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Abstract. We prove various results around indiscernibles in monadi-
cally NIP theories. First, we provide several characterizations of monadic
NIP in terms of indiscernibles, mirroring previous characterizations in
terms of the behavior of finite satisfiability. Second, we study (monadic)
distality in hereditary classes and complete theories. Here, via finite
combinatorics, we prove a result implying that every planar graph admits
a distal expansion. Finally, we prove a result implying that no monadi-
cally NIP theory interprets an infinite group, and note an example of
a (monadically) stable theory with no distal expansion that does not
interpret an infinite group.

1. Introduction

In the setting of hereditary classes of relational structures, the standard
model-theoretic condition of an NIP theory collapses to the much stronger
monadically NIP theory, i.e. a theory that remains NIP under arbitrary
expansions by unary predicates. Thus monadic NIP is conjectured to be
an important dividing line for various combinatorial problems, such as the
algorithmic tractability of first-order model checking [13]. The manipulation
of indiscernible sequences is a prominent thread in results involving monadic
NIP, and this paper consists of three independent sections concerning this.
The first section shows that we may provide various characterizations of
monadic NIP in terms of indiscernible sequences. The second section de-
scribes how monadic NIP interacts with distality, another model-theoretic
condition characterized by the behavior of indiscernibles. One motivation for
considering distality is that it also has combinatorial implications, such as
the strong Erdős-Hajnal property (an improved form of Ramsey’s theorem).
Another motivation comes from the fact that in monadically NIP theories,
every global invariant 1-type is either generically stable or distal, so one
might hope to understand monadic NIP by understanding separately how it
interacts with stability and with distality. It’s interaction with stability leads
to the relatively well-understood property of monadic stability, so we begin
the study of its interaction with distality here. Last, a recurring theme in
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model theory is understanding theories by the algebraic objects, particularly
groups, that can appear in them, and in the third section we show that
monadically NIP theories can encode almost no algebraic structure.

In the first section, we provide various characterizations of monadic NIP
in terms of indiscernible sequences, paralleling the characterizations provided
in [7] in terms of finite satisfiability.

Theorem 1.1 (Theorem 2.12). Let T be a complete theory. Then the
following are equivalent.

(1) T is monadically NIP.
(2) T admits widening of indiscernibles.
(3) T is dp+-minimal.
(4) T is dp-minimal and has endless indiscernible triviality.

There are seemingly good reasons to desire the characterizations in terms
of indiscernibility: finite satisfiability requires working over an infinite model
and so seems less suited to working with classes of finite structures, where
monadic stability and monadic NIP have been intensively studied. Also,
one of the issues encountered in [8] studying monadic NIP in the setting of
existentially closed models is that finite satisfiability is not very well-behaved
there, since a finitely satisfiable type cannot necessarily be extended to one
over a larger base. However, the Erdős-Rado theorem still allows us to obtain
and manipulate indiscernible sequences there.

In the second part of this section, we show that dp+-minimality, as opposed
to dp-minimality, ensures that a singleton can cut an indiscernible sequence
in at most one place. This clarifies how models of a monadically NIP theory
can be decomposed over an indiscernible sequence, which leads to a notion
of independence paralleling finite satisfiability.

In the next section, we turn to distality in monadically NIP theories.
We begin by characterizing monadic distality in terms of avoiding totally
indiscernible sets of singletons (Proposition 3.2) and showing that monadic
distality is equivalent to monadic NIP and distality (Corollary 3.3), mirroring
a characterization of monadic stability. One of the main points of [8] is that
universal theories are the right setting for monadic model-theoretic properties,
so we then study (monadic) distality in universal theories and hereditary
classes of finite structures. One of the main results here is that every graph
class with bounded twin-width admits a distal expansion by a linear order.

Theorem 1.2 (Theorem 3.13). Let C be a hereditary class of binary relational
structures with bounded twin-width (for example, a planar graph class). Then
C admits a distal expansion by a linear order, and thus so does every model
of Th(C)∀.

