−→ kon(Bπ)
p−→ KOn(Bπ)

A−→ KOn(C
∗(π))

Here p is the canonical map from connective to periodic KO-homology, and A

is the “assembly map”.
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3.7 Theorem (Jung [Ju], Stolz [St2]). Let M be a spin manifold of di-

mension n ≥ 5 with fundamental group π. Let u:M −→ Bπ be the classifying

map of the universal covering M̃ −→ M . Then M has a positive scalar curvature

metric if and only if D∗([M,u]) ∈ Poskon (Bπ), where Poskon (Bπ) is the image of

D∗ restricted to Posspinn (Bπ).

Sketch of proof. It suffices to show kerD∗ ⊆ Posspinn (Bπ). Away from

the prime 2 this is proved by Jung, who gives a Baas-Sullivan description of

ko∗(X)⊗Z[ 12 ]. In particular, [M,u] ∈ kerD∗ implies that the connected sum of

2r copies of (M,u) for some r bounds a manifold with singularities, and Jung

uses this to construct a positive scalar curvature metric on the connected sum.

The result at the prime 2 is due to Stolz, who proves that an odd multiple

of a bordism class in the kernel of D∗ can be represented by the total space of

an HP2-bundle. This boils down to the homotopy theoretic statement that the

middle row in diagram 3.4 is still exact after smashing with Bπ+. This follows

from the fact that the map T̂ is a split surjection of spectra, which in turn

is proved by splitting the spectra MSpin ∧ Σ8BG+ and M̂Spin using Adams

spectral sequence techniques. □
The above result is a significant improvement compared to the Bordism Theo-

rem 1.5, since the connective KO-theory groups ko∗(Bπ) are much smaller than

Ωspin
∗ (Bπ). Unfortunately, ko∗(Bπ) has been computed for only a handful of

finite groups, notably cyclic groups [Ha], elementary abelian 2-groups [Yu], and

the quaternion and dihedral group of order 8 [Ba]. Still, we immediately obtain

the following.

3.8 Corollary. The conjecture 3.1 is true if p and A are injective.

Note that many torsion-free groups π for which A is injective were listed in

[Ro3]. (This is related to the Novikov conjecture, as we will note below.) If in

addition Bπ is stably a wedge of spheres, then p is clearly a split injection. Thus

Corollary 3.8 applies to free groups, free abelian groups, fundamental groups of

orientable surfaces, and many similar examples.

3.9 Theorem (Rosenberg-Stolz [RS1], Thm. 5.3(4)). The conjecture

3.1 is true for π ∼= Z/2.

Sketch of proof. An Adams spectral sequence calculation shows that the

kernel of A ◦ p: kon(Bπ) −→ KOn(C
∗(π)) is trivial for n ̸≡ 3 mod 4, and a

finite cyclic group generated by D∗[RPn, u] for n ≡ 3 mod 4. This implies the

conjecture by Theorem 3.7. □

4. The stable conjecture

The real K-theory groups of a real C∗-algebra A are 8-periodic. Moreover, the

isomorphism KOn(A)
∼=−→ KOn+8(A) is given by multiplication by the generator

b ofKO8(pt) = KO8(R) ∼= Z. We can find a simply connected spin manifold B of

dimension 8 with α(B) = b. There are many possible choices for B, but we just
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pick one, and call it the “Bott manifold”. The Bott periodicity for KO∗(C
∗(π))

shows that given a manifold M with fundamental group π, α(M,u) vanishes if

and only if α(M ×B, u) vanishes (we use the letter u for the classifying map of

the universal covering of whatever manifold we are talking about). This shows

that Conjecture 3.1 is equivalent to the following two conjectures:

4.1 Cancellation Conjecture. Let M be a spin manifold of dimension

n ≥ 5. Then M has a positive scalar curvature metric if and only if M×B does.

4.2 Stable Conjecture. Let M be a spin manifold. Then M has stably

a positive scalar curvature metric (i.e. the product of M with sufficiently many

copies of B has a positive scalar curvature metric) if and only if α(M,u) = 0.

