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Abstract

We consider a large family of theories of equivalence relations, each with finitely
many classes, and assuming the existence of an ω-Erdős cardinal, we determine which
of these theories are Borel complete. We develop machinery, including forbidding
nested sequences which implies a tight upper bound on Borel complexity, and ad-
mitting cross-cutting absolutely indiscernible sets which in our context implies Borel
completeness. In the Appendix we classify the reducts of theories of refining equiva-
lence relations, possibly with infinite splitting.

1 Introduction
For many years, the authors have sought to identify dividing lines for Borel complexity of
invariant classes of countable structures. One of the stumbling blocks has been identifying
how to handle types in stable theories that have a perfect set of strong types extending it.
Indeed, in [18], along with Richard Rast, the authors proved that REF(bin), the theory of
binary splitting, refining equivalence relations, is not Borel complete (in fact, ‘countable
sets of countable sets of reals’ do not Borel embed into Mod(REF (bin)) yet the isomor-
phism relation on pairs of countable models is not Borel. It became apparent that many of
the existing tools of Descriptive Set Theory would not be applicable to such theories.

In order to isolate the strong type problem from other phenomena, we concentrate on
families of theories whose model theory is extremely tame. For almost all of this paper,
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we investigate theories of countably many equivalence relations, each with finitely many
classes. Any such theory is mutually algebraic, equivalently, every completion is weakly
minimal with trivial geometries (see e.g., [11]). Moreover, in our examples, for any model
M , acl(X) = X for every subset X ⊆ M and there is a unique 1-type. Somewhat
surprisingly, we find that even here, understanding the Borel complexity of such a theory
is extremely involved – so much so that in some cases we are only able to prove non-Borel
completeness by using a large cardinal axiom.

Why should the situation be so complicated? With Proposition 4.4 of [11], the first au-
thor showed that the elementary diagram Eldiag(M) of any model of a mutually algebraic
theory admits a strong structure theory. From this, it follows easily that for any mutually
algebraic theory T , the elementary diagram Eldiag(M) has a Borel isomorphism relation
and there is no Borel embedding of ‘countable sets of countable sets of reals’ into the class
of countable models of Eldiag(M). But, passing from Th(M) to Eldiag(M) obviates the
behavior we were aiming to study. For M mutually algebraic, the strong type structure on
Eldiag(M) is degenerate.

The Borel complexity of mutually algebraic structures is controlled by the profinite
group of elementary permutations of acleq(∅). In previous works, we carefully analyzed
REF (δ), refining equivalence relations in which each En-class is partitioned into δ(n+1)
En+1-classes. Here, we prove that whereas REF (δ) is not Borel complete, there is a tame
expansion (see Definition 8.1) of some countable model that is Borel complete. As well,
in the Appendix we prove that no model M of the theory of refining equivalence relations
has any interesting reducts, from which it follows that no reduct of REF (δ) is Borel
complete either. This last remark is rather peculiar. If one starts with a countable model
M |= REF (δ), neither its theory nor any of the theories of its reducts are Borel complete.
Moreover, if one adds constants naming each point and thereby obtaining Eldiag(M), this
expanded structure is not Borel complete. However, the expansion Eldiag(M) does have
a Borel complete reduct, say by Theorem 3.2 of [12].

By contrast, in a pair of papers [12] and [13], we give a description of the countable
models of CC(δ), the theory of countably many, cross-cutting equivalence relations En,
where each En has δ(n) < ω equivalence relations. On one hand, if {δ(n) : n ∈ ω} is
unbounded, then CC(δ) is Borel complete by Theorem 2.1 of [12]. By contrast, if δ(n) <
m for some fixed m ∈ ω, then CC(δ) is far from being Borel complete by Theorem 6.2
of [13]. With Corollary 7.8 here, we generalize both of these results. However, so long as
δ(n) ≥ 2 for each n, there exist countable models M |= CC(δ) that have Borel complete
reducts.

To try to develop a general framework for handling the behavior of strong types, in
Definition 4.1 we let P be the class of all triples (P,≤, δ) where (P,≤) is a countable poset
for which {q ∈ P : q ≤ p} is finite for all p ∈ P , and where δ : P → ω\{0, 1}. When ≤
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and δ are clear from context then we omit them. In this context, REF (δ) is obtained by
taking (P,≤) to be the chain (ω,≤). By contrast, CC(δ) is obtained by taking (P,≤) to
be a countably infinite antichain (no two distinct elements are comparable).

Say that (P,≤, δ) is bounded if there is some m < ω such that δ ≤ m and such that
every chain from P has length at most m.

Say that (P,≤, δ) is minimally unbounded if P is unbounded, and yet for all downward
closed Q ⊆ P , either Q or P\Q is bounded.

To each (P,≤, δ) ∈ P we associate a first-order theory T (P,≤, δ) = TP in the lan-
guage LP = {Ep : p ∈ P}, where Ep refines Eq for p > q and δ determines how many
Ep-classes each Eq-class splits into. In the main case of interest when P is infinite, TP
eliminates quantifiers and is mutually algebraic (weakly minimal trivial). Moreover, for
every M |= TP , acl(X) = X for all subsets X ⊆ M and ‘x = x’ generates a complete
1-type.

The following three theorems classify when T (P,≤, δ) is Borel complete. By a tame
expansion of TP we mean an expansion where every new symbol S is relational, and is
furthermore Ep-invariant for some p ∈ P .

Theorem 1.1. If P is bounded then TP is not Borel complete. In fact, there is no Borel
embedding of ‘countable sets of countable sets of reals’ into any tame expansion of TP .
Conversely, if P is unbounded then some tame expansion of TP is Borel complete.

Theorem 1.2. If P is unbounded, but not minimally unbounded, then TP is Borel complete.

For the following, κ(ω) is the first ω-Erdős cardinal (see Definition 9.8). We quote
machinery of the second author from [17], where it is shown that if κ(ω) exists, then
various Schröder-Bernstein properties imply the failure of Borel completeness. It is open
whether the large cardinal is necessary.

Theorem 1.3. Suppose P is minimally unbounded, and assume κ(ω) exists. Then TP is
not Borel complete.

The proofs of these theorems involve combining some tools from Descriptive Set The-
ory. Some of these are novel and are discussed in Section 2, which is entirely general.
Section 3 discusses down-finite partial orders, which are the only partial orders we con-
sider. The assumption is natural as we require the relations Ep to have only finitely many
classes. The classes of theories TP are defined by Section 4 and this framework is used
until the end of the paper.

The appendix is self-contained and does not require the equivalence relations to have
finite splitting. The main result, Theorem A.3, is that any reduct of any model M |= REF
is (after reindexing) also a model of REF . It is hoped that this result may be of interest in
its own right.
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2 Borel complexity and dividing lines from variants of in-
discernibility

In their seminal paper [4], Friedman and Stanley define and develop a notion of Borel
reducibility among first order and infintarily definable classes of structures with universe
ω in countable languages. The classes Mod(Φ) for Φ ∈ Lω1,ω are precisely those classes
that are Borel and invariant under permutations of ω. Such classes include Mod(T ), the
countable models of first order theories T . For such sentences Φ, Ψ, possibly in different
languages, a Borel reduction is a Borel function f : Mod(Φ) → Mod(Ψ) that satisfies
M ∼= N if and only if f(M) ∼= f(N). One says that Φ is Borel reducible to Ψ, Φ ≤B Ψ,
if there is a Borel reduction f : Mod(Φ) → Mod(Ψ). Φ and Ψ are Borel equivalent
if Φ ≤B Ψ and Ψ ≤B Φ. Among Borel invariant classes there is a maximal class with
respect to ≤B. We say Φ is Borel complete if Mod(Φ) is in this maximal class. Examples
include the (incomplete) theories of graphs, linear orders, groups, and fields.

Many of the classical tools of Descriptive Set Theory do not help in this context, as the
isomorphism relation on pairs of models in Mod(T ) is typically not Borel. Here, we adapt
various tools from model theory to aid in identifying the Borel complexity of theories.

Indiscernible sequences inside models of a theory or an infinitary sentence are impor-
tant in determining the model-theoretic complexity of its class of models. However, in the
first order context, merely asking for the existence of a model with a non-constant, infinite
sequence of indiscernibles is not a strong requirement. Indeed, a compactness argument
shows that any theory T admitting an infinite model also admits models containing non-
constant indiscernible sequences of any order type. This extreme freedom may fail for
sentences Φ ∈ Lω1,ω, but the existence of a non-constant, infinite indiscernible sequence
inside some model does not imply that the class of countable models of Φ is complicated.
Indeed, examples of Leo Marcus [15] and Julia Knight [9] show that a sentence Φ ∈ Lω1,ω

can have a unique model M , yet M contains an infinite, fully indiscernible subset.
However, both weakenings and strengthenings of indiscernibility impact Borel com-

plexity. Recall that in any structure M , a sequence (an : n ∈ ω) is indiscernible iff it is
nested (see Definition 2.1) and tp(am/A<m) does not split overA<n for every n < m < ω.
We concentrate on the first of these two conditions. The concept of non-splitting will not
play a role in this paper.

Definition 2.1. Say M is any L-structure and let (an : n ∈ ω) be any sequence of
singletons from M . As notation, for each n ∈ ω, let A<n = {aj : j < n} and let
qn(x) = qftp(an/A<n). Call the sequence nested if qn(x) ⊆ qm(x) for every n ≤ m.
Alternatively, (an : n ∈ ω) is nested if for each n, (ai : i < n, an) and (ai : i < n, an+1)
have the same quantifier-free type. We say that Φ forbids nested sequences if, for every
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M |= Φ, every nested sequence from M is eventually constant, i.e., for some n, am = an
for every m ≥ n. We say Φ admits nested sequences if the negation holds.

This is an extremely restrictive condition on Φ. By compactness, we see that no first
order theory T with an infinite model forbids nested sequences. We note two consequences
of this property. The first connects to classical notions of α-back-and-forth systems, at
least when α = 1.

Definition 2.2. Suppose M,N are L-structures and ā ∈ Mn, b̄ ∈ Nn. We say (M, ā) ≡0

(N, b̄) if and only if qftp(ā) = qftp(b̄);
For any ordinal α, (M, ā) ≡α+1 (N, b̄) if, for every a∗ ∈ M there is b∗ ∈ N such that

(M, āa∗) ≡α (N, b̄, b∗) and vice versa; and
For any non-zero limit ordinal δ, (M, ā) ≡δ (N, b̄) if and only if (M, ā) ≡α (N, b̄) for

every α < δ.

Here, we are only concerned with the case α = 1.

Definition 2.3. We say M ⊆∗1 N if M is a substructure of N such that, for all ā ∈ M<ω,
(M, ā) ≡1 (N, ā). A 1-embedding f : M �∗1 N is an L-embedding for which f(M) ⊆∗1
N .

It is easily seen that for M ⊆ N , M ⊆∗1 N if and only if for every ā ∈M<ω and every
b ∈ N , there is a∗ ∈ M such that qftp(āa∗) = qftp(āb) if and only if ‘M is relatively
ω-saturated in N for quantifier-free types.’

Proposition 2.4. Suppose f : M �∗1 N , where M forbids nested sequences. Then f is
onto.

Proof. We can suppose M ⊆∗1 N . By way of contradiction, suppose there is some b ∈
N \M . We construct a non-constant, nested sequence (an : n ∈ ω) ⊆ M as follows.
Suppose (ai : i < n) ⊆ M have been chosen. As f(M) ⊆∗1 N , choose an ∈ M such
that qftp(ai : i ≤ n) = qftp(ai : i < n)b. As b realizes tp(an/A<n) for each n, we have
qn(x) ⊆ qm(x) for all m ≥ n, so the sequence (an : n ∈ ω) is nested. Since b 6∈ M , the
sequence is non-constant as well.

In [5], Su Gao investigated automorphism groups Aut(M) that admit a compatible,
left-invariant, complete metric. Such groups are now called cli. Gao [5] proves that for
a countable structure M , Aut(M) is cli if and only if M has no proper Lω1,ω-elementary
extension if and only if every Lω1,ω-embedding f : M → N is onto.

Corollary 2.5. If Φ forbids nested sequences of types, then Aut(M) is cli for every count-
able M |= Φ.
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Proof. By way of contradiction, suppose there were some M |= Φ with a proper, Lω1,ω

elementary extension N �M . In particular, M ⊆∗1 N , which contradicts Proposition 2.4.
Thus, Aut(M) is cli for every M |= Φ by Gao’s theorem.

We remark that M forbidding nested sequences is strictly stronger than Aut(M) being
cli. Indeed, the examples of Marcus and Knight mentioned above are cli, but visibly do
not forbid nested sequences.

In [18], we investigate the Borel complexity of Φ by considering its potential canonical
Scott sentences ϕ ∈ CSS(Φ)ptl. These are the sentences ϕ ofL∞,ω that become a canonical
Scott sentence of some countable model M in some (equivalently, any) forcing extension
V[G] for which ϕ ∈ (Lω1,ω)V[G]. The number of these sentences ||Φ|| := |CSS(Φ)ptl|
(possibly a proper class) measures the Borel complexity of Mod(Φ), the class of countable
models of Φ. Theorem 3.10(2) of [18] states that if Φ is Borel reducible to Ψ, then ||Φ|| ≤
||Ψ||.

If ϕ is a canonical Scott sentence – that is, ϕ ∈ CSS(Φ)ptl – then we can identify ϕ
with the set S<ω∞ (ϕ) := {css(M, ā) : ā ∈ M<ω} where M is some (equivalently, any)
countable M |= ϕ occurring in any forcing extension V[G] in which ϕ ∈ (Lω1,ω)V[G]. As
this set does not depend on the choice of either G or M , it follows by the product forcing
lemma (see e.g., Lemma 2.5 of [18]) that the set S<ω∞ (ϕ) ∈ V. For each n ∈ ω, we refer to
elements of Sn∞(ϕ) as infinitary types p(x0, . . . , xn−1). When discussing such types, the
following notation will be helpful.