Theorem 3.13 produces distal expansions of infinite structures without
having to analyze definability in indiscernible sequences in those structures,
instead relying purely on finite combinatorics. As an example corollary, we
obtain the following result about distal expansions of infinite graphs, which
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on its face is not connected with monadic NIP or with hereditary classes of
finite structures.

Corollary 1.3. Let G be an infinite planar graph. Then G admits a distal
expansion by a linear order.

In the final section, we show that monadically NIP theories cannot interpret
an infinite group, although we prove a more general result.

Proposition 1.4 (Proposition 4.3). Let T be a theory with finite dp-rank
and endless indiscernible triviality. Then T does not trace-define an infinite
cancellative magma.

This is part of a project set out in [26] to identify some notion of triviality
and a corresponding Zilber dichotomy for NIP theories, and endless indis-
cernible triviality may be an appropriate such notion, perhaps in a restricted
setting.

Returning to distality, the most commonly known reason for an NIP theory
to not admit a distal expansion is if it interprets an infinite field of finite
characteristic (e.g., see [1]). As a corollary of Proposition 1.4, we record the
fact that there is a (monadically) stable theory with no distal expansion that
does not interpret an infinite group (Corollary 4.10).

2. Indiscernibles and naming parameters

2.1. Characterizations of monadic NIP via indiscernibles. Before
stating the relevant definitions, our goal in this subsection is to prove Theorem
1.1. The point of view resulting from this theorem is that we may decompose
models of a monadically NIP theory into an indiscernible sequence, rather
than into the M -f.s. sequences used in [7]. In particular, by iterating the
fact that T admits widening of indiscernibles, it will follow that given any
M ≺ C and Dedekind complete indiscernible sequence I = (āi : i ∈ I) in
C, we may “widen” I to an indiscernible sequence I+ = (āib̄i : i ∈ I) such
that M ⊂

⋃
I+. This is essentially the point of view given on monadically

NIP theories in [4], which also proves that monadically NIP theories admit
widening of indiscernibles. Then dp+-minimality is somewhat analogous to
the f.s. dichotomy of [7], describing how single additional point interacts
with a partial decomposition. Widening of indiscernibles corresponds to
[7, Lemma 3.2] that any partial decomposition can be extended to contain
any additional point, and similarly iterating gives the statement that a
partial decomposition can always be extended to contain any model. The
last characterization is analogous to [7, Lemma 3.3] that dependence is
trivial and transitive. Dp-minimality may be more transparently viewed
as a transitivity statement via the following characterization: if there are
indiscernible sequences I,J and a singleton b such that neither I nor J are
indiscernible over b, then I and J are not mutually indiscernible.

We now define the notions appearing in Theorem 1.1. All indiscernible
sequences will be assumed infinite. One can view dp-minimality as describing
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how an indiscernible sequence I = (āi : i ∈ I) can be ‘injured’ by the addition
of parameters.

Definition 2.1. A theory T is dp-minimal if for every indiscernible sequence
I = (āi : i ∈ Q) and every singleton b, there is i∗ ∈ R ∪ {±∞} such that
I<i∗ and I>i∗ are mutually indiscernible over b.

A theory T is dp+-minimal if we may instead choose i∗ ∈ R ∪ {±∞} so
that I<i∗ and I>i∗ are mutually indiscernible over āi∗b if i∗ ∈ Q, and over b
otherwise.

The definition of dp-minimality above is equivalent to the characterization
given in [24, Theorem 4.18 (iii)2] (with κ = 2 and p the partial type {x = x }).
The characterization works with an arbitrary infinite index set and allows one
of I<i∗ and I>i∗ to be finite, in which case we only demand that the other is
indiscernible over b. These are clearly equivalent on Q-indexed sequences, so
the characterization implies our definition. It suffices to show our definition
implies the characterization on countable sequences, which can always be
extended to Q-indexed sequences, where our definition applies and produces
a cut i∗ that also works for the characterization.

