Renato Feres
Washington University, St. Louis

ESI, July 2011

«0O)>» «F>»

DA
1/37



Acknowledgements

Different aspects of this work are joint with:
@ Tim Chumley (Central limit theorems)
@ Scott Cook (Random billiards with Maxwellian limits)
@ Jasmine Ng (Spectral properties of Markov operators)
@ Gregory Yablonsky (Earlier engineering work)
@ Hong-Kun Zhang (Current work on most of these topics)

2/37



Plan of talk

@ Billiards with random microstructure

o Billiards: Hamiltonian flows on manifolds with boundary
o Microstructure: geometric structure on the boundary

@ The Markov operator

@ Derived from the random microstructure
@ Defines generalized billiard reflection

@ Properties of the Markov operator

Stationary distributions

Spectral gap and moments of scattering
The billiard Laplacian

Conditioning

Case studies

@ CLT and Diffusion
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Wall and molecule subsystems

@ Configuration spaces: Riemannian manifolds with corners
T k
Mwalla Mmol = Mmol X R X T

and potential functions:

9 Uyan 1]\_/-[wall - R
hd UMol : Mmol - R

@ The total system has configuration space M and potential
U: M- R.
@ When subsystems sufficiently far away, M =~ M.y x My, and
U =Ugyan + Unor-
@ Outside of product region = interaction zone. Motion:

v (t)
pran —grad ) U

with specular collisions at boundary.
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Interaction region (microscopic): definitions

S := M o1 x {0} x T* x M, boundary of inter. zone;

E(q,v) = %HvHi +U(q) energy function on N :=TM;
Nsi=TsM, N(&) := E-1(€), Ng(&) = Ns n N(&);
0, (&) = (v, d7,&) contact form on N;

df symplectic form on N;
X ¥ Hamiltonian vector field: X 1 df = -dE;
n:= (grad E)/|grad E|? (in Sasaki metric on N);

Q:= (df)™ Liouville volume form on N;

OF == 1Q flow invariant volume on energy surfaces;

T: Ng - Ng the return (billiard) map to S.
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@ M, = single point

o M, =1{0,1}

@ M, :={0,1} x RxT!
e §={0,1} x {0} x T

@ Potentials are constant
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Example: a dumbbell molecule

M, = single point
Mmol = 50(2)

M1 = SO(2) x R x T
S =80(2) x {0} x T

Potentials are constant
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Coordinates: x =+/mi/m (x1 —1/2), y = \/ma/m zs.
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Random microstructures a la Gromov

B := billiard table: Riemannian manifold with boundary;

F(0B) orthonormal frame bundle with group O(k);

Nyan =T M, state space of wall system;

V := P(O(k) x Nyan) space of probability measures;
@ V is naturally an O(k)-space.

Random microstructure on dB: O(k)-equivariant map
9 : F(@B) d :P(O(k) X Nwall)-

Example: § = (&,() constant, where ¢ € P(O(k)) is rotation invariant
and ¢ is Gibbs canonical distribution.
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Gibbs canonical distribution at temperature T

An invariant volume form on N,.; of physical significance:

-BE

- & F
¢i= Z(8) Qyan N AE

where 3 =1/kT. (k = Boltzmann constant.) Density p is obtained by
maximizing Boltzmann entropy:

H(p) = - [V plog pQyan

wall

under constraint | Nl EpQyan = &. (6 = Lagrange multiplier.)
Maximal uncertainty about state given mean value of E.
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The Markov operator P of a microstructure

@ M := half-space in dimension k + 1;
o N  =TM,y,xH;
@ m:N& =N} x TF x M., - N, projection to first factor;

X e P(T*) Lebesgue;
¢ € P(Nyan) a fixed probability (say, the Gibbs measure);

T:N§ — N§ the return map.
Define the map P: P(N* ) - P(N.), by

ppPi=(moT) (p®Aen).
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Markov chains (dynamics under partial state info)

M —— M s manivna Random dynamics on V:
Wl lw vy o pPi=(roT).uon
probability measure on 77! (v)

— V

random map observable states (probability measures on V)

no knowledge of state along fiber

Standard finite state Markov chains with detailed balance: M is a
groupoid, V is the set of units, T is the inverse operation, v — 7, are
the transition probabilities, and p o n is T-invariant.
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Example of P (constant speed)

Transition probabilities operator:

(PHO= [ FWo) ar.