An important tool for proving the Stable Conjecture is the following geometric

description of periodic KO-homology.

4.3 Theorem (Kreck-Stolz [KrSt], Thm. C). Given a space X, let

T∗(X) be the subgroup of Ωspin
∗ (X) represented by pairs (N̂ , f ◦p), where N̂

p−→ N

is an HP2-bundle, and f :N −→ X is a map. Let b ∈ Ωspin
8 (pt)/T8(pt) ∼= ko8(pt) ∼=

Z be the generator, i.e., the class represented by the Bott manifold. Then the

homomorphism p ◦ D∗: Ω
spin
∗ (X) −→ KO∗(X) induces an isomorphism between

the groups Ωspin
∗ (X)/T∗(X)[b−1] and KO∗(X).

This shows in particular that if [M,u] ∈ Ωspin
∗ (X) is in the kernel of p ◦D∗,

then the product M ×B× . . .×B with sufficiently many copies of B represents

an element in Tn(X), and hence carries a positive scalar curvature metric. This

implies the following result.

4.4 Corollary. If the assembly map A:KOn(Bπ) −→ KOn(C
∗(π)) is injec-

tive, then the Stable Conjecture 4.2 is true.

The Novikov conjecture (or rather, a form of it) claims that A is injective

for torsion free groups. It has been proved for many groups, notably for torsion

free, discrete subgroups of Lie groups [Ka]. The assembly map is definitely not

injective for some groups, e.g., finite groups. In general, we obtain the following

consequence of Theorem 4.3.

4.5 Corollary. Let M be a spin manifold of dimension n ≥ 5 with funda-

mental group π. Let u:M −→ Bπ be the classifying map of the universal covering

M̃ −→ M . Then M has stably a positive scalar curvature metric if and only if

p ◦D∗([M,u]) is in PosKO
n (Bπ), where PosKO

n (Bπ) ⊂ KOn(Bπ) is the image of⊕
k≥0 Pos

spin
n+8k(Bπ) under p ◦ D∗ (here we identify KOn+8k(X) with KOn(X)

using periodicity).

We would like to point out the formal similarities between this result, the

Bordism Theorem 1.5, and Theorem 3.7. However, KO∗(Bπ) is much easier to

compute than ko∗(Bπ) or Ωspin
∗ (Bπ). For example, KO∗(Bπ) for a finite group

π can be expressed in terms of the representation ring of π, in a fashion similar to
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Atiyah-Segal’s calculation of KO∗(Bπ) [AS]. In fact, we obtain the description

of KO∗(Bπ) by dualizing their result.

4.6 Theorem (Rosenberg-Stolz [RS2]). The Stable Conjecture 4.2 is

true for finite groups π.

Sketch of proof. By Corollary 4.5 it suffices to show kerA ⊆ PosKO
∗ (Bπ).

Using a result of Kwasik-Schultz [KwSc], (cf. [RS1], Prop. 5.2) we can assume

that π is a p-group. Also it is enough to work with K̃O∗(Bπ), since kerA =

PosKO
∗ (Bπ) is true if π is the trivial group. As mentioned before, the groups

K̃O∗(Bπ) for a p-group π can be calculated. The result says in particular that

K̃O∗(Bπ) is a direct sum of finitely many copies of Z/p∞ plus, for p = 2, finitely

many copies of Z/2. Moreover, the kernel of the assembly map restricted to

K̃O∗(Bπ) consists precisely of the Z/p∞’s, and we have to show that all those

elements can be represented by positive scalar curvature manifolds.

This is proved first for cyclic groups π of order k = pr. We note that the

classifying space BZ/k can be identified with the sphere bundle S(H⊗k) of the

k-th tensor power of the Hopf line bundle over complex projective space CP∞.

Then the homotopy cofibration

BZ/k = S(H⊗k)
q−→ CP∞ −→ T (H⊗k),

where T (H⊗k) denotes the Thom space of H⊗k, induces a long exact sequence

of KO-homology groups

−→ KOn+1(T (H
⊗k))

∂−→ K̃On(BZ/k) q∗−→ K̃On(CP∞) −→ .