The name dp+-minimality is based on the notion of strongly+-dependent
theories introduced in [23] (see Conclusion 2.11 there) and of dp+-rank
mentioned in [24, Remark 4.19].

Definition 2.2. A theory T admits widening of indiscernibles if for every
infinite indiscernible sequence I = (āi : i ∈ I) and every singleton b ∈ C,
there is a one-point extension (J,≤) ⊇ (I,≤), an extension (āj : j ∈ J) of
I, an element j∗ ∈ J and a sequence (bj : j ∈ J) such that bj∗ = b and
(ājbj : j ∈ J) is indiscernible.

Definition 2.3. A theory T has endless indiscernible triviality if for every
indiscernible sequence I = (āi : i ∈ I) without endpoints, and for every set
B, if I is indiscernible over each b ∈ B then I is indiscernible over B.

A theory has indiscernible triviality if the statement above holds for
arbitrary infinite indiscernible sequences (possibly with endpoints).

We recall the f.s. dichotomy and some related notions from [7].

Definition 2.4. T has the f.s. dichotomy if, for all models M , all finite
tuples ā, b̄ ∈ C, if tp(b̄/Mā) is finitely satisfied in M , then for any singleton
c, either tp(b̄/Māc) or tp(b̄c/Mā) is finitely satisfied in M .

Definition 2.5. Let M be a model, let C ⊇M , and let (I,≤) be any linearly
ordered index set.

• Suppose 〈Ai : i ∈ I〉 is any sequence of sets, indexed by (I,≤). For
J ⊆ I, AJ denotes

⋃
j∈J Aj , and for i∗ ∈ I, A<i∗ denotes

⋃
i<i∗ Ai.

A≤i∗ and A>i∗ are defined analogously.
• For C ⊇ M , an M-f.s. sequence over C, is a sequence of sets 〈Ai :
i ∈ I〉 such that tp(Ai/A<iC) is finitely satisfied in M for every i ∈ I.
When C = M we simply say 〈Ai : i ∈ I〉 is an M -f.s. sequence.
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Definition 2.6. We call C ⊇ M full if, for every n, every p ∈ Sn(M) is
realized in C.

The relevance of fullness is the following stationarity result.

Lemma 2.7 ([7, Lemma 2.12]). Suppose C ⊇ M is full and p ∈ S(C) is
finitely satisfied in M . Then for any set D ⊇ C, there is a unique q ∈ S(D)
extending p that remains finitely satisfied over M .

Definition 2.8. Fix any full C ⊃ M and q(x̄) ∈ S(C) finitely satisfied in

M . For any linear order (I,≤) (even finite) the I-Morley sequence q(I) is
the unique type in the variables (x̄i : i ∈ I) satisfying q = tp(x̄i/D) and
tp(x̄i/Dx̄<i) is finitely satisfiable in M for every i ∈ I.

Lemma 2.9. Suppose C ⊇M is full and r(x̄, ȳ) ∈ S(C) is finitely satisfied
in M , and let q(x̄) be the restriction of r(x̄, ȳ) to x̄. For any linear order

(I,≤) and any (āi : i ∈ I) realizing q(I), there are (b̄i : i ∈ I) such that

(āib̄i : i ∈ I) realizes r(I).

Proof. Choose any (ā′ib̄
′
i : i ∈ I) realizing r(I). Then (ā′i : i ∈ I) also

realizes q(I), so there is an automorphism σ ∈ Aut(C) fixing D pointwise

with σ(ā′i) = āi. Then (āiσ(b̄′i) : i ∈ I) also satisfies r(I). �

The following lemma is essentially [4, Theorem 4.14], although the f.s.
dichotomy allows us to give a simple proof.