Notation 2.6. For any n ≥ 1 and any type r(x0, . . . , xn), we distinguish two associ-
ated types π(r)(x0, . . . , xn−1) and π∗(r)(x0, . . . , xn−1). π(r) is simply the projection
r�x0,...,xn−1 onto the first n coordinates, while π∗(r) is obtained by first swapping the roles
of xn−1 and xn, and then taking the projection. That is, for any formula δ,

δ(x0, . . . , xn−2, xn−1) ∈ π∗(r) if and only if δ(x0, . . . , xn−2, xn) ∈ r

As an example of this usage, for any L-structure M and any ω-sequence (an : n ∈ ω)
from M , the sequence (an : n ∈ ω) is nested if and only if π(rn) = π∗(rn) for every
n ≥ 1, where rn := qftp(a0, . . . , an).

Note that S<ω∞ (ϕ) has an ‘amalgamation’ property: for every n ∈ ω, every infinitary
type s(x0, . . . , xn−1) ∈ Sn∞(ϕ) and all extensions p(x0, . . . , xn), q(x0, . . . , xn) ∈ Sn+1

∞ (ϕ),
there is at least one r(x0, . . . , xn+1) ∈ Sn+2

∞ (ϕ) such that π(r) = p and π∗(r) = q.
Furthermore, if p 6= q, then (xn 6= xn+1) ∈ r for any such amalgam r.

To see this, fix any forcing extension V[G] in which ϕ is hereditarily countable and,
in V[G], choose any countable M |= ϕ. Now, given s, p, q as above, since p, q extend
s, there are ā ∈ Mn, b, c ∈ M such that p = css(M, ā, b) and q = css(M, ā, c). Then
r = css(M, ā, b, c) is an amalgam.
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Theorem 2.7. Suppose Φ ∈ Lω1,ω forbids nested sequences. Then:

1. Every ϕ ∈ CSSptl(Φ) is a sentence of L(2ℵ0 )+,ω;

2. The Scott rank SR(ϕ) < (2ℵ0)+;

3. ||Φ|| ≤ i2;

4. ‘Countable sets of countable sets of reals’ do not Borel embed into Mod(Φ).

Moreover, since Φ forbidding nested sequences is preserved under expansions of the lan-
guage, the same results hold for any expansion of Φ.

Proof. (2) follows from (1) by the definitions, and (3) follows from (1) since L is count-
able. (4) follows from (3) by Theorem 3.10(2) of [18], since ‘countable sets of countable
sets of reals’ has i3 potential canonical Scott sentences.

So, it suffices to prove (1). By Proposition 4.6 of [18], it is enough to show that
|S<ω∞ (ϕ)| ≤ 2ℵ0 . Suppose towards a contradiction this were not the case. Choose a forcing
extension V[G] in which ϕ ∈ HCV[G] and, in V[G], choose a countable M |= ϕ. By
Shoenfield absoluteness, Φ also forbids nested sequences in V[G], so we will obtain a
contradiction by constructing a nested sequence (an : n ∈ ω) of distinct elements inside
M .

Working in V, as we are assuming |S<ω∞ (ϕ)| > i1, and since S0
∞(ϕ) is a singleton,

choose a k ∈ ω and s(x0, . . . , xk−1) ∈ Sk∞(ϕ) that has > i1 extensions to Sk+1
∞ (ϕ). From

this, we recursively construct sets Xm ⊆ Sk+m+1
∞ (ϕ) and types pm ∈ Xm satisfying:

1. |Xm| > i1;

2. Any p, q ∈ Xm have the same quantifier-free type;

3. For every r ∈ Xm+1, π(r) = pm and π∗(r) ∈ Xm, but π(r) 6= π∗(r). (In particular
pm ⊆ pm+1.)

To begin the construction, as there are only i1 quantifier-free types in Sk+1
∞ (ϕ), by our

choice of s, choose a subset X0 of extensions of s, all with the same quantifier-free type
and such that |X0| > i1, and choose p0 ∈ X0 arbitrarily. Now, assume Xm and pm have
been chosen. For each q ∈ Xm \ {pm}, choose an amalgam rq ∈ Sk+m+2

∞ (ϕ) such that
π(rq) = pm and π∗(rq) = q. To see this is possible, note that when m = 0, both pm
and q extend s, and when m > 0, both pm and q extend pm−1. Now let Ym+1 = {rq :
q ∈ Xm \ {pm}}. Since the map q 7→ rq is injective, |Ym+1| > i1, so choose a subset
Xm+1 ⊆ Ym+1, all of whom have the same quantifier-free type, of size > i1.
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Now, forgetting about the witnessing sets Xm, we have constructed a sequence (pm ∈
Sk+m+1
∞ (ϕ) : m ∈ ω) such that each extends s; pm ⊆ pm+1; pm(x, yi : i ≤ m) `∧
i<j≤m yi 6= yj; and the types pm = π(pm+1) and π∗(pm+1) have the same quantifier free

type.
Finally, we pass this data to V[G], recalling that every type in S<ω∞ (ϕ) is of the form

tp∞M(c̄) for some c̄ ∈ M<ω. Choose b̄ ∈ Mk so that s = tp∞M(b̄) and recursively choose
am ∈ M so that pm = tp∞M(b̄, ai : i ≤ m). Then (an : n ∈ ω) is a nested sequence of
distinct elements of M , giving our contradiction.

On the stronger side, one can talk ask whether a sentence Φ ∈ Lω1,ω contains mod-
els with arbitrarily long non-constant sequences. By Theorem 5.6 of [13], this property
implies that S∞ divides Aut(M) for some M |= Φ, which is a notion introduced by
Hjorth [6].

Definition 2.8. For topological groups G,H , we say H divides G if there is a closed
subgroup G∗ ≤ G and a continuous, surjective homomorphism π : G∗ → H .

Of special interest is when G = Aut(M) for some countable L-structure and H =
S∞ = Sym(ω).

With Theorem 5.5 of [13], we give many equivalents of a sentence Φ ∈ Lω1,ω having a
model M for which S∞ divides Aut(M). Shaun Allison considers this notion locally, i.e.,
when G = Aut(M) is fixed, and gives several other equivalents. We isolate a notion that
was unnamed, but present in both [18] and [14], that gives yet another equivalent to S∞
dividing Aut(M).

Definition 2.9. A countable structure M admits absolutely indiscernible sets if there are
disjoint subsets {Dn : n ∈ ω} of M such that, for every permutation σ ∈ Sym(ω), there is
an automorphism σ∗ ∈ Aut(M) such that σ∗[Dn] = Dσ(n) for every n ∈ ω. For Φ ∈ Lω1,ω

we say Φ admits absolutely indiscernible sets if some countable M |= Φ does.

The hard direction of the following Fact is implicit in the proof of Allison’s Theo-
rem 3.7 from [1].

Fact 2.10. Let M be any countable structure. Then S∞ divides Aut(M) if and only if M
admits absolutely indiscernible sets.

Proof. (Easy direction). Suppose {Dn : n ∈ ω} is a family of absolutely indiscernible
sets from a countable L-structure M . Let L′ = L ∪ {U,E} let M ′ be the expansion of
M formed by interpreting U as

⋃
{Dn : n ∈ ω} and E as the equivalence relation on

U given by E(a, b) iff a, b are in the same Dn. Then Aut(M ′) is a closed subgroup of
Aut(M) and, as any f ∈ Aut(M ′) permutes the sets {Dn : n ∈ ω}, we get an induced
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map π : Aut(M ′) → S∞. Clearly, π is a continuous homomorphism, and since {Dn} is
absolutely indiscernible, π is a surjection.

By Theorem 5.5 of [13], we know that any Φ ∈ Lω1,ω admitting absolutely indis-
cernible sets has a Borel complete expansion, but for a given Φ, it is of interest to know
how much additional structure must be added to obtain a Borel complete class. The fol-
lowing is a strengthening of Definition 2.9.

Definition 2.11. A countable structure M admits cross-cutting absolutely indiscernible
sets if there are Aut(M)-invariant equivalence relations E0, E1 and families of sets D0

∗ =
{D0

n : n ∈ ω}, D1
∗ = {D1

m : m ∈ ω} satisfying

1. For all a ∈ D0
∗, b ∈ D1

∗, there is c ∈M such that M |= E0(c, a) ∧ E1(c, b);

2. For all distinct n 6= n′, a ∈ D0
n, a′ ∈ D0

n′ implies M |= ¬E0(a, a
′) (and dually for

D1
∗ and E1.)

3. For all pairs σ0, σ1 ∈ Sym(ω) there is some τ ∈ Aut(M) such that for all n,m ∈ ω,
τ [D0

n] = D0
σ0(n)

and τ [D1
m] = D1

σ1(m).

We say that Φ ∈ Lω1,ω admits cross-cutting absolutely indiscernible sets if some countable
M |= Φ does.

By itself, Φ admitting cross-cutting absolutely indiscernible sets does not imply Borel
completeness. Indeed the complete first-order theory T of cross-cutting equivalence re-
lations E0, E1, each with infinite splitting and with [a]E0 ∩ [b]E1 infinite for every a, b is
ω-categorical, yet admits cross-cutting, absolutely indiscernible sets.1 However, Theo-
rem 2.13 shows that a rather mild class of expansions will be Borel complete.

Definition 2.12. Given a countable structureM , a coloring ofM is a function c : M → ω.
Formally, when we write (M, c), we are considering the expansion of M to the L∗ =
L ∪ {Un : n ∈ ω}-structure M∗, where Un(M∗) = c−1(n) for each n ∈ ω. Let

C(M) = {(M, c) : c a coloring of M} and C(Φ) = {C(M) : M |= Φ}

In preparation for the following theorem, we look at the class BP of all bipartite
graphs on ω × ω, which naturally correspond to subsets R ⊆ ω × ω. We say that two
bipartite graphs R,R′ are isomorphic if there are permutations σ0, σ1 ∈ Sym(ω) such that
for all (n,m) ∈ ω × ω, we have (n,m) ∈ R if and only if (σ0(n), σ1(m)) ∈ R′.

1Given M |= T countable, choose disjoint sets {R0, R1} from M such that Ri = {din : n ∈ ω} is a set
of Ei-representatives for i = 0, 1 and put Di

n := {din} for every n ∈ ω.
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Call a bipartite graph reduced if, for all distinct n 6= n′, {m ∈ ω : R(n,m)} 6= {m ∈
ω : R(n′,m)} and dually, {n ∈ ω : R(n,m)} 6= {n ∈ ω : R(n,m′)} for distinct m 6= m′.
Let BP∗ denote the set of reduced bipartite graphs (ω × ω,R). It is well known that the
class (BP∗,∼=) is Borel complete.

Theorem 2.13. Suppose a countable structure M admits cross-cutting absolutely indis-
cernible sets. Then C(M) is Borel complete.

Proof. Choose such an M and fix E0, E1,D0
∗,D1

∗ witnessing this; let (1), (2), (3) refer to
the items of the definition of crosscutting absolutely indiscernible sets. We replace each
Di
n by its Ei-saturation, i.e., replace Di

n by {a′ ∈ M : M |= Ei(a
′, a) for some a ∈ Di

n}.
This does not disturb any of (1)–(3). It suffices to define a Borel reduction from BP∗ into
C(M). First, call an element c ∈ M a grid point if c ∈ D0

∗ ∩ D1
∗. It follows from (1) and

(2) that if c ∈ M is a grid point, then there are unique n,m ∈ ω with c ∈ D0
n ∩D1

m. We
will always put c(x) = 0 iff x is not a grid point. As both E0, E1 are invariant, it follows
thatDi∗ will be invariant under any color-preserving isomorphism, i.e., sending grid points
to grid points.

Now, suppose we are input a reduced R ⊆ ω × ω. We define the coloring cR : ω →
{0, 1, 2} by putting cR(x) = 0 for all non-grid points, and for grid points c ∈ D0

n ∩ D1
m,

putting cR(c) = 1 if and only if (n,m) ∈ R, and put cR(c) = 2 otherwise. By the previous
comments this is well-defined, since (n,m) is uniquely determined by c.

The following Claim (along with the dual claim forD1
∗) uses the fact thatR is reduced.

Claim. Choose any a, a′ ∈ D0
∗. Then a, a′ are in the same D0

n if and only if for every
b ∈ D1

∗, cR(c) = cR(d) for every c ∈ [a]E0 ∩ [b]E1 and every d ∈ [a′]E0 ∩ [b]E1 .

Proof. (⇒) Assume a, a′ ∈ D0
n and choose b, c, d as above. Say b ∈ D1

m. Then cR(c) = 1
iff R(n,m) iff cR(d) = 1 by definition.

(⇐) Say a ∈ D0
n, a ∈ D0

n′ with n 6= n′. As R is reduced (and by symmetry),
choose m such that R(n,m) and ¬R(n′,m) hold. By (2), choose c ∈ [a]E0 ∩ [b]E1 and
d ∈ [a′]E0 ∩ [b]E1 . Then cR(c) = 1, while cR(d) = 2.

To show the above is a Borel reduction, choose isomorphic (ω × ω,R) ∼= (ω × ω, S)
from BP∗. Choose an isomorphism (σ0, σ1) and choose τ ∈ Aut(M) by (3). Then τ :
(M, cR) 7→ (M, cS) is an L∗ isomorphism. Conversely, suppose h : (M, cR) → (M, cS)
is an L∗-isomorphism. Then, using the Claim, define π0 : ω 7→ ω by letting π0(n) be the
unique n∗ such that for any a ∈ D0

n, h(a) ∈ D0
n∗ , and defined π1(m) to be the unique m∗

such that for any b ∈ D1
m, h(b) ∈ D1

m∗ . As h is color preserving, it follows that for any
(n,m) ∈ ω × ω, for any a ∈ D0

n, b ∈ D1
m, and c ∈ [a]E0 ∩ [b]E1 , R(n,m) iff cR(c) = 1 iff

cS(h(c)) = 1 iff S(π0(n), π1(m)). Thus (π0, π1) is a bipartite graph isomorphism.
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3 Down-Finite Posets
Definition 3.1. Given a poset (P,≤) and Q ⊆ P , let the downward closure of Q, dc(Q),
be the set of all p ∈ P such that p ≤ q for some q ∈ Q. We say that Q is downward closed
if Q = dc(Q). When Q = {q} is a singleton we write P≤q instead of dc(q).