R
~Fo(r) IS
w

Surface microstructure defined by a billiard table contour. The
coordinate r is random (uniform between 0 and 1).
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Definition: pe P(N7 ) is stationary if uP = p.

Let P:P(N},,) = P(N},,) be the Markov operator associated to the
Gibbs canonical distribution on N, with temperature parameter (3.

Then the Gibbs canonical distribution on N} , with the same
parameter 3 is stationary.

Use e #Fmor*Fwall) = ¢=FFmole=BPwall and invariance of the symplectic
volume form on Ng(&) under the return map 7.

O
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Example: Let Ce 2™%" dw ds be fixed state of wall

@ Equilibrium state of molecule: du(v) = C cos 0|v|26‘§m2|”‘2d9 dJv]
@ If no moving parts (fixed speed |v| = 1): du(6) = 1 cos 6 df.
@ No dependence on shapes.



The operator P on functions

Define action of P on functions by v(Pf) = (vP)(f).

Definition

The molecule-wall system is symmetric if there are volume preserving
automorphisms J and K of N§ that:

@ respect the product Ng = N | x Nyau;

mol
@ induce the same map J on N} ;
@ JoT =T"'0J (time reversibility)

@ KoT =ToK (symmetry).

Let 41 be the stationary measure and H = L2(N*_, ).

Theorem
If system is symmetric, P is a self-adjoint operator on H of norm 1. J

The symmetry condition essentially always holds. Typically, we
find in the examples that P is a Hilbert-Schmidt operator.
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Problem: relate structural features and spectrum of P

For example, in purely geometric settings (no moving parts on the
wall, no potentials) want to relate shape and spectrum.

tip angles, walls

rational polygon

E

curvature parameter Jfocusing

semi-dispersing semi-focusing

variable curvature variable curvature

Of special interest: spectral gap.
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Case studies (analytical and numerical)

@ A simple two masses system;

Adding a quadratic potential;

Billiard systems with no energy exchange;
The method of conditioning;

Moments of scattering and spectral gap;

Systems with weak scattering and the billiard Laplacian.
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Main system parameter: v :=, /z—f =tana.
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A simple two-masses system - 11

Define: = /™ 2, w = /L vy, d((w) := Cexp (-3w?/0?) dw dx;
Theorem

@ P has a unique stationary distribution u on (0,00), given by
02
du(v) = o 2vexp [ -— | dv.
202

@ P is a Hilbert-Schmidt operator on L?((0,00),p) of norm 1;
@ nP" - u exponentially inTV-norm for all initial 7.

@ If ¢ is C° on (0,00), then
GRICEEOMT

22 z

(£6)(z) = lim -2) ¢+ (2)

holds for all z > 0.
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A simple two-masses system - III

(NN

1 2 3 4 5
speed

probability density
°
b

Evolution of an initial probability measure, u, having a step function
density. The graph in dashed line is the limit density v exp(-v?/2)
and the other graphs, from right to left, are the densities of pgP™ at
steps n = 1,10,50,100. Here m;y/ms = 100.
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A simple two-masses system - IV

speed

Comparison of the second eigendensity of P (numerical) and the
second eigendensity of the billiard Laplacian £: (1 - 22/2)p(z). Used
v = 0.1; the numerical value for the second eigenvalue of P was found
to be 0.9606, to be compared with 1 +2v%(-2) = 0.9600 derived from
eigenvalue -2 of L.

24 /37



A simple two-masses system - V

0.16-

°
5
Y

spectral gap
o
S
?