Lemma 2.10. If T has the f.s. dichotomy then for every infinite indiscernible
(āi : i ∈ I) where (I,≤) is Dedekind complete and for every singleton b ∈ C,
there are (bi : i ∈ I) and some i∗ ∈ I such that bi∗ = b and (āibi : i ∈ I) is
indiscernible.

Proof. Choose M and a full D ⊇ M such that (āi : i ∈ I) is an M -f.s.
sequence over D, by [7, Lemma 2.20].

Claim. There is some i∗ ∈ I such that (āi : i < i∗)a(āi∗b)
a(āi : i > i∗) is an

M -f.s. sequence over D.

Proof of Claim. This is immediate from the proof of Lemma [7, Lemma 3.2],
where the following is shown. Let I0 be the maximal initial segment of I

such that tp(b/DāI0) is finitely satisfiable in M , and let I = Ia0 I1. If I1 has
a minimal element i∗1, it is shown that we can take i∗ = i∗1. Otherwise, it is
shown that (āi : i ∈ I0)a(b)a(āi : i ∈ I1) is an M -f.s. sequence over D. In
this case, I0 must have a maximal element i∗0 by Dedekind completeness, and
(āi : i ∈ I0\i∗0)a(āi∗0b)

a(āi : i ∈ I1) is also an M -f.s. sequence over D. ♦

Let r(x̄, y) := tp(āi∗b/D) and let q(x̄) := tp(āi/D) for some (equivalently,
for every) i ∈ I. Then, by Lemma 2.9 there are {bi : i ∈ I} such that

(āibi : i ∈ I) realizes r(I). By [7, Lemma 2.22], (āibi : i ∈ I) is indiscernible
over D. Finally, choose an automorphism of C fixing AID with σ(bi∗) = b.
Then (āiσ(bi) : i ∈ D) is as desired. �
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Before the main theorem, we need state the following obstruction to
monadic NIP.

Definition 2.11. A tuple-coding configuration is a formula φ(x̄, ȳ, z), a pair
of mutually indiscernible sequences (āi : i ∈ Q) and (b̄j : j ∈ Q), and a set
of singletons { ci,j | i ∈ Q, j ∈ Q }, such that |= φ(āi, b̄j , ck,`) if and only if
(i, j) = (k, `).

Theorem 2.12. Let T be a complete theory. Then the following are equiva-
lent.

(1) T is monadically NIP.
(2) T admits widening of indiscernibles.
(3) T is dp+-minimal.
(4) T is dp-minimal and has endless indiscernible triviality.

Proof. (1) ⇒ (2) Let I = (āi : i ∈ I) be an infinite indiscernible sequence.
Let (I2,≤) be the Dedekind completion of (I,≤). By Compactness, choose
(āi : i ∈ I2) extending (āi : i ∈ I) that is also indiscernible. By Lemma 2.10
there is i∗ ∈ I2 and (bj : j ∈ I2) such that bi∗ = b and (āibi : i ∈ I2) is
indiscernible. Finally, let (J,≤) ⊆ (I2,≤) be the subordering with universe
I ∪ {i∗}. Then (ājbj : j ∈ J) is as desired.

(2)⇒ (3) Suppose T admits widening of indiscernibles, I = (āi : i ∈ Q) is
an infinite indiscernible sequence, and b is a singleton. Let I+ = (ājbj : j ∈ J)
with J ⊂ R ∪ {±∞} be the sequence produced by widening I, with bj∗ = b.
Then I+

<j∗ and I+
>j∗ are mutually indiscernible over āj∗b.

(3)⇒ (1) Suppose T is not monadically NIP, so by [7] T admits a tuple-
coding configuration I = (āi : i ∈ Q), J = (b̄j : j ∈ Q), { ci,j | i, j ∈ Q },
φ(x̄, ȳ, z). Since I and J are mutually indiscernible, I∗ = (āib̄i : i ∈ Q)
is also indiscernible. Then any ci,j with i 6= j witnesses the failure of
dp+-minimality.