Say that (P,≤) is down-finite if for all p ∈ P , P≤p is finite.
For α an ordinal, a chain of length α from P , or just an α-chain, is a sequence (pβ :

β < α) from P with pβ < pβ′ for all β < β′ < α. We define the height of P , ht(P ), to be
the supremum of lengths of chains from P . When (P,≤) is down-finite, every chain from
P is of length at most ω, so ht(P ) is always finite or ω.

If ht(P ) < ω we say that (P,≤) is of bounded height. This includes the case whenever
P is finite. For every q ∈ P , the height of q, htP (q), is defined to be ht(P≤q). If P is down-
finite, then ht(q) < ω for every q ∈ P (it is always ≤ |P≤q|).

The following fact is easy.

Fact 3.2. Suppose (P,≤) is down-finite. If q ∈ P with ht(q) = n, then for every chain
(r1, . . . , rn) ⊆ P≤q we must have rn = q and, for every k ≤ n, ht(rk) = k. In particular,
if ht(q) = n and k ≤ n, then some r ≤ q has ht(r) = k.

Proof. First note that if rn 6= q, then concatenating q at the end would give a chain of
length n + 1, which is forbidden. More generally, for any k ≤ n, the chain (r1, . . . , rk)
witnesses that ht(rk) ≥ k. However, if there were a longer chain in P≤rk we could con-
catenate (rk+1, . . . , rn) to it, contradicting ht(q) = n.

Definition 3.3. Let (P,≤) be a down-finite poset. Two subsets Q,R ⊆ P are orthogonal,
Q⊥R, if {q, r} are incomparable for every q ∈ Q, r ∈ R.

Say that P is narrow if whenever Q⊥R are orthogonal subsets of P , at least one of
Q,R has bounded height.

Lemma 3.4. Suppose P is narrow. Then P does not admit a family of arbitrarily long
pairwise orthogonal finite chains.

Proof. Suppose we had arbitrarily long pairwise orthogonal finite chains (Cn : n < ω),
say Cn is of length n. Let Q = {C2n : n < ω} and let R = {C2n+1 : n < ω}. Then Q⊥R
witnesses that P is not narrow.

Lemma 3.5. Suppose (P,≤) is down-finite, narrow, and of unbounded height. Then there
is some p ∈ P such that P>p has unbounded height.
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Proof. Suppose not. We construct a family of arbitrarily long pairwise orthogonal finite
chains.

Suppose we have found pairwise orthogonal chains (Ci : i < n) from P . It suffices to
find an n-chainCn from P which is orthogonal to eachCi, for i < n. Let k be large enough
so that for all p ∈

⋃
i<nCi, ht(P>p) < k and ht(p) ≤ k. Let C ′ = (rj : j < 2k + n) be a

chain from P of length 2k + n. Let Cn = (rj : k ≤ j < k + n), a chain of length n. We
claim that Cn is as desired. Suppose i < n and p ∈ Ci and k ≤ j < k+n. Then p 6≤ rj , as
otherwise (rj+1, . . . , r2k+n−1) would be a chain of length at least k above p, contradicting
ht(P>p) < k. Similarly, rj 6≤ p, as otherwise (r0, r1, . . . , rj) would be a chain of length at
least k + 1 from P≤p, contradicting ht(p) ≤ k.

Theorem 3.6. Suppose (P,≤) is down-finite, narrow, and of unbounded height. Then P
contains an ω-chain.

Proof. Let P∗ be the set of all p ∈ P such that P>p has unbounded height. The preceding
lemma says that P∗ is nonempty. We show that no element of P∗ is maximal, from which
it follows that P∗ contains an ω-chain.

Choose any p ∈ P∗. Then (P>p,≤) is narrow, since (P,≤) is, and is of unbounded
height. Hence, by the preceding lemma, there is q ∈ P>p with P>q of unbounded height,
hence q ∈ P∗ and q > p.

4 An interesting family of mutually algebraic theories
Definition 4.1. Let P consist of all triples (P,≤, δ) satisfying:

• (P,≤) is a countable, down-finite poset;

• δ : P → ω \ {0, 1} is an arbitrary function.

Let LP = {Eq : q ∈ P} with each Eq a binary relation symbol, and for each (P,≤, δ) ∈ P
let:

• F(P,≤, δ) :=
∏

q∈P δ(q); and

• M(P,≤, δ) is the LP -structure with universe F(P,≤, δ) where, for each q ∈ P , Eq
is interpreted as:

Eq(f, f
′) ⇐⇒

∧
q′≤q

f(q′) = f ′(q′)

12



Note that F(P,≤, δ) does not depend on the partial order structure, but M(P,≤, δ) cer-
tainly does. When≤ and δ are clear from context (which is usually the case) we will write
just FP ,MP .

If P is finite, then FP and MP will be finite, and thus uninteresting. However, when
(P,≤, δ) ∈ P and P is (countably) infinite, then |FP | has cardinality 2ℵ0 and is a compact
Polish space when endowed with the Tychonoff topology. It is easily seen that any such
MP satisfies the following axiom schemes, which we dub T (P,≤, δ) (or just TP ).

• Each Eq is an equivalence relation;

• If q′ ≤ q, then Eq refines Eq′ and, moreover, letting E<q(x, y) :=
∧
q′<q Eq′(x, y),

then Eq partitions each E<q-class into precisely δ(q) classes. [Since {q′ ∈ P : q′ <
q} is finite, E<q is a finite conjunction of atomic LP -formulas.]

• If Q ⊆ P is downward closed and finite, then for every sequence (aq : q ∈ Q)
satisfying Eq′(aq′ , aq) for all q′ ≤ q, there is a∗ such that Eq(a∗, aq) for every q ∈ Q.

It is easily checked that when P is infinite, then the axioms TP admit elimination of
quantifiers in the language LP , and hence generate the complete theory of MP . As a
consequence, when P is infinite, then TP is mutually algebraic, and moreover, for any
M |= TP , acl(A) = A for every A ⊆ M and x = x generates a complete 1-type.
Further, in anyM |= TP , the group of elementary permutations of acleq(∅) is topologically
isomorphic to Aut(MP ); in particular the latter is a compact Polish group.

In describing the Borel complexity of countable models of such a T (P,≤, δ), it is
useful to consider the following universal sentence Ψ ∈ Lω1,ω

∀x∀y

(∧
q∈P

Eq(x, y)→ x = y

)

Let Φ(P,≤, δ) := T (P,≤, δ) ∪ {Ψ}. Visibly, M(P,≤, δ) |= Φ(P,≤, δ).
We establish some initial consequences.

Fact 4.2. Fix any (P,≤, δ) ∈ P.

1. A subset M ⊆MP is an elementary substructure iff M is a dense subset of FP .

2. Every elementary substructure M �MP is a model of ΦP .

3. Suppose A ⊆ MP and A ⊆ M |= ΦP . Then there is an isomorphic embedding
f : M → MP which is the identity on A. In particular, models of ΦP have size at
most i1.
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4. If M � MP , then every automorphism σ ∈ Aut(M) extends uniquely to an auto-
morphism of MP . Thus Aut(M) is isomorphic to a subgroup of Aut(MP ).

Proof. (1) If M is not dense in FP then there is some finite downward closed Q ⊆ P
such that M does not meet every

∧
q∈QEq-class. But TP entails that there are

∏
q∈Q δ(q)

such classes, so M 6|= TP . The converse is similar, noting that M � MP if and only if
M |= TP , by the quantifier elimination.

(2) Clear.
(3) Suppose A,M are given. It suffices to show that for all b ∈ M there is f ∈ MP

such that qftp(A, b) = qftp(A, f), since then we can replaceA byA∪{f}, and replaceM
by a copy over Af , and continue by transfinite induction. We can also suppose of course
b 6∈ A.

Let Q := {p ∈ P : M |= Ep(b, a) for some a ∈ A}. Then Q is downward closed.
Choose s ∈

∏
q∈Q δ(q) such that s(q) = a(q) for some/every a ∈ A such that M |=

Eq(b, a). Let R be the set of minimal elements of P\Q. For each r ∈ R, P<r ⊆ Q.
Let A′r = {a ∈ A : M |= Eq(a, b) for all q < r} and let Ar ⊆ A′r be a choice of
representatives for A′r/Er. Since r 6∈ Q, M |= ¬Er(a, b) for every a ∈ Ar. Since
M |= TP , this implies δ(r) ≥ |Ar|+ 1. So, choose t ∈

∏
p∈Q∪R δ(p) to extend s, but with

t(r) 6= a(r) for every r ∈ R and a ∈ Ar. Then any f ∈ FP extending t works; we use
that M |= ΦP to verify that f 6∈ A.

(4) It is straightforward to check that every automorphism of MP is continuous, from
which uniqueness follows. Further, by (3), if σ : M →M then we can find some extension
τ : MP →MP , and it suffices to show that τ is surjective. For this it suffices to note that
MP is a maximal model of ΦP , again by (3) (take A = MP ).

We will see that as we vary (P,≤, δ) within P, we obtain radically different classes
in regard to Borel complexity of the mutually algebraic theories T (P,≤, δ). For this, it is
useful to consider the class C(ΦP ) of colored models (M, c) for M |= ΦP described in
Definition 2.12. The following Lemma is almost immediate.

Lemma 4.3. For any (P,≤, δ) ∈ P, the first order theory TP is Borel equivalent to C(ΦP ).

Proof. Given a nonempty set X , let h(X) denote its cardinality if X is finite, and oth-
erwise h(X) := 0. Fix any (P,≤, δ) ∈ P and consider the type-definable equivalence
relation EP (x, y) :=

∧
p∈P Ep(x, y). Given any M |= TP , the quotient M/EP |= ΦP . For

any countable M |= TP , define a coloring c : M/EP → ω, where c(a) = h([a]EP
)

for each a ∈ M . The map M 7→ (M/EP , c) is clearly a Borel reduction from the
class of countable models of TP to C(ΦP ). For the reverse direction, given a countable
(M, c) ∈ C(ΦP ), we construct Mc |= TP as follows: Choose a family {F (a) : a ∈ M}

14



of pairwise disjoint sets, with h(F (a)) = c(a) for each a ∈ M . Let Mc be the LP -
structure with universe

⋃
{F (a) : a ∈ M} and, for each p ∈ P , Ep is interpreted as

Ep(Mc) =
⋃
{F (a)× F (b) : a, b ∈ Ep(M)}.

As a preamble to what follows, a general technique for showing that T (P,≤, δ) is Borel
complete will be to show that Φ(P,≤, δ) admits cross-cutting absolutely indiscernible sets
and then applying Lemma 4.3 and Theorem 2.13. Alternatively, a way of showing non-
Borel completeness (and, in fact prove that ‘countable sets of countable sets of reals’ do
not embed) of T (P,≤, δ) is to show that Φ(P,≤, δ) forbids nested sequences and apply
Theorem 2.7 to Φ(P,≤, δ).

In the remainder of this section we discuss several examples. We recall the taxonomy
mentioned in the Introduction.

Definition 4.4. Suppose (P,≤, δ) ∈ P.

• (P,≤, δ) is bounded if the poset (P,≤) is of bounded height and δ is bounded on P .

• We call a subset Q ⊆ P bounded if (Q,≤, δ�Q) ∈ P is bounded.

• (P,≤, δ) is unbounded if it is not bounded.

• (P,≤, δ) is minimally unbounded if it is unbounded, but for all downward closed
Q ⊆ P , either Q or P\Q is bounded.

We will also need the following. Suppose (P,≤, δ) ∈ P. Then for any Q ⊆ P down-
ward closed, let EQ be the type-definable equivalence relation

∧
q∈QEq; this definition

makes sense in any M |= TP .

First, suppose P is an infinite antichain, i.e., ht(P ) = 1. Then the theory TP is simply
CC(δ), as discussed in the Introduction. Combining results from [12] and [13], TP is Borel
complete if and only if δ is unbounded. When δ is bounded, ΦP forbids nested sequences;
when δ is unbounded, then we can split P into two pieces Q ∪ R with δ unbounded on
both, and then EQ and ER witness the existence of crosscutting absolutely indiscernible
sets. With Corollary 7.8 we see this behavior is typical of any example with (P,≤) of
bounded height.

Let P be a single ω-chain and let Q = {p, q} be an antichain of size two. Then (P ×
Q,≤, δ) is unbounded, but not minimally unbounded for any choice of δ. Theorem 7.4
and Lemma 4.3 show that TP×Q is Borel complete (regardless of the choice of δ). Indeed,
EP×{p} and EP×{q} witness that ΦP×Q admits cross-cutting absolutely indiscernible sets.

Let P be the union of n-chains Cn for n < ω with no relations among the n-chains.
Let δ be arbitrary. Then again, (P,≤, δ) is unbounded, but not minimally unbounded.
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Theorem 7.4 shows that TP is Borel complete (for any δ). Indeed, let Q = {C2n : n < ω}
and R = {C2n+1 : n < ω}; then EQ and ER witness the existence of cross-cutting
absolutely indiscernible sets.

Let P be a single ω-chain and let Q be a chain of length 2. By Corollary 8.6, TP×Q is
Borel complete (for any δ). By themselves, equivalence relations of the form ER for R ⊆
P downward closed do not witness the existence of cross-cutting absolutely indiscernible
sets.