°
o
-

mass ratio parameter

Asymptotics of the spectral gap of P for small values of the
mass-ratio parameter . The discrete points are the values of the gap
obtained numerically. The solid curve is the graph of f(7y) = 472,
suggested by comparison with L.
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@ du(f) = 3sinfdf and H = L? ([0,7], pu);

@ Py = the Markov operator for bumps with curvature K.

@ Py is a self-adjoint, compact operator on H of norm 1;

@ For small K, the spectral gap of Pk is g(K) = %KZ +O(K3);
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The (reduced) billiard map is an area-preserving map

T:58% 5 52,

Regard Pk as defined on L?(S5?%, A). Let A be the spherical Laplacian

Let ® be a compactly supported smooth function on S*~ {N,S}
invariant under rotations about the z-axis in R3. Then

K2
Px® -0 = ——A®+ O(K?).
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Moments of scattering for bumps family

@ Define the jth moment of scattering
€;(0) = Eg[(©-0)]
where O is the random post-collision angle given 6.

o and PO - & =" 22, 4 0(E,41) if & smooth.

Proposition

If sin@ > 3K /2 (middle range of angles), the moments satisfy:

@ Ifn is odd, £,(0) = 21((7:2) cot § + O(K"+3);

@ Ifn is even, &,(0) = £= + O(K™*?).

n+1

It follows that

PK<I>—<I> 1 d (bn@d@
%KQ " 2sinf do db

)+O(K)
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€(0)/vx for K =2/3,1/3,1/6

E(©f - 0)?/(spectral gap) — 1 (constant function)

: 08|
: | 0.7
: : 06|
: : [

This gives an asymptotic interpretation of the spectral gap as the
mean square deviation from specularity.
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For the general bumps family P is quasi-compact.

‘

speciral gap

S

4

10 - 16
Normalized curvature K

The solid line is the graph of 2/K and the values marked with an
asterisk are numerically obtained.
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Wall does not affect J-even eigenvalues, but brings J-odd eigenvalues

closer to 0.

=
b
~——

spectral gap
o
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o

spectral gap

o

-0.5 0
distance between bumps, h

0.5
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Two billiard cells with the same Markov operator:
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Gas transport in channels - 3 levels of description

@ Microscopic model (deterministic motion)

alal.

@ Random flight in channel (Markov process on set of directions)

@ Diffusion limit: gas concentration u(z,t) along R should satisfy

ou 5%u
— =D
ot

dz?

Relate: (1) microstructure, (2) spectrum of P, (3) diffusion constan

[m]

=
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Transition to diffusion—the Central Limit Theorem

Consider the following experiment. Let
@ 7 = radius of channel;
@ v = constant particle speed;
@ L = half channel length;
Release the particle from middle point with distribution . Measure
the expected exit time, 7(aL,r,v) as a - oo.
Proposition

Suppose P on L*([0,7], 1) has positive spectral gap and p is ergodic
for P. Then

1 a?
T(aL,r,v) ~ Do

where D = L2E(P).

We wish to understand how D depends on P.
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Let II be the (projection-valued) spectral measure of P on [-1,1]:

P- [11 AdII(N).

Fix 8>1 and let Z|, = ZX{|Z|SQ/1nﬁ a}

Z(6) = tan®
Spectral measure of Z on [-1,1]: Iz (-) = limgoee oz (Za, I(-) Z]a)-
Dy := diffusion const. for i.i.d. process with angle distribution p. Then

11+ )

D=D
)11

dllz ().

If P has discrete spectrum, Iz(\;) = 1liMgmeo o= [(Z]a, ¢3)[*

- - - e TN
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An elementary example

6 = initial angle, define integer k, s € [0,1), and probability p:

2h I s if k is odd
= S) = . .
btan6 b 1-s ifkiseven

Special case: 6 =7/4, b>2h. Then k =0,s =2h/b. For a long
channel of diameter 2r and particle speed v, the random flight tends
to Brownian motion with

b
2212 (——1).
o \/_7'11 o

An application of the central limit theorem for Markov chains.
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