(1)⇔ (4) This is contained in the corrigendum to [7]. �

We note one application in a special case. Call a theory T binary if, the
type of any n-tuple of elements from any M |= T is determined by the union
of the types of its 2-element subsequences. Clearly, if T is binary, then it
has indiscernible triviality.

Corollary 2.13. If T is binary, then T is monadically NIP if and only
if every completion of T is dp-minimal. In this case, T has indiscernible
triviality (as opposed to just endless indiscernible triviality).

2.2. Uniqueness of the cut point. In a dp-minimal theory, a singleton can
“exceptionally relate” to several points of an indiscernible sequence, although
removing any one of these points destroys the relation. For example, consider
an infinite linearly independent set in a vector space and the sum of some
finite subset. However, in a dp+-minimal theory, we will show that singleton
can “exceptionally relate” to only one cut in an endless indiscernible sequence.
This implies if an indiscernible I is not indiscernible over b, then the choice
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of i∗ in Definition 2.1 is essentially unique, and is truly unique if the index
sequence is also dense and Dedekind complete.

One outcome of this is that an endless, dense, Dedekind complete indis-
cernible sequence in a monadically NIP theory gives rise to a well-defined
notion of independence (still depending on the sequence). Namely, given a
model M ⊂ C and such an indiscernible sequence I, then we may “widen” I
to I+ covering M . There will be some points that I remains indiscernible
over, which would be inserted into every tuple of I+, which we call orthogonal
points. Then two non-orthogonal points may be considered dependent over
I if they are placed into the same tuple of I+ and independent otherwise,
and orthogonal points are considered independent from everything. From
the results of this section, it follows that at every step there is a unique tuple
where each non-orthogonal point can be inserted, and furthermore this tuple
does not depend on the order in which points are inserted.

The main result concerning indiscernible sequences is Proposition 2.21.
The proof of this makes use of the parallel result Proposition 2.18 concerning
M -f.s. sequences (Definition 2.5). We begin with some general lemmas on
indiscernibles without any assumption of monadic NIP.

Lemma 2.14. Suppose (I,≤) is endless and I = Ia0 I
a
1 I2 is any partition of

I into three non-empty convex sets. If both (āi : i ∈ I0) and (āi : i ∈ I1 ∪ I2)
are mutually indiscernible, and (āi : i ∈ I0∪ I1) and (āi : i ∈ I2) are mutually
indiscernible, then (āi : i ∈ I) is indiscernible.

Proof. Given an increasing tuple āi1 . . . āin , we may shift an individual āij
from I1 to I0 while preserving the type by using the second mutual indis-
cernibility assumption, and similarly may shift an individual āij from I2 to
I1 while preserving the type by using the first mutual indiscernibility assump-
tion. Repeating this process, we eventually shift all individual subtuples into
I0, which is assumed to be indiscernible. �

Lemma 2.15. Let I = (āi : i ∈ I) be a sequence, and suppose there is a cut

I = Ia0 I1 such that I0 and I1 are mutually indiscernible. If there is i∗ ∈ I
such that I\ { āi∗ } is indiscernible, then I is indiscernible.

Proof. Given an increasing tuple āi1 . . . āin , if some āij = āi∗ , we may use
the mutual indiscernibility to shift āi∗ to another tuple on the same side of
the cut, possibly also shifting other āik if this is needed to make space. �

Lemma 2.16. Let I = (āi : i ∈ I) be an endless indiscernible sequence, and
let b be a singleton. If any of the following hold, then I is indiscernible over
b.

(1) There are two distinct cuts I = Ia0 I1 and I = Ja0 J1 such that (āi :
i ∈ I0) and (āi : i ∈ I1) are mutually indiscernible over b, as are
(āi : i ∈ J0) and (āi : i ∈ J1).