Let P be a single ω-chain. Then TP is simply REF (δ) from the Introduction, and we
know that TP is not Borel complete. Indeed, by Theorem A.3, no reduct of any model of
REF (δ) is Borel complete either. Regardless of δ, (ω,≤, δ) is minimally unbounded.

Let P = {pn : n < ω} ∪ {qn,m : n,m < ω} where {pn : n < ω} is an ω-chain
and qn,m : m < ω is an antichain above pn. Let δ be identically three. Then (P,≤, δ) is
minimally unbounded. By Theorem 9.11, under sufficient large cardinals TP is not Borel
complete. We conjecture that its potential cardinality is i2 (and that this can be proven in
ZFC) but at present we cannot even prove it is less than∞.

5 Characterizing when S∞ divides
Fix (P,≤, δ) ∈ P. In this section we characterize when S∞ divides the automorphism
group of some countable M |= ΦP .

We want to compare elements f, f ′ ∈MP . Let∧
(f, f ′) := {q ∈ P : f(q′) = f ′(q′) for all q′ ≤ q}

and, for A ⊆MP , put
∧
A :=

⋃
{
∧

(a, a′) : a 6= a′ ∈ A}.
These definitions match well with the interpretations of the Ep’s, and the following

Facts are proved merely by unpacking the definitions.

Fact 5.1. Suppose (P,≤, δ) ∈ P. Then

1. For all f, f ′ ∈MP ,
∧

(f, f ′) = {q ∈ P : MP |= Eq(f, f
′)};

2. If h : A → B is a bijection, then h is an LP -isomorphism if and only if
∧

(a, a′) =∧
(h(a), h(a′)) for all distinct a 6= a′ from A.

3. As a special case, if h : A ∪ {f} → A ∪ {f ′} satisfies h(f) = f ′ and h fixes A
pointwise, then h is an isomorphism iff

∧
(f, a) =

∧
(f ′, a) for every a ∈ A.

4. If A ∼= B then
∧
A =

∧
B.
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Definition 5.2. Suppose (P,≤, δ) ∈ P. Let Age(MP ) denote the set of finite substructures
of MP . Call a set K ⊆ Age(MP ) dense-suitable if:

1. K is closed under substructures and isomorphisms within Age(MP ), i.e., if A ∈ K
and B ⊆MP is isomorphic to A, then B ∈ K;

2. Extendible The empty structure is in K and if A ∈ K then there is B ∈ K with
B ) A;

3. Disjoint Amalgamation If A,B,C ∈ K and A ⊆ B, A ⊆ C, then there is B′ ∈ K
such that B′ ∼=A B and B′ ∩ C = A and B′ ∪ C ∈ K;

4. Density For all A ∈ K, {f ∈ F : A ∪ {f} ∈ K} is dense in F .

Lemma 5.3. If there exists some K ⊆ Age(MP ) which is dense-suitable, then there is a
family {Dn : n ∈ ω} of countable, absolutely indiscernible subsets of MP , each of which
is dense in FP .

Proof. Note that if K ⊆ Age(MP ) satisfies Clauses (1)–(3), then if we trivially expand
each A ∈ K by a unary predicate X interpreted as AX = A, then K is suitable in the
sense of Definition A.1 of [14]. Thus, by Theorem A.2 there, there is a K-limit M , i.e., a
nested union of elements of K, and an equivalence relation E on M with infinitely many
classes, each class infinite, such that every π ∈ Sym(M/E) lifts to an automorphism of
M . Here, we replicate this proof, but using Clause (4), we dovetail additional requirements
that guarantee that each E-class is dense in FP . Given such an M and E, simply let
{Dn : n ∈ ω} be the E-classes of M .

The following Proposition justifies our interest in unbounded triples (P,≤, δ) ∈ P.
With Theorem 5.7 we will see that the converse of Proposition 5.4 holds as well.

Proposition 5.4. Suppose (P,≤, δ) ∈ P is unbounded, i.e., either δ is unbounded on P or
(P,≤) has unbounded height. Then a dense-suitable K ⊆ Age(MP ) exists, hence there
is a family {Dn : n ∈ ω} of countable, absolutely indiscernible subsets of MP , each of
which is dense in FP .

Proof. We split into cases, depending on the reason why (P,≤, δ) is unbounded.

Case 1. δ is unbounded on P .
In this case, let K consist of all finite substructures A ⊆ MP such that δ is bounded

on
∧
A. For clause (1), K is trivially closed under substructure, and closure under isomor-

phism follows from Fact 5.1(4). The verification of (2) and (4) are immediate from the
following Claim.

Claim. For all finite Q ⊆ P , for all f ∈ FP , and for all A ∈ K there is h ∈ FP such that
h�Q = f�Q, A ∪ {h} ∈ K, and h 6∈ A.
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Proof. Choose n ∈ ω such that δ(p) < n for all p ∈ Q ∪
∧
A and n > |A|. Then choose

h ∈ FP such that

• h(p) = f(p) for all p ∈ P with δ(p) < n; and

• h(p) 6= a(p) for all a ∈ A, whenever δ(p) ≥ n.

To see that h works, first note that since δ(p) < n for all p ∈ Q, h�Q = f�Q. Since δ is
unbounded on P , there is at least one p∗ with δ(p∗) ≥ n. Since h(p∗) 6= a(p∗) for each
a ∈ A we have h 6∈ A. Similarly, since h(p) 6= a(p) for every p with δ(p) ≥ n, we have
that δ is bounded below n on

∧
(h, a) for every a ∈ A. Thus, A ∪ {h} ∈ K.

To see that Disjoint Amalgamation holds, by induction and applications of Fact 5.1(3),
it suffices to prove that for all A ∈ K, if B = A ∪ {f} and C = A ∪ {h} are in K, then
there is f ′ ∈ FP such that

∧
(f, a) =

∧
(f ′, a) for every a ∈ A and C ∪ {f ′} ∈ K and

f ′ 6= h. To accomplish this, choose n such that δ(q) < n for all q ∈
∧
B and all q ∈

∧
C

and n > |C|. Define f ′ ∈ FP such that

• f ′(p) = f(p) whenever δ(p) ≤ n; and

• f ′(p) 6= c(p) for all c ∈ C whenever δ(p) > n.

To see that this f ′ works, first we show that f ′ 6= h. Indeed, choose p ∈ P with
δ(p) > n, then f ′(p) 6= h(p).

Choose any a ∈ A. Towards verifying
∧

(f, a) =
∧

(f ′, a), choose p ∈
∧

(f, a). As∧
(f, a) is downward closed, δ(q) < n for all q ≤ p. Thus f ′(q) = f(q) for all q ≤ p, so

p ∈
∧

(f ′, a). Conversely, choose p ∈
∧

(f ′, a). This means f ′(q) = a(q) for all q ≤ p.
By choice of f ′ this implies δ(q) ≤ n for all q ≤ p, so f ′(q) = f(q) for all q ≤ p. Hence,
p ∈

∧
(f, a) as well.

Finally, to see that C ∪ {f ′} ∈ K, since C ∈ K and
∧

(f, a) =
∧

(f ′, a) for all a ∈ A,
it remains to show that δ is bounded on

∧
(f ′, h), but this is immediate from the definition

of f ′.

Case 2. P is of unbounded height.
Here, take K to be the set of all finite A ⊆MP with ht(

∧
A) < ω. Again, Clause (1)

holds by Fact 5.1(3), with (2) and (4) holding from the following Claim.

Claim. For all finite Q ⊆ P , for all f ∈ FP , and for all A ∈ K there is h ∈ FP such that
h�Q = f�Q, A ∪ {h} ∈ K, and h 6∈ A.

Proof. We can choose n such that ht(q) < n for all q ∈ Q and such that ht(
∧
A) < n.

Fix an enumeration A = {ai : i < `} and let h ∈ FP be arbitrary satisfying
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• h(p) = f(p) whenever ht(p) ≤ n;

• h(p) 6= ai(p) for every p ∈ P with ht(p) = n+ i+ 1.

(Since (P,≤) is of unbounded height, elements of height m exist for every m ≥ 1.)
To see that any such h ∈ FP works, clearly h�Q = f�Q by choice of n. Also, h 6∈ A

since for every ai ∈ A, h(p) 6= ai(p) for any p of height n+i+1. To see thatA∪{h} ∈ K,
we need only show that ht(

∧
(h, ai)) < n + i for every i. So choose p ∈ P with ht(p) ≥

n+ i. By Fact 3.2(2), choose q ≤ p with ht(q) = n+ i. By choice of h, h(q) 6= ai(q), so
p 6∈

∧
(h, ai).

Finally, we show that Disjoint Amalgamation holds for K. As before, choose B =
A ∪ {f} and C = A ∪ {h}, both in K. Choose n ∈ ω such that ht(

∧
B) < n and

ht(
∧
C) < n. Define f ′ ∈ FP satisfying:

• f ′(p) = f(p) whenever ht(p) ≤ n; and

• f ′(p) 6= h(p) whenever ht(p) > n.

Clearly f ′ 6= h.

Claim 2. For all a ∈ A,
∧

(f ′, a) =
∧

(f, a)

Proof. Fix a ∈ A and first choose p ∈
∧

(f, a). By choice of n, ht(q) < n for every
q ≤ p, so f ′(q) = f(q) for every q ≤ p. Thus p ∈

∧
(f ′, a) as well. Conversely, assume

p ∈
∧

(f ′, a). If ht(p) < n, then as above f ′(q) = f(q) for all q ≤ p, so p ∈
∧

(f, a).
However, if ht(p) ≥ n, then by Fact 3.2(2), choose q ≤ p with ht(q) = n. As

∧
(f ′, a)

is downward closed, q ∈
∧

(f ′, a). But, as f ′(q′) = f(q′) for all q′ ≤ q, we would have
q ∈

∧
(f, a), contradicting our choice of n, proving Claim 2.

Thus, by Claim 2 and Fact 5.1(3), A ∪ {f ′} ∼= B over A and, in light of Claim 2, to
show C ∪ {f ′} ∈ K we need only show that ht(

∧
(f ′, h)) < ω, but this is clear by the

definition of f ′.

Next, we glean consequences from the assumption that δ is bounded.

Lemma 5.5. Suppose (P,≤, δ) ∈ P and and δ is bounded by m < ω. Then, for every
k < ω we have:

1. For all σ ∈ Aut(MP ), for all q ∈ P with ht(q) ≤ k, and for all f ∈ FP we have
σ(m!)k(f)(q) = f(q).

2. For every nested sequence (fn : n ∈ ω) from FP (see Definition 2.1) and for every
q ∈ P with ht(q) ≤ k, MP |= Eq(fn, fn′) for all n, n′ ≥ mk.
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Proof. Both of these are proved by induction on k; since every element has height at least
one, the case k = 0 is trivial.

For (1) assume this holds for all k′ < k. Fix any σ ∈ Aut(MP ). Put ψ := σ(m!)(k−1) (so
ψ = σ when k = 1 and σ(m!)k = ψm!). By our inductive hypothesis, ψ(f)(r) = f(r) for
every f ∈ FP and r ∈ P with ht(r) < k. It follows that ψs(f)(r) = f(r) for any s ≥ 1.
In particular, ψm!(f)(r) = f(r) for every f ∈ FP and r ∈ P with ht(r) < k. It remains
to prove (1) for q ∈ P with ht(q) = k. Choose any such q and fix f ∈ FP . By pigeon-
hole choose ` < `′ < m such that ψ`(f)(q) = ψ`

′
(f)(q). As r < q implies ht(r) < k

our sentences above give that ψ`(f)(r) = f(r) = ψ`
′
(f)(r) for every r < q. Thus, by

our interpretation of Eq, we have MP |= Eq(ψ
`(f), ψ`

′
(f)). Since ψ−` ∈ Aut(MP ) we

obtain that MP |= Eq(ψ
t(f), f), where t = `′ − `. In particular, f(q) = ψt(f)(q). As

0 < t < m, t divides m!, so f(q) = ψm!(f)(q), as required.
For (2), choose any nested sequence (fn : n ∈ ω) from FP .
Suppose we have verified (2) at k and choose any q ∈ P with ht(q) = k + 1. Note

that every r < q has ht(r) ≤ k, so MP |= Er(fn, fn′) for all n, n′ ≥ km. By pigeon-hole,
choose `, `′ with km ≤ ` < `′ < km+m and f`(q) = f`′(q). Coupled with the sentences
above, we have f`(q′) = f`′(q

′) for every q′ ≤ q, so by our interpretation of Eq, we obtain
MP |= Eq(f`, f`′). As (fn : n ∈ ω) is nested, we conclude that MP |= Eq(fn, fn′) for all
n, n′ ≥ (k + 1)m.

Corollary 5.6. Suppose (P,≤, δ) is bounded, say ht(P ) ≤ k and δ is bounded by m.
Then:

1. For every σ ∈ Aut(MP ), σ(m!)k = id, hence Aut(MP ) has bounded exponent.

2. Every nested sequence (fn : n ∈ ω) from MP is eventually constant, hence ΦP

forbids nested sequences (using Fact 4.2(3)).

We culminate our previous results of this section into the following theorem. We will
use this theorem both when P is bounded, and more generally, when we relativize to
bounded subsets of P .

Theorem 5.7. The following are equivalent for any (P,≤, δ) ∈ P.

1. (P,≤, δ) is unbounded;

2. ΦP admits absolutely indiscernible sets {Dn : n ∈ ω} with each Dn dense in FP ;

3. ΦP admits absolutely indiscernible sets;

4. S∞ divides Aut(M) for some countable M |= ΦP ;
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5. Aut(MP ) has unbounded exponent;

6. ΦP admits nested sequences.

Proof. (1)⇒ (2) is by Proposition 5.4.
(2)⇒ (3) : is immediate.
(3)⇒ (4) : this is Fact 2.10.
(4) ⇒ (5): suppose S∞ divides Aut(M). Then Aut(M) is of unbounded exponent.