The group K̃On(BZ/k) is a torsion group, while K̃On(CP∞) is torsion free.

Hence q∗ is trivial, and ∂ is surjective.

Using again the geometric description of KO∗-homology in Theorem 4.3, one

can show that the image of ∂ can be represented by total spaces of S1-bundles

over simply connected manifolds. Moreover, these manifolds are non-spin if p

is odd. Hence in this case these manifolds and consequently the total spaces of

the S1-bundles over them admit positive scalar curvature metrics, which shows

K̃On(BZ/k) = P̃os
KO

n (BZ/k).
For p = 2, H⊗k is a spin bundle and hence using the Thom isomorphism we

get

KOn+1(T (H
⊗k)) ∼= KOn−1(CP∞) ∼= K̃On−1(CP∞)⊕KOn−1(pt).

The image of ∂ restricted to KOn−1(pt) is a finite subgroup, and hence ∂ re-

stricted to K̃On−1(CP∞) is still surjective on the Z/p∞ summands. But the

image of ∂ restricted to K̃On−1(CP∞) is again represented by total spaces of

S1-bundles over manifolds with positive scalar curvature. This proves the theo-

rem in the case of cyclic groups.

For the general case we use the fact that for a finite group π the represen-

tations induced up from cyclic subgroups span a subgroup of finite index of
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the representation ring of π. It follows that the image of
⊕

H KO∗(BH) in

KO∗(Bπ), where H runs through all cyclic subgroups of π, has finite index. In

particular the kernel of α is in the image, which reduces the general case to the

cyclic case. □
So far, we only discussed what is known about spin manifolds with posi-

tive scalar curvature and the group Posspinn (Bπ), but not the analogous group

PosSO
n (Bπ), which according to the Bordism Theorem 1.5 determines whether

an orientable manifold, whose universal cover is non-spin, has a positive scalar

curvature metric. We observe that for such a manifold M the product M×B al-

ways has a positive scalar curvature metric, since B represents the same bordism

class in ΩSO
8 (pt) as the disjoint union of 64 copies of CP2 × CP2. This implies

[M ×B] = [M ×
∐
64

CP2 × CP2] ∈ PosSO
n+8(Bπ),

since
∐

64 CP2×CP2 and henceM×
∐

64 CP2×CP2 has a positive scalar curvature

metric. Then the Bordism Theorem shows that M × B has a positive scalar

curvature metric.

This shows in particular, that methods using suitable Dirac operators and

their indices in some KO-groups don’t work here to give obstructions for positive

scalar curvature metrics on M . One might object here that M is not spin, and

hence there is no Dirac operator on M anyway. However, one can define a Dirac

operator [St3], which generalizes Rosenberg’s Dirac operator and whose index

lives in the KO-theory of a “twisted” version of C∗(π1(M)), were the “twist” is

determined by the first two Stiefel-Whitney classes of M . The manifold can be

non-spin, or even non-orientable; the only condition needed for the construction

of this operator is that the universal covering M̃ is spin.

At this point, one might believe that every orientable manifoldM of dimension

n ≥ 5, whose universal cover is non-spin, has in fact a positive scalar curvature

metric, since this is true in the simply connected case by Theorem 1.8, and

there are no obstructions coming from the indices of Dirac operators. However,

there is another technique for producing obstructions to positive scalar curvature

metrics, namely the minimal hypersurface method of Schoen-Yau [SY]. Using it

one can show that the connected sum M = T 6#(CP2×S2) of the 6-dimensional

torus with CP2×S2 does not admit a positive scalar curvature metric [GL3, p.

186], despite that fact that the universal covering M̃ is non-spin. At this point,

the characterization of the subgroup PosSO
n (Bπ) ⊆ ΩSO

n (Bπ) is wide open — to

the authors’ best knowledge there is not even a conjecture about it.
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