(2) There is a cut I = Ia0 I1 such that (āi : i ∈ I0) and (āi : i ∈ I1)
are mutually indiscernible over b, and an element i∗ ∈ I that is
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neither the maximal element of I0 nor the minimal element of I1 with
(āi : i < i∗) and (āi : i > i∗) are mutually indiscernible over b.

(3) There are two distinct element i∗, i′ ∈ I with (āi : i < i∗) and
(āi : i > i∗) mutually indiscernible over ai∗b and (āi : i < i′) and

(āi : i > i′) mutually indiscernible over b, and there is no cut I = Ia0 I1

such that (āi : i ∈ I0) and (āi : i ∈ I1) are mutually indiscernible over
b and i∗, i′ are the maximal element of I0 and the minimal element
of I1.

Proof. (1) Suppose J0 ⊂ I0. Apply Lemma 2.14 to Ja0 I0\Ja0 I1.

(2) Suppose there is such a cut I = Ia0 I1 and an i∗ ∈ I such that
(āi : i < i∗) and (āi : i > i∗) are mutually indiscernible over b. Possibly

reversing the order, we may suppose i∗ ∈ I0. Let I\ { i∗ } = Ja0 J1 with
J0 = { i ∈ I | i < i∗ } and J1 = { i ∈ I0 | i > i∗ }. If i∗ is not the maximal
element of I0, then this cut is distinct from (I0\ { i∗ })aI1. So by Case (1),
I\ { āi∗ } is indiscernible over b. So by Lemma 2.15, I is indiscernible over b.

(3) Suppose there are such i∗ and i′ with i′ < i∗ (the case i′ > i∗ is
symmetric). Applying Case (2) to I\ { āi∗ }, we have that i′ is the immediate

predecessor of i∗. Now consider the cut I = Ia0 I1 with I0 = (i ≤ i′) and
I1 = (i ≥ i∗). Routine manipulation of indiscernibles shows II0 and II1 are
mutually indiscernible over b. �

Lemma 2.17. Suppose (I,≤) is endless, I0 is a proper initial segment, and
I1 is a proper final segment (but we are not assuming I = I0 ∪ I1). If
(āi : i ∈ I) is indiscernible and M and a full D ⊃ M are chosen so that
(āi : i ∈ I0)a(Y )a(āi : i ∈ I1) is an M -f.s. sequence over D and indiscernible
over D, then (āi : i ∈ I0) and (āi : i ∈ I1) are mutually indiscernible over
DY .

Proof. This is immediate from [7, Proposition 2.17] stating that an M -f.s.
sequence over a full D ⊃ M is an order-congruence over D ([7, Definition
2.16]). �

We now begin working in monadically NIP theories.

Proposition 2.18 (Cut Lemma, f.s. version). Let T be monadically NIP.
Suppose (I,≤) is endless, (āi : i ∈ I) is indiscernible, and b ∈ C is any
singleton for which (āi : i ∈ I) is not indiscernible over b. Let M ⊆ D be
such that M is a model, D/M is full, and (āi : i ∈ I) is an M -f.s. sequence
over D. Let I0 be the maximal initial segment of I such that tp(b/AI0D) is

finitely satisfied in M , and let I = Ia0 I1. Let i∗0 denote the maximal element
of I0 if it exists, and i∗1 denote the minimal element of I1 if it exists.

(1) If i∗1 does not exist (and possibly if it does), then

(āi : i ∈ I0)a(b)a(āi : i ∈ I1)

is an M -f.s. sequence over D
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(2) If i∗1 exists, then

(āi : i < i∗1)a(āi∗1b)
a(āi : i > i∗1)

is an M -f.s. sequence over D.
(3) If i∗0 exists, then

(āi : i < i∗0)a(āi∗0b)
a(āi : i > i∗0)

is an M -f.s. sequence over D if and only if

(āi : i ∈ I0)a(b)a(āi : i ∈ I1)

is an M -f.s. sequence over D.