By Fact 4.2(4), Aut(M) is isomorphic to a subgroup of Aut(MP ), hence the latter has
unbounded exponent as well.

(5)⇒ (1) and (6)⇒ (1) follow directly from the two parts of Corollary 5.6.
(4) ⇒ (6): Suppose (6) fails. Then every expansion of ΦP forbits nested sequences,

so by Theorem 2.7, no expansion of ΦP is Borel complete, so (4) fails by Theorem 5.5 of
[13].

6 Quotients and Substructures
Suppose (P,≤, δ) ∈ P and choose a non-empty subset Q ⊆ P . Then (Q,≤, δ�Q) ∈ P, so
we can apply all of the preceding discussion to this triple. So recall that FQ =

∏
q∈Q δ(q)

and MQ is the LQ-structure with universe FQ, where

MQ |= Eq(f, g) iff
∧

q′≤q,q′∈Q

f(q′) = g(q′)

Definition 6.1. Suppose (P,≤, δ) ∈ P and R ⊆ P is downward closed. Then let ER be
the type-definable equivalence relation

∧
p∈REp. Given M |= ΦP let [M ]R denote the set

of ER-equivalence classes {[f ]R : f ∈ M}. [M ]R is naturally an LR-structure, where
we put Ep([a]R, [b]R) if and only if Ep(a, b); this is well-defined because R is downward
closed.

In the case when M �MP let M�R := {a�R : a ∈M}, a subset of MR; we thus view
M�R as an LR-structure.

Clearly [M ]R and M�R are isomorphic, via the map sending [a]R to a�R.

Lemma 6.2. Suppose (P,≤, δ) ∈ P and M |= ΦP and R ⊆ P is downward closed. Then
[M ]R |= ΦR.

Proof. It suffices to consider the case M � MP , and then show that M�R |= ΦR, i.e. is
dense in MR. But this is clear, since M is dense in MP .
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Lemma 6.3. Suppose (P,≤, δ) ∈ P and R ⊆ P downward closed. Let M,N |= ΦP

be arbitrary. Then any LP -embedding f : M → N induces an LR-embedding [f ]R :
[M ]R → [N ]R. When f is an isomorphism so is [f ]R.

It follows that when M,N � MP we get a corresponding map f ′ : M�R → N�R,
which is an isomorphism if f is.

Proof. Since ER is type-definable, hence invariant, f must induce an injection [f ]R on
ER-classes. The definition of the structure on [M ]R shows that this [f ]R must be an
LR-embedding. When f is an isomorphism, [f−1]R is an inverse to [f ]R, so [f ]R is an
isomorphism.

We now study the structure on individual ER-classes. For this a definition is conve-
nient:

Definition 6.4. Suppose (P,≤, δ) ∈ P and R ⊆ P is downward closed. Then let Φ∀PR
denote the universal sentence of Lω1ω in the language LP asserting of its putative model
M :

• Each Eq is an equivalence relation;

• If q′ ≤ q, then Eq refines Eq′ and, moreover, letting E<q(x, y) =
∧
q′<q Eq′(x, y),

then Eq partitions each E<q-class into at most δ(q) classes;

• For all a, b ∈M , we have that ER(a, b) holds;

• For all a, b ∈M , if EP (a, b) then a = b.

Clearly, if M |= ΦP and α is an ER-class, viewed as a substructure of M , then α |=
Φ∀PR. We shall need the following fact:

Lemma 6.5. Suppose (P,≤, δ) ∈ P and R ⊆ P is downward closed. Suppose P\R is
bounded. Then Φ∀PR forbids nested sequences.

Proof. Let M be the unique expansion of MP\R to a model of Φ∀PR, namely let Ep(a, b)
always hold for p ∈ R. By Theorem 5.7, MP\R forbids nested sequences, hence so does
M. Thus, it suffices to show that every model of Φ∀PR embeds isomorphically into M.
This is like Fact 4.2(3); we only used there that M was a model of the universal part of
ΦP .
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7 Subdivisions
The following facts are immediate.

Fact 7.1. Suppose (P,≤, δ) ∈ P and Q ⊆ P is non-empty. Then for any f, g ∈ FP and
q ∈ Q we have:

1. If MP |= Eq(f, g) then MQ |= Eq(f�Q, g�Q);

2. If Q is downward closed then MQ |= Eq(f�Q, g�Q) implies MP |= Eq(f, g).

It is noteworthy that if Q ⊆ P is not downward closed, then Fact 7.1(2) can fail. The
Lemma below is a partial remedy. If Q ⊆ P then for each p ∈ P let Q≤p = P≤p ∩Q.

Lemma 7.2. Suppose (P,≤, δ) ∈ P and {Qi : i < n} be a partition of P . Then for all
f, g ∈ FP and all p ∈ P , MP |= Ep(f, g) if and only if MQi

|= Eq(f�Qi
, g�Qi

) for all
i < n and q ∈ Qi

≤p.

Proof. MP |= Ep(f, g) iff f(q) = g(q) for all q ∈ P≤p iff f(q) = g(q) for all i < n and
all q ∈ Qi

≤p iff MQi
|= Eq(f�Qi

, g�Qi
) for all i < n and all q ∈ Qi

≤p.

Lemma 7.3. Suppose (P,≤, δ) ∈ P and suppose {Qi : i < n} is a partition of P into
pieces, and each i < n, suppose MQi

�MQi
. Then, letting M := {f ∈ F : f�Qi

∈ MQi

for all i < n}, we have M �MP and, for any choice of automorphisms σi ∈ Aut(MQi
),

the map τ : M →M defined as τ(f) =
⋃
i<n σi(f�Qi

) is an automorphism of M .

Proof. τ is clearly a bijection, so it suffices to show τ preservesEp for every p ∈ P . Given
p, choose any f, g ∈M . Since each σi ∈ Aut(MQi

) for every i < n we have

MQi
|= Eq(f�Qi

, g�Qi
) ↔ MQi

|= Eq(σi(f�Qi
), σi(g�Qi

))

for every q ∈ Qi
≤p. However, for each i < n, τ(f)�Qi

= σi(f�Qi
) and τ(g)�Qi

= σi(g�Qi
),

so we conclude that

M |= Ep(f, g) ↔ M |= Ep(τ(f), τ(g))

by two applications of Lemma 7.2.

Theorem 7.4. If (P,≤, δ) ∈ P, Q0, Q1 ⊆ P are orthogonal (see Definition 3.3), and both
Q0, Q1 are unbounded, then C(M) is Borel complete for some countable M |= ΦP , hence
C(ΦP ) is Borel complete.
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Proof. By Theorem 5.7, for i = 0, 1 choose dense, absolutely indiscernible countable sets
(Di

n : n ∈ ω) for MQi
. By Fact 4.2(1), Di∗ =

⋃
{Di

n : n ∈ ω} is the universe of a
countable model MQi

� MQi
. Let R = P \ (Q0 ∪ Q1) and let DR ⊆ FR be dense and

contain 0, the identically zero sequence on R.
Let M � MP be the countable LP -structure with universe {f ∈ FP : f�Q0 ∈ D0

∗,
f�Q1 ∈ D1

∗, and f�R ∈ DR}.
For each i = 0, 1, let Ei(x, y) := Edc(Qi) =

∧
q∈dc(Qi)

Eq(x, y). For each i = 0, 1 and
each n ∈ ω, let

D̃i
n = {f ∈ F : f�Qi

∈ Di
n and f�R = 0}

We argue that the sets (D̃0
n : n ∈ ω) and (D̃1

n : n ∈ ω) are cross-cutting absolutely
indiscernible sets of subsets of M with respect to E0, E1. Being infinitarily definable,
the equivalence relations E0, E1 are Aut(M)-invariant, so we check clauses (1)–(3) from
Definition 2.11. For (1), given a0 ∈ D̃0

n and a1 ∈ D̃1
m and using the fact that Q0⊥Q1

implies dc(Q0) ∩ Q1 = dc(Q1) ∩ Q0 = ∅, and the fact that a0�R = a1�R = {0}, choose
f ∈ M satisfying f�dc(Q0) = a0�dc(Q0) and f�dc(Q1) = a1�dc(Q1). Then E0(f, a0) and
E1(f, a1), as required. For (2), suppose a ∈ D̃i

n and a′ ∈ D̃i
∗ and E0(a, a′). Then

a�Qi
∈ Di

n and a′�Qi
= a�Qi

, hence a′ ∈ D̃i
n as well. Finally, for (3), choose any

π0, π1 ∈ Sym(ω). As {Di
n} is a family of absolutely indiscernible sets, for i = 0, 1 choose

σi ∈ Aut(MQi
) such that σi[Di

n] = Di
πi(n)

for every n ∈ ω. Now define τ : M → M via
τ(f) = σ0(f�Q0)∪σ1(f�Q1)∪ f�R. By Lemma 7.3, τ ∈ Aut(M) and τ [D̃i

n] = D̃i
πi(n)

for
i = 0, 1, n ∈ ω.

Definition 7.5. A subset A ⊆ P is a (comparability) antichain if every pair of distinct
elements from A are incomparable.

Corollary 7.6. Let (P,≤, δ) ∈ P.

1. If P is not narrow then some M |= ΦP has C(M) is Borel complete.

2. If δ is unbounded on some antichain A ⊆ P , then some M |= ΦP has C(M) Borel
complete.

Proof. (1) Suppose Q⊥R witnesses that P is not narrow. As Q and R are not bounded,
Theorem 7.4 applies.

(2) Choose a subsequence (pn : n ∈ ω) from A such that δ(pn+1) > δ(pn) for each n.
Put Q0 = {p2n : n ∈ ω} and Q1 := {p2n+1 : n ∈ ω}. Then again, Q0⊥Q1 and each Qi is
unbounded, so Theorem 7.4 applies.

Thus, when trying to classify the Borel complexity of T (P,≤, δ) it is enough to restrict
attention to the case where P is narrow and δ is bounded on every antichain. Note then:
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Lemma 7.7. Suppose (P,≤, δ) ∈ P and δ is bounded on every antichain. Then δ is
bounded on Q ⊆ P whenever Q is of bounded height. Hence, given Q ⊆ P , we have that
Q is bounded if and only if Q is of bounded height.

Proof. The second claim follows, so it suffices to show δ is bounded on Q whenever Q is
of bounded height. Suppose towards a contradiction it were unbounded, say δ(pn) ≥ n
with pn ∈ Q. After applying Ramsey’s theorem we can suppose (pn : n < ω) is an
ascending chain, descending chain or antichain. Ascending chain is impossibe because
Q has bounded height; descending chain is impossible because Q is down-finite; and
antichain is impossible by hypothesis.

The following Corollary generalizes the results on cross-cutting equivalence relations
in [12] and [13].

Corollary 7.8. Suppose (P,≤, δ) ∈ P and (P,≤) is of bounded height. Then TP is Borel
complete if and only if δ is bounded.

Proof. If δ is bounded, then (P,≤, δ) is bounded, so ‘countable sets of countable sets of
reals’ do not Borel embed into TP by Theorem 2.7. By contrast, if δ is unbounded, then by
Lemma 7.7, δ is unbounded on some antichain, hence C(M) is Borel complete for some
countable M |= ΦP by Corollary 7.6. Thus, TP is Borel complete by Lemma 4.3.

8 Tame expansions
Definition 8.1. Suppose (P,≤, δ) ∈ P and M |= TP . Fix any p ∈ P . A subset S ⊆ Mn

is Ep-invariant if, for all (a0, . . . , an−1), (b0, . . . , bn−1) ∈ Mn, if M |=
∧
i<nEp(ai, bi),

then [ā ∈ S ↔ b̄ ∈ S]. A subset S ⊆Mn is tame if S is Ep-invariant for some p ∈ P .
Let L+ = LP ∪ {Si(xi) : i ∈ I} where each Si is ni-ary. An expansion M+ of

M |= TP is a tame expansion if the interpretation of every Si(xi) is a tame subset of Mni .
A tame expansion of TP is the complete theory of a tame expansionM+ of someM |= TP .

As there are only finitely many Ep-classes, any tame S ⊆ Mn is a finite union of
‘Ep-boxes’, i.e., subsets of Mn described by an n-tuple α = (α1, . . . , αn) of Ep-classes.
It follows that any tame expansion M+ of any model M �MP is mutually algebraic and,
when P is infinite, satisfies acl(X) = X for every X ⊆M+. However, Th(M+) need not
admit elimination of quantifiers in the language L+.

Fact 8.2. Suppose (P,≤, δ) ∈ P.

1. For all M � N |= TP and for all tame expansions M+ of M , there is a unique tame
expansion N+ of N with M+ ⊆ N+.
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2. If M � N |= TP and M+ ⊆ N+ are tame expansions then M+ � N+.

3. Suppose T is a tame expansion of TP , with P infinite. Then T is Borel equivalent
to C(ΦP ∧ T ). (If P is finite then T has exactly one countable model up to isomor-
phism.)

Proof. (1) is straightforward; for (2), argue that reducts to finite languages are isomorphic;
and (3) is exactly like Lemma 4.3, using (1) and (2).

Theorem 8.3. For any unbounded (P,≤, δ) ∈ P, there is a countable M � MP with a
tame expansion M+ for which C(M+) is Borel complete.

Proof. Many of the cases have been handled earlier. If δ is unbounded on an antichain,
or if P is not narrow, then Corollary 7.6 gives the existence of some countable M �MP

with C(M) Borel complete, and we are done, so suppose this is not the case. Then (P,≤)
must be of unbounded height by Lemma 7.7.

Then by Theorem 3.6, P must admit an ω-chain; fix one and call it (pn : n < ω) and
put Q0 := {p2k : k ∈ ω}, Q1 := {p2k+1 : k ∈ ω} and R := P \ (Q0 ∪ Q1). As each Qi

is unbounded, choose a dense family {Di
n : n ∈ ω} of countable, absolutely indiscernible

sets from FQi
. Choose an arbitrary countable dense subset DR ⊆ FR with a distinguished

element 0 and letM �MP be countable with universe {f ∈ FP : f�Qi
∈
⋃
{Di

n : n ∈ ω}
and f�R ∈ DR}.

Next, we describe a tame expansion M+ of M . Let L+ = LP ∪ {F 0
n , F

1
n : n ∈ ω} and

let M+ be the expansion of M to an L+-structure formed by interpreting each F 0
n(x, y) as

{(f, g) ∈ M2 : f(p2k) = g(p2k) for all k such that 2k ≤ n} and F 1
n(x, y) as {(f, g) ∈

M2 : f(p2k+1) = g(p2k+1) for all k such that 2k + 1 ≤ n}. Clearly, M+ is a tame
expansion of M . Note also that for any f, g ∈M ,

M+ |= F 0
n(f, g) ↔ MQ0 |=

∧
2k≤n

Ep2k(f�Q0 , g�Q0)

with an analogous statement for F 1
n .

Additionally, for i = 0, 1, let F i
ω :=

∧
n∈ω F

i
n. As each F i

n is atomically definable in
M+, F i

ω is Aut(M+)-invariant. Also, the note above implies that for all f, g ∈M ,

M+ |= F i
ω(f, g) ↔ MQi

|=
∧
q∈Qi

Eq(f�Qi
, g�Qi

) ↔ f�Qi
= g�Qi

For i = 0, 1 and n ∈ ω, put D̃i
n := {f ∈ M : f�Qi

∈ Di
n and f�R = 0}. We argue

that these families of sets are cross-cutting with respect to F 0
ω , F

1
ω . To verify (1), given
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a0 ∈ D̃0
n and a1 ∈ D̃1

m, let f ∈M be the unique element satisfying f�Q0 = a0, f�Q1 = a1,
and f�R = 0. Then M+ |= F i

ω(f, ai) by the note above.
For (2), choose any f ∈ D̃i

n and g ∈ D̃i
m withM+ |= F i

ω(f, g). By the definition of D̃i
n

and D̃i
m, f�Qi

∈ Di
n and g�Qi

∈ Di
m. But, by the note above we also have f�Qi

= g�Qi
.

Thus, m = n, as required.
For (3), it suffices to show that any pair of automorphisms σ0 ∈ Aut(MQ0), σ1 ∈

Aut(MQ1) lift to an automorphism τ ∈ Aut(M+). As in Lemma 7.3, define τ : M →M
by τ(f)�Qi

= σi(f�Qi
) for i = 0, 1 and τ(f)�R = f�R. Lemma 7.3 gives that τ ∈

Aut(M), but we need to show that every F i
n is preserved as well. But this follows easily

from the characterization of M+ |= F i
n(f, g) given above.

Corollary 8.4. Suppose P ∈ P. Then P is bounded if and only if every tame expansion of
TP is not Borel complete.

Proof. If P is unbounded then this is by the preceding theorem and Fact 8.2(3). If P
is finite then this is obvious. If P is bounded and infinite then by Fact 8.2(3) any tame
expansion T is Borel reducible to C(ΦP ∧ T ). The latter forbids nested sequences, since
ΦP does, so it has potential cardinality at most i2. Hence, |CSSptl(T )| ≤ i2, so T is not
Borel complete.

Pushing onwards:

Theorem 8.5. Suppose (P,≤, δ) ∈ P, R ⊆ P is downward closed and unbounded, and
Q = P \ R. Suppose that M+ is a tame expansion of some countable MQ � MQ. Then
there is some countable N �MP and a Borel reduction of C(M+) to C(N).

Proof. Since R is unbounded, apply Theorem 2.7 to get a family {Dn : n ∈ ω} of count-
able, dense, absolutely indiscernible subsets from some MR � MR. We can suppose
MR =

⋃
nDn. Let N := {f ∈ F : f�R ∈MR, f�Q ∈M+}. In what follows, we identify

f ∈ N with the pair (a, b), where a = f�Q ∈M+ and b = f�R ∈MR.
The one-line statement of the proof that follows is that we construct a coloring of N

that both extends the coloring of M+ and also encodes the interpretations of each (tame)
Si ∈ L+ \ LQ. To do this, we set some notation. Write L+ \ LQ = {Si : i ∈ I} and,
for each i, let ni be the arity of Si and choose qi ∈ Q such that Si is Eqi-invariant in
M+. First, by replacing each Si by a boolean combination, we may assume that each Si is
Eqi-irreflexive, i.e., M+ |= Si(x) `

∧
j 6=k ¬Eqi(xj, xk).

For each q ∈ Q, choose a (finite) set Rq ⊆ M+ of representatives of the Eq-classes in
M+. For each i ∈ I , let

Pos(Si) = {r ∈ Rni
qi

: M+ |= Si(r)}
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As Rqi is finite, so is Pos(Si), and since each Si is Eqi-irreflexive, every r ∈ Pos(Si) is an
ni-tuple of distinct elements. Let

J = {∗} ∪ {(i, r) : i ∈ I, r ∈ Pos(Si)}

Let {Dj : j ∈ J} be a relabelling of the family of absolutely indiscernible sets (Dn :
n < ω) described above. Choose a partition ω = X t Y into two infinite sets and choose
disjoint sets Yi ⊆ Y for i ∈ I , each of size ni + 1. Enumerate Yi = {mi,k : k ≤ ni}. Let
s : ω → X be a bijection.

Before defining our Borel reduction, we introduce a partial coloring on a subset of N .
For all f = (a, b) ∈ N with b ∈ Di,r, put

c∗(a, b) =

{
mi,k if M+ |= Eqi(a, (r)k)

mi,ni
if M+ |=

∧
k<ni
¬Eqi(a, (r)k)

Note that since M+ |= Si(r) and Si is Eqi-irreflexive we cannot have a Eqi-equivalent
to (r)k and (r)k′ for distinct k, k′.

Now define F : C(M+) → C(N) as F (M+, c) = (M+, F (c)) where F (c) is the
coloring on N given by:

F (c)(f) = F (c)(a, b) =

{
c∗(a, b), if b 6∈ D∗
s(c(a)), if b ∈ D∗

The mapping F is Borel, so to see it is a reduction, first choose (M+, c1) and (M+, c2)
in C(M+) and choose an L+(c)-isomorphism h : (M+, c1)→ (M+, c2).

We construct an LP (c)-isomorphism τ : (N,F (c1)) → (N,F (c2)) as follows: For
each i ∈ I and r ∈ Pos(Si), there is a unique r′ ∈ Pos(Si) with M+ |= Eqi(h(r)k, (r

′)k)

for each k < ni. Let ĥ : Pos(Si) → Pos(Si) denote this map. ĥ is a bijection, since h
permutes the Eqi-classes.

Let π ∈ Sym(J) be defined by π(∗) = ∗ and π(i, r) = (i, ĥ(r)). As {Dj : j ∈ J}
are a family of absolutely indiscernible sets, choose σ ∈ Aut(MR) such that σ[Dj] =
Dπ(j) for each j ∈ J . Finally, let τ : N → N be defined as τ�Q = h and τ�R = σ.
Then τ ∈ Aut(N) by Lemma 7.3. To see that τ also preserves colors, there are two
cases. On one hand, if f = (a, b) with b 6∈ D∗ then F (c1)(a, b) = c∗(a, b) and, by
our choice of σ, F (c2)(h(a), σ(b)) = c∗(h(a), σ(b)). If b ∈ Di,r then σ(b) ∈ Di,ĥ(r).
So for any k < ni, c∗(a, b) = mi,k iff M+ |= Eqi(a, (r)k)) and c∗(h(a), σ(b)) = mi,k

iff M+ |= Eqi(h(a), (ĥ(r))k), which is the case iff M+ |= Eqi(h(a), (h(r))k). Since h
preserves Eqi , we get that F (c1)(f) = F (c2)(τ(f)) whenever f�R 6∈ D∗. On the other
hand, if f = (a, b) and b ∈ D∗, then σ(b) ∈ D∗ as well. Thus, F (c1)(f) = s(c1)(a) and
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F (c2)(τ(f)) = s(c2(h(a)). But as h preserves colors, we have c1(a) = c2(h(a)) so we are
done in this case as well.

The converse is more interesting. We need to show that the extra relations Si are
recoverable from (N, c). We prove a preparatory claim. Recall that ER is the conjunction∧
p∈REp, hence is LP -invariant. In our notation, (a, b)ER(a′, b′) if and only if b = b′.

Fix any i ∈ I and let Xi be the set of all (fj : j < ni) ∈ Nni all from the same
ER-class, such that, writing fj = (aj, b), we have that M+ |= Si(a).

Claim. Suppose i ∈ I , and (fj : j < ni) ∈ Nni is a tuple from a single ER-class, say
fj = (aj, b). Then the following are equivalent:

1. f ∈ Xi;

2. There exist (gj : j < ni) ∈ Nni from a single ER-class, such that for each j,
N |= Eqi(fj, gj), and such that each c∗(gj) is defined and equal to mi,j .

Proof. First suppose f ∈ Xi, i.e. M+ |= Si(a). Let r ∈ Pos(Si) be the unique tuple
with each Eqi(aj, (r)j). Since Di,r is dense we can find b′ ∈ Di,r such that Eq(b′, b) for all
q ∈ R with q < qi. Let gj = (aj, b

′). These are visibly allER-related, and by the definition
of c∗ we have each c∗(gj) = mi,j . By Lemma 7.2 we have that for each j,N |= Eqi(fj, gj),
so we get the first implication.

For the reverse implication, suppose (gj : j < ni) are given. Write gj = (bj, b
′) for

some fixed b′ ∈ MR (b′ exists since the gj’s are all ER-related). Since c∗(gj) = mi,j ,
we must have b′ ∈ Di,r for some r ∈ Pos(Si), and then we must have each M+ |=
Eqi(bj, (r)j). But since also M+ |= Eqi(bj, aj) (since N |= Eqi(gj, fj)), we get that
M+ |= Eqi(aj, (r)j). Since Si is qi-invariant, M+ |= Si(a) as well.

Now suppose (M+, c1) and (M+, c2) are in C(M+) and h : (N,F (c1)) ∼= (N,F (c2))
is an LP (c)-isomorphism. We aim to find an L+(c)-isomorphism between (M+, c1) and
(M+, c2). Recall that M+ is a tame expansion of MQ �MQ.

By Lemma 6.3, h induces an LR-automorphism hR : MR
∼= MR. Now fix b∗ ∈ D∗.

Define ĥ : M+ →M+ as ĥ(a) = h((a, b∗))�Q. Unpacking the definitions we have

h((a, b∗)) = (ĥ(a), hR(b∗)) for every a ∈MQ

It is easily shown that ĥ ∈ AutLQ(MQ) and that ĥ is color-preserving, so it remains to
show that ĥ preserves every Si ∈ L+ \ L.

Suppose (aj : j < ni) ∈ (M+)ni . Put fj := (aj, b
∗) and gj := h(fj)=(ĥ(aj), hR(b∗)).

It suffices to show that f ∈ Xi if and only if h(f) ∈ Xi, but this follows from the claim,
since h is an LP (c)-isomorphism.

Recall the definition of P minimally unbounded from Definition 4.4.
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Corollary 8.6. Suppose (P,≤, δ) ∈ P, and P is unbounded but not minimally unbounded.
Then C(N) is Borel complete for some countable N �MP , hence TP is Borel complete.

Proof. Choose R ⊆ P downward closed so that both R and P\R are unbounded. Let
Q = P\R. By Theorem 8.3, choose a countable M � MQ and a tame expansion M+

of M with C(M+) Borel complete. Then, by Theorem 8.5 choose a countable N � MP

for which there is a Borel reduction from C(M+) to C(N). That this implies TP is Borel
complete follows from Lemma 4.3.

9 (P,≤, δ) minimally unbounded
We have, at this point, established Theorems 1.1 and 1.2 from the Introduction. Theo-
rem 1.1 follows from Corollary 8.4; Theorem 1.2 is exactly Corollary 8.6. The paradigm
of a minimally unbounded (P,≤, δ) is REF (δ), where (P,≤) is itself an ω-chain. In
this case, with Theorem 5.5 of [18], REF (δ) is not Borel complete. However, a typical
minimally unbounded instance may have many additional Eq’s. Here, under suitable large
cardinal hypotheses, we show that if (P,≤, δ) is minimally unbounded, then TP is not
Borel complete.

Fact 9.1. Suppose (P,≤, δ) ∈ P is minimally unbounded. Then:

1. δ is bounded on every antichain (thus for all Q ⊆ P , Q is bounded if and only if it
is of bounded height).

2. P is narrow.

3. P admits an ω-chain.

Proof. (1), (2): if they failed, then by the proof of Corollary 7.6 we would have some or-
thogonal, unbounded Q0, Q1 ⊆ P . But then dc(Q0) would contradict that P is minimally
unbounded.

(3) P is of unbounded height by (1), so this follows from Theorem 3.6 and (2).

Now fix some minimally unbounded (P,≤, δ) and fix an ω-chain (pn : n < ω). Let R
be the downward closure of this ω-chain. For each n ∈ ω, let Qn = {q ∈ P : q 6> pn}.

The following Facts are easily verified from our assumption on (P,≤, δ).

Fact 9.2. 1. Each Qn is downward closed and bounded.

2. For each n, Qn ⊆ Qn+1 and P =
⋃
n∈ωQn.
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Proof. (1) Say q ∈ Qn and q′ ≤ q. If q′ 6∈ Qn, then q′ > pn, hence q > pn, contradicting
q ∈ Qn. As {pk : k ≥ n + 1} ∩ Qn = ∅, our hypothesis on (P,≤, δ) implies that Qn is
bounded.

(2) Choose any q 6∈ Qn+1. Then q > pn+1, hence q > pn, implying q 6∈ Qn. Thus
Qn ⊆ Qn+1. For the other half, by way of contradiction suppose there were some r ∈
P \

⋃
n∈ωQn. Then the infinite set {pn : n ∈ ω} would be in P≤r, contradicting our

definition of P.

Our first goal is to prove the following ‘Schröder-Bernstein’ property for C(Φ) with
respect to the notion of 1-embeddings defined in Definition 2.3.

Theorem 9.3. SupposeM,N �MP are countable. Then for any colorings (M, c), (N,d)
of M,N , respectively, if there are f : (M, c) �∗1 (N,d) and g : (N,d) �∗1 (M, c), then
there is an L(c)-isomorphism h : (M, c) ∼= (N,d).

Fix (M, c) and (N,d) as in Theorem 9.3. So there exist 1-embeddings f : (M, c) �∗1
(N,d) and g : (N,d) �∗1 (M,d), but we do not fix choices of f and g.

We shall need the following Lemma.

Lemma 9.4. Suppose K |= ΦQn and suppose f : K → K is an elementary embedding.
Then there is some k > 0 such that fk = id (in particular f is an automorphism).

Proof. We can suppose K � MQn . As in the proof of Fact 4.2(4) we can find some
g : MQn

∼= MQn extending f . By Theorem 5.7, Aut(MQn) has bounded exponent, so we
can find some k > 0 such that gk = id. Then necessarily fk = id.

For each n, recall from Section 6 that [M ]Qn is the quotient of M by EQn , which we
view as an LQn-structure, and similarly for [N ]Qn; these are models of ΦQn , and whenever
we have an LP -embedding f : M → N we get an associated LQn-embedding [f ]Qn :
[M ]Qn → [N ]Qn . Also, for every a ∈ M , let [a]ER

= {a′ ∈ M : ER(a, a′)} denote the
type definable ER =

∧
r∈REr-class of a.

Lemma 9.5. Suppose f : (M, c) �∗1 (N,d) and g : (N,d) �∗1 (M, c) are 1-embeddings.

1. For all n ∈ ω, [f ]Qn : [M ]Qn → [N ]Qn is an LQn-isomorphism (in particular, fQn

is onto); in fact, we can find h : (N,d) �∗1 (M, c) with [h]Qn and [f ]Qn inverse to
each other.

2. For every a ∈M , the restriction map f�[a]ER
: [a]ER

→ [f(a)]ER
is onto.

Analogous statements hold for g.
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Proof. (1) By Lemma 9.4 we can find k > 0 such that ([g ◦ f ]Qn)k = ([f ◦ g]Qn)k = id.
Let h = (g ◦ f)k−1 ◦ g. Then h is as desired.

(2) Choose any a ∈ M . Since f is an LP embedding, f maps [a]ER
into [f(a)]ER

. To
see that the restriction map is onto, f : (M, c) �∗1 (N,d) being a 1-embedding implies
that the corresponding LP -embedding f : N → M is also a 1-embedding. It follows that
the restriction map f�[a]ER

: [a]ER
→ [f(a)]ER

is as well. Since P \ R is bounded by
assumption, g�[a]ER

is onto by Proposition 2.4.

Definition 9.6. Suppose f : (M, c) �∗1 (N,d). Then let the inverse of f , denoted f−1, be
the natural partial elementary map from (N,d) to (M, c), so the domain of f−1 is the range
of f . For each n < ω let [f−1]Qn : [N ]Qn → [M ]Qn denote the LQn-isomorphism [f ]−1Qn

(as exists by the preceding lemma). Make similar definitions for g : (N,d) �∗1 (M, c).

With these notions in hand, we now define a back-and-forth system between (M, c)
and (N,d). In the following, note that

∧
m<nEpm is either the indiscrete equivalence

relation if n = 0, or else Epn−1 .

Definition 9.7. Suppose a ∈ M, b ∈ N are tuples of the same length i∗. Then say that
a ∼ b if there exist (fi, gi)i<i∗ such that the following conditions all hold:

1. For each i < i∗, either fi : (M, c) �∗1 (N,d) with inverse gi (so gi need not be
total), or else gi : (N,d) �∗1 (M, c) with inverse fi (so fi need not be total);

2. Each fi(ai) = bi and gi(bi) = ai;

3. For all i, j < i∗ and for all n < ω, if M |=
∧
m<nEpm(ai, aj) then [fi]Qn = [fj]Qn;

4. For all i, j < i∗ and for all n < ω, if N |=
∧
m<nEpm(bi, bj) then [gi]Qn = [gj]Qn .

Note that in the above, if M |= ER(ai, aj), then as R is the downward closure of
(pn : n ∈ ω), we must have fi = fj by (3).

Claim 1. Suppose a ∈ M, b ∈ N are tuples of the same length i∗, and (fi, gi)i<i∗ satisfy
conditions (1), (2), and (3) in the definition of ∼. Then qftpLP (c)(a) = qftpLP (c)(b) and
Clause (4) holds as well.

Proof. Clearly each c(ai) = d(bi) since fi is color-preserving. Next, choose i, j < i∗. We
show that M |= Ep(ai, aj) if and only if N |= Ep(bi, bj) for every p ∈ P by splitting into
cases. First, if ER(ai, aj) holds, then as fi = fj we are done since fi preserves quantifier-
free types. If ER(ai, aj) fails, then choose n to be least such thatM |= ¬Epn(ai, aj). Then
by (3), [fi]Qn([ai]Qn) = [bi]Qn and [fi]Qn([aj]Qn) = [bj]Qn . It follows that for all p ∈ Qn,
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M |= Ep(ai, aj) if and only if N |= Ep(bi, bj). In particular this holds holds for p = pn.
By choice of n, we have that M |= ¬Epn(ai, aj), so N |= ¬Epn(bi, bj) as well. Thus,
whenever p > pn, both M |= ¬Ep(ai, aj) and N |= ¬Ep(bi, bj), so Ep is preserved in all
cases. Thus, qftpLP (c)(a) = qftpLP (c)(b). Clause (4) follows from this since f and g are
inverses.

The existence of an isomorphism h : (M, c) → (N,d) as in Theorem 9.3, follows
immediately from our second claim.

Claim 2. ∼ describes a back-and-forth system from (M, c) to (N,d).

Proof. We have already established that ∼ preserves quantifier-free type, and it follows
from the definition that ∼ is symmetric in M and N , so it is enough to verify the forth
condition. So suppose a ∼ b via (fi, gi : i < i∗) and suppose ai∗ is given. There are four
cases.

Case 1. Suppose a is empty, i.e. i∗ = 0. Then let f0 : (M, c) �∗1 (N,d) be any
1-embedding, and this witnesses a0 ∼ f0(a0).

Case 2. Suppose ER(ai∗ , ai) for some i < i∗. Then let fi∗ = fi, gi∗ = gi. If fi was
total, then obviously ai∗ ∈ dom(fi), so put bi∗ := fi(ai∗). On the other hand, if fi is not
total, then gi is total. Then, applying Lemma 9.5(2) to gi, we get that ai∗ = gi(bi∗) for
some bi∗ ∈ [bi]ER

. In either case, we have aai∗ ∼ bbi∗ .
Assuming we are not in Case 1 nor Case 2, let n be maximal such that there is i < i∗

with M |=
∧
m<nEpm(ai∗ , ai). Fix such an i.

Case 3. If ai∗ ∈ dom(fi) then let fi∗ = fi, gi∗ = gi and let bi∗ = fi(ai∗), and then
aai∗ ∼ bbi∗ .

Case 4. Suppose ai∗ 6∈ dom(fi). Then gi : (N, c) �∗1 (M,d) is total by Defini-
tion 9.7(1). By Lemma 9.5(1) we can find fi∗ : (M, c) �∗ (N,d) with [fi∗ ]Qn and [gi]Qn

inverse to each other. Let gi∗ = f−1i∗ and let bi∗ = fi∗(ai∗). Then this works.

With the proof of Theorem 9.3 in hand, at the cost of introducing a large cardinal, we
obtain our final result. We first explain what large cardinal we will be using, namely an
ω-Erdős cardinal:

Definition 9.8. Suppose α is an ordinal (we will only use the case α = ω). Then let κ(α)
be the least cardinal κ with κ→ (α)<ω2 (if it exists). In words: whenever F : [κ(α)]<ω →
2, there is some X ⊆ κ(α) of ordertype α, such that F �[X]n is constant for each n < ω.

The cardinal κ(ω) is a large cardinal: it is always inaccessible and has the tree property.
On the other hand, it is absolute to V = L, and is well below the consistency strength of a
measurable cardinal. See [16] for a description of these results.

In [17] the second author defines the notion of thickness. For every Φ ∈ Lω1ω and for
every infinite cardinal λ we have the thickness τ(Φ, λ) of Φ at λ, a cardinal invariant of
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the complexity of Φ. The second author also defines what it means for (Φ,∼αω) to have
the Schröder-Bernstein property. Then we have:

Theorem 9.9. 1. (Follows from Theorem 5.8 of [17]) For all Φ,Ψ ∈ Lω1ω, if Φ ≤B Ψ
then for all λ, τ(Φ, λ) ≤ τ(Ψ, λ);

2. (Corollary 5.13 of [17]) If TAG denotes torsion abelian groups then τ(TAG, λ) =
i1(λ) whenever λ is inaccessible or ℵ0.

3. (Theorem 11.8 of [17]) Suppose κ(ω) exists, α < κ(ω), and (Φ,∼αω) has the
Schröder–Bernstein property. Then for all λ, τ(Φ, λ) ≤ λ<κ(ω). In particular,
τ(Φ, κ(ω)) ≤ κ(ω).

Putting these together we get

Corollary 9.10. Suppose κ(ω) exists, and α < κ(ω), and (Φ,∼αω) has the Schröder–
Bernstein property. Then TAG is not Borel reducible to Φ, and so Φ is not Borel complete.

Our final theorem follows immediately.

Theorem 9.11. Suppose (P,≤, δ) ∈ P is minimally unbounded. If κ(ω) exists then TP is
not Borel complete.

Proof. Suppose (P,≤, δ) ∈ P is minimally unbounded and κ(ω) exists. We claim that
(C(ΦP ),∼1ω) has the Schröder-Bernstein property, which suffices by Corollary 9.10 and
Lemma 4.3. Let �1,ω be defined like �∗1, except replacing quantifier-free type by first-
order type. We need to show that for all countable (M, c), (N,d) |= C(ΦP ), if there exist
f : (M, c) �1ω (N,d) and g : (N,d) �1ω (M, c) then (M, c) ∼= (N,d). This follows at
once from Theorem 9.3, using the trivial fact that �1ω is a stronger notion than �∗1.

10 Questions
The first question is the most obvious:

Question. Can we remove the large cardinal? This would involve getting a better handle
on the minimally unbounded case.

We also ask:

Question. Which mutually algebraic theories are Borel complete? What if we restrict
attention to tame expansions of REF (bin)?
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A Classifying the reducts of models of REF
In this Appendix, we concentrate on refining equivalence relations, possibly with in-
finite splitting. Fix a language L = {En : n ∈ ω} and let REF be the (incom-
plete) theory asserting that each En is an equivalence relation; En+1 refines En, i.e.,
REF ` ∀x∀y(En+1(x, y) → En(x, y)); and there is a function δ : ω → {2, 3, . . . ,∞}
specifying the number of classes En+1 partitions each En-class into. For the Appendix,
we allow infinite splitting. We classify the reducts of any model M |= REF , but first we
formally define a reduct of a structure.

Definition A.1. Given a non-empty set M and two families A = {Di : i ∈ I} and
A′ = {D′j : j ∈ J} of sets of subsets of Mk(j) for various k(j), we say that A and A′
are ∅-definably equivalent if every D′j is ∅-definable in the structure (M,Di : i ∈ I), and
every Di is ∅-definable in the structure (M,D′j : j ∈ J}.

Evidently, if A and A′ are ∅-definably equivalent, then the two structures above have
the same definable sets, either with or without parameters.

Definition A.2. Suppose M is an L-structure and suppose {Di : i ∈ I} is any set of
∅-definable subsets of Mk(i) for various k(i). Any such set defines a reduct of M .

Throughout this Appendix, ‘definable’ always means ∅-definable.

An obvious class of reducts of a model of REF have the form LI := {En : n ∈ I} for
an arbitrary subset I ⊆ ω. Our theorem is that, up to ∅-definable equivalence, these are
the only reducts of any M |= REF .

Theorem A.3. LetM |= REF be arbitrary and letA = {Di : I ∈ I} be a set of definable
subsets of Mki for various ki. Then there is a subset J ⊆ ω such that A and {Ej : j ∈ J}
are ∅-definably equivalent.

Towards a proof of Theorem A.3, first note that it suffices to prove this when A is
a singleton, i.e., we are given a single definable subset D(x) ⊆ M lg(x). Second, it will
simplify the notation to reindex the original language L to include two additional equiv-
alence relations. We insist that E0 is the equivalence relation on M with only one class,
i.e., M |= ∀x∀yE0(x, y), and we add a new equivalence relation Eω for equality, i.e.,
M |= ∀x∀y(Eω(x, y)↔ x = y).

What we will really prove is the following Theorem, which immediately yields Theo-
rem A.3. We phrase it this way to facilitate a delicate induction.

Theorem A.4. Let M |= REF and let D(x0, . . . , xn−1) ⊆ Mn be definable. Then there
is a finite set F ⊆ ω + 1 such that {D,=} and {Ej : j ∈ F} are ∅-definably equivalent.
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The idea of the proof of Theorem A.4 is as follows. Clearly, any definable D ⊆ Mn

mentions only finitely many Ej’s, so there is a finite subset u ⊆ ω + 1 for which D is
definable in Mu, the reduct of M to the language Lu := {Ej : j ∈ u}. Without loss, we
may assume {0, ω} ⊆ u. This is ‘half’ of what we require. We also need to show that we
can ‘whittle away’ unnecessary Ej’s, still maintaining that D is definable, so that each of
the resulting Ej’s are {D,=}-definable.

Our toolbox makes heavy use of the fact that for any finite u ⊆ ω + 1 with 0 ∈ u,
the reduct Mu of M to Lu = {Ej : j ∈ u} is an ω-categorical structure. First, we
conclude that a subset D ⊆ Mk

u is Lu-definable if and only if D is invariant under every
Lu-automorphism of Mu. As well, there are only finitely many 2-types, each of which is
isolated. Moreover, we can explicitly describe these 2-types and their isolating formulas:

x = y is one complete type. If k = max(u) < ω, thenEk(x, y)∧x 6= y isolates another
complete type. For each i ∈ u with i < k, let i+ denote the immediate successor of i in u.
Then for each such i, there is a complete 2-type pi(x, y) isolated byEi(x, y)∧¬Ei+1(x, y).
[Note that since 0 ∈ u and E0(x, y) always holds, this list is exhaustive.] We introduce
one technical concept.

Definition A.5. Say D(x) is Lu-definable with k = max(u). We say D is u-irreflexive if
D(x) `

∧
i 6=j ¬Ek(xi, xj).

Lemma A.6. Suppose D(x) is Lu-definable with k = max(u). Let w = u \ {k} and
suppose D(x) is w-irreflexive. Then D(x) is Lw-definable.

Proof. We show that D is invariant under every Lv-automorphism σ ∈ Aut(Mv). So
choose ā with D(ā) holding and let b̄ = σ(ā). Since D is w-irreflexive, we have that∧
i 6=j ¬E`(ai, aj), where ` = max(w). As σ preserves E`, we also have

∧
i 6=j ¬E`(bi, bj).

As Ek refines E`, we conclude that
∧
i 6=j ¬Ek(ai, aj) and

∧
i 6=j ¬Ek(bi, bj). Thus, σ also

preserves Ek on ā, b̄, so tpLu(ā) = tpLu(b̄). Since D(x) is Lu-definable and D(a) holds,
we get D(b) holds as well.

The following Proposition provides the crux of the induction used in proving Theo-
rem A.4.

Proposition A.7. Suppose u ⊆ ω+1 is finite with 0 ∈ u and ` < k the two largest elements
of u. Suppose D(x) is Lu-definable and u-irreflexive. If E` is not {D,Ek}-definable, then
D is Lu\{`}-definable.

Proof. Because of our trivial interpretation of E0, the Proposition is easy if |u| = 2, so
assume |u| ≥ 3 and let m < ` < k denote the top three elements in u. Let v = u \ {`}.
We begin by defining a single {D,Ek}-definable formula ϕ(x, y) and we actually prove
the stronger statement that if ϕ is not equivalent to E`, then D is Lv-definable.
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For ρ ∈ Sym(n), let Dρ be the same formula D(xρ(0), . . . , xρ(n−1)), whose free vari-
ables are permuted by ρ. Let

θ(x, y) :=
∧

ρ∈Sym(n)

∀z2 . . . ∀zn−1[Dρ(x, y, z2, . . . , zn−1)↔ Dρ(y, x, z2, . . . , zn−1)]

Let Edistk(z0, . . . , zn−1) :=
∧
i 6=j ¬Ek(xi, xj) and let

ψ(x, y) :=
∧

ρ∈Sym(n)

∀z1 . . . ∀zn−1 (Edistk(x, z) ∧ Edistk(y, z)→ [Dρ(x, z)↔ Dρ(y, z)])

Finally, put ϕ(x, y) := θ(x, y) ∧ ψ(x, y).
The proof of Proposition A.7 follows immediately from the following three claims.

Claim 1. E`(x, y) ` ϕ(x, y).

Proof. Choose any a, b ∈ M with E`(a, b). We first show θ(a, b), with the verification of
ψ(a, b) similar and left to the reader. Choose any c2, . . . , cn−1 from M . By symmetry, it
suffices to show that Dρ is preserved when ρ = id, i.e., when Dρ = D. If both D(a, b, c̄)
and D(b, a, c̄) fail we are done, so suppose D(a, b, c2, . . . , cn−1) holds. Since D is u-
irreflexive, it follows that Edistk(a, b, c2, . . . , cn). In particular, ¬Ek(a, cj) and ¬Ek(b, cj)
hold for all 2 ≤ j ≤ n − 1. Since E`(a, b), we also have E`(a, cj) ↔ E`(b, cj) for each
2 ≤ j ≤ n− 1. It follows that tpLu(a, b, c2, . . . , cn−1) = tpLu(b, a, c2, . . . , cn−1). As D is
Lu-definable and D(a, b, c2, . . . , cn−1) holds, we conclude that D(b, a, c2, . . . , cn). Thus,
θ(a, b) holds. That ψ(a, b) holds is similar.

Claim 2. If the {D,Ek}-formula ϕ(x, y) does not define E`, then Em(x, y) ` ϕ(x, y).

Proof. By Claim 1, we know thatE`(x, y) ` ϕ(x, y), so if ϕ does not defineE`, then there
are a, b ∈ Mu such that ϕ(a, b) ∧ ¬E`(a, b) holds. Let pi(x, y) = tpLu(a, b). As pi is a
complete type isolated by Ei(x, y)¬Ei+(x, y), we conclude that

Ei(x, y) ∧ ¬Ei+(x, y) ` ϕ(x, y)

[Here, i+ is the least element of u > i.] Since ¬E`(a, b) holds, i < `, hence i ≤ m. Since
Em refines Ei, Claim 3 will be established once we prove the following Subclaim.

Subclaim. Ei(x, y) ` ϕ(x, y).
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Proof. We first show Ei(x, y) ` θ(x, y). By symmetry, it suffices to show this for ρ = id,
i.e., when Dρ = D. So choose a, b, c̄ from M with Ei(a, b). Since we already know that
pi(x, y) ` ϕ(x, y), we may additionally assume that Ei+(a, b) holds as well. Clearly, if
Edistk(a, b, c̄) fails, then since D is u-irreflexive, ¬D(a, b, c̄) ∧ ¬D(b, a, c̄) hold and we
are done, so assume {a, b, c̄} are pairwise Ek-inequivalent. There are now two subcases.
First, assume there is some cj ∈ c̄ such that pi(a, c∗) holds. Then also pi(b, cj) holds. To
ease notation, suppose j = 2 and write d̄ for (c3, . . . , cn−1). Then, as pi(x, y) ` θ(x, y),
we have

D(a, b, c2, d̄)↔ D(c2, b, a, d̄)↔ D(b, c2, a, d̄)↔ D(b, a, c2, d̄)

as needed. [The three equivalences follow from θ(a, c2), θ(b, c2), and θ(c2, a), respec-
tively.]

So, assume there no such cj ∈ c̄. By the homogeneity of Mu, choose some a∗ ∈ M
such that pi(a, a∗) holds. As Ei+(a, b) hold, pi(b, a∗) holds as well. Since {a, b, c̄} are
Ek-inequivalent and since we are in this subcase, we also have ¬Ek(cj, a∗) for all 2 ≤ j ≤
n− 1. Thus, {a, b, a∗, c̄} are all Ek-inequivalent. Since pi ` ψ(x, y), we can exchange a∗

with either of a or b in any coordinate. Thus,

D(a, b, c̄)↔ D(a∗, b, c̄)↔ D(b, a∗, c̄)↔ D(b, a, c̄)

using ψ(a, a∗), θ(a∗, b), and ψ(a, a∗), respectively. So we have established that Ei(x, y) `
θ(x, y).

Finally, we show Ei(x, y) ` ψ(x, y). For this, choose a, b ∈ M such that Ei(a, b). As
we know pi ` ψ(x, y), again we may assume Ei+(a, b) as well. We split into the same two
subcases as before. First, assume there is some cj ∈ c̄ such that pi(a, cj). For notational
simplicity, assume j = 1 and write c̄ = c1d̄. Then also, pi(b, c1), so we have ψ(a, c1) and
ψ(b, c1). Thus,

D(a, c1, d̄)↔ D(a, b, d̄)↔ D(b, a, d̄)↔ D(b, c1, d̄)

with the second equivalence using the implication Ei(x, y) ` θ(x, y) established above.
Finally, assume that there is no cj ∈ c̄ with pi(a, cj). Similarly to the θ case, choose
a∗ ∈ M such that pi(a, a∗), hence also pi(b, a∗). By our case assumption, {a, b, a∗, c̄} are
pairwise Ek-inequivalent, so as pi ` ψ, we can swap a∗ for either a or b. Thus,

D(a, c̄)↔ D(a∗, c̄)↔ D(b, c̄)

completing the proof of the Subclaim and hence of Claim 2.

Claim 3. If Em(x, y) ` ϕ(x, y) then D is Lv-definable, where v = u \ {`}.
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Proof. We argue that D is preserved under Lv-automorphisms σ ∈ Aut(M). So choose
ā ∈ Mn such that D(ā) holds and let b̄ = σ(ā). We will conclude that D(b̄) holds by
constructing, in n steps, some c̄ ∈ Mn such that D(c̄) holds and tpLu(c̄) = tpLu(b̄). We
will inductively construct n-tuples āi = (aij : j < n) for i < n from M satisfying

1. āi ≡Lv b̄;

2. D(āi) holds; and

3. For all j, j′ < i, E`(aij, a
i
j′)↔ E`(bj, bj′).

If we can succeed, we put c̄ := ān and we finish. Note that (1) and (3) combine to say
that the i-element subtuples (aij : j < i) and (bj : j < i) have the same Lu-type. So, put
ā0 := ā and assume i < n−1 and āi has been defined and satisfies the three requirements.
There are now three cases about how we choose āi+1.

First, if ¬Em(aij, a
i
i) for all j < i, then simply put āi+1 := āi and all three conditions

are met, using that E` refines Em. So, assume this is not the case. Fix j∗ < i such that
Em(aij∗ , a

i
i) holds. Since āi ≡Lv b̄ holds, it follows thatEm(bi, bj∗) holds as well. AsMu is

homogeneous, choose a∗ ∈ M so that the (i + 1)-tuples (aij : j < i, a∗) ≡Lu (bj : j ≤ i).
Note that Em(a∗, aj∗) iff Em(bi, b

∗
j), so from our choice of j∗, we also have Em(aii, a

i
j∗),

hence Em(a∗, aii) by transitivity. By our assumption, ϕ(a∗, aii) holds. Our second case is
to assume that Edistk(a

∗, aj : j 6= i) holds. Here, let āi+1 be the sequence formed from āi

by exchanging aii by a∗. Since ψ(a∗, aii) and D(āi) both hold, we have D(āi+1) holding as
needed.

The remaining case is where Edistk(a
∗, aj : j 6= i) fails. In this case, choose j∗∗ such

that Ek(a∗, aij∗∗) holds. The choice of a∗ implies that j∗∗ ≥ i. Then the (i + 1)-tuples
(aij : j < i, aij∗∗) ≡Lu (bj : j ≤ i), so take āi+1 to be āi, with the elements aii and aij∗∗
interchanged. Since Em(a∗, aii) holds and Ek(a∗, aij∗∗) holds, we have Em(aii, a

i
j∗∗) holds,

hence θ(aii, a
i
j∗∗). Thus, D(āi+1) as required. These three Claims finish the proof of

Proposition A.7.

Definition A.8. For n = {0, . . . , n−1}, a projection π : n→ R is any function satisfying
π(r) = r for all r ∈ R (so R ⊆ n). As notation, π[n] denotes the image of π. For any
k ∈ ω + 1 and for any projection π : n→ R, let

∆π
k(x0, . . . , xn−1) :=

∧
π(i)=π(j)

Ek(xi, xj) ∧
∧

π(i)6=π(j)

¬Ek(xi, xj)

and for a given formula D(x0, . . . , xn−1),

Dπ
k (xi : i ∈ π[n]) := ∃y0 . . . ∃yn−1[

∧
i∈π[n]

yi = xi ∧∆π
k(y0, . . . , yn−1) ∧D(y0, . . . , yn−1)]
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Proof of Theorem A.4.

Given an L-definable D(x0, . . . , xn−1), choose a finite u ⊆ ω + 1 with {0, ω} ⊆ u
such that D is Lu-definable. Note that D(x)↔

∨
πD

π
ω, where the disjunction ranges over

all projections of n. As each Dπ
ω is u-irreflexive, we may assume that our original D(x) is

u-irreflexive. Thus, the Theorem is proved, once we establish the following Claim, which
is proved by induction on |u|.
Claim. Suppose u ⊆ ω + 1 is finite with 0 ∈ u, and let k = max(u). If D(x) is
Lu-definable and u-irreflexive, then there is some F ⊆ u such that the sets {D,Ek} and
{Ej : j ∈ F} are ∅-definably equivalent.

Proof. As noted above, we argue by induction on |u|. Say |u| = m and the result holds for
all proper subsets of u. Choose D(x) to be u-definable and u-irreflexive. There are now
two cases:

Case 1. E` is not {D,Ek}-definable.

In this case, by Proposition A.7, taking v = u\{`},D isLv-definable and v-irreflexive.
Thus, we finish by the inductive hypothesis.

Case 2. E` is {D,Ek}-definable.

Here, note that

D(x)↔
∧
i 6=j

¬Ek(xi, xj) ∧
∨
π

Dπ
` (xi : i ∈ π[n])

so the sets {D,Ek} and {Dπ
` : π a projection} ∪ {E`, Ek} are definably equivalent. It

follows that each Dπ
` is Lu-definable (since D was) and is visibly w-irreflexive, where

w = u \ {k}. By Lemma A.6, we conclude that each Dπ
` is Lw-definable, so we can

apply the inductive hypothesis on each Dπ
` . For each π, choose a finite set F π ⊆ w so that

{Dπ
` , E`} and {Ej : j ∈ Fϕ} are ∅-definably equivalent. Put F ∗ =

⋃
π Fπ ∪ {E`, Ek}. It

follows that {D,Ek} and {Ej : j ∈ F ∗} are ∅-definably equivalent.
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