Furthermore, these are the only three possibilities for inserting b so that
the result is an M -f.s. sequence over D.

Proof. The proof of Clauses (1) and (2) is explicitly contained in the proof
of [7, Lemma 3.2]. The “if” direction of Clause (3) is immediate from
Condensation ([7, Definition 2.5]).

For the “only if” direction of Clause (3), suppose b can be inserted at i∗0.
Then we must show that (āi : i ∈ I0)a(b)a(āi : i ∈ I1) is an M -f.s. sequence
over D. If i∗1 does not exist, this follows from Clause (2). If i∗1 does exist, then
Clause (1) gives that (āi : i < i∗1)a(āi∗1b)

a(āi : i > i∗1) is an M -f.s. sequence

over D, and together with our assumption that (āi : i < i∗0)a(āi∗0b)
a(āi : i >

i∗0) is an M -f.s. sequence over D, we are finished.
We now prove the Furthermore clause. We recall Lemma 2.17, which we

will use repeatedly without mention. Suppose b can be inserted at some
index i∗, which possibly represents a new cut. By the definition of I0, we
cannot have i∗ above any element of I1. If i∗1 exists and i∗ ∈ I with i∗ 6= i∗1,

then by Lemma 2.16(3) there is a cut I = Ja0 J1 such that i∗ is the maximal
element of J0 and i∗1 is the minimal element of J1, so I0 = J0.

We cannot have that i∗1 does not exist and i∗ 6∈ I defines a cut other than

Ia0 I1, since this would contradict Lemma 2.16(1). The case where i∗1 does
not exist and i∗ ∈ I with i∗ 6= i∗0 is ruled out by Lemma 2.16(2), which also

rules out case where i∗1 exists and i∗ 6∈ I defines a cut other than Ia0 I1. �

The following Corollary further clarifies the situation.

Corollary 2.19. Let I,M,D, (āi : i ∈ I) and b ∈ C be as in Lemma 2.18.

Suppose (āi : i ∈ I) is not indiscernible over b and let I = Ia0 I1 be the cut
where I0 is the maximal initial segment of I satisfying tp(b/AI0D) is finitely
satisfied in M . Then:

(1) The only possible i∗ ∈ I such that (āi : i < i∗)a(āi∗b)
a(āi : i > i∗)

is an M-f.s. sequence over D are the maximal element of I0 or the
minimal element of I1. In particular, there are at most two such
i∗ ∈ I.

(2) If (I,≤) is dense, then there is at most one such i∗ ∈ I.
(3) If (I,≤) is Dedekind complete, then there is at least one such i∗ ∈ I.
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Proof. (1) Immediate from the statement of Lemma 2.18.
(2) If (I,≤) is dense, then it is not possible for I0 to have a maximum and

I1 has a minimum, so we are done by (1).
(3) If (I,≤) is Dedekind complete, then either i∗0 or i∗1 from Lemma 2.18

must exist. If i∗1 exists, then we are finished by Clause (2) of Lemma 2.18.
If i∗1 does not exist, then we are finished by Clauses (1) and (3) of Lemma
2.18. �

Remark 2.20. Easy examples involving T = DLO show that the remaining
possibilities can indeed happen.

• If aq = q for all q ∈ Q, then for b = π and every element of M is larger

than every rational, then (aq : q < π)a(π)a(aq : q > π) is an M -f.s.

sequence, but there is no q ∈ Q such that (ai : i < q)a(aqb)
a(ai : i >

q) is an M -f.s. sequence.
• If ai = i for all i ∈ Z, b = π, every element of M is larger than every

rational, then (ai : i < π)a(π)a(ai : i > π) is an M -f.s. sequence, but
also both (ai : i < 3)a(3ab)a(ai : i ≥ 4) and (ai : i ≤ 3)a(ba4)a(ai :
i > 4) are M -f.s. sequences.

Proposition 2.21 (Cut Lemma, indiscernible version). Suppose T is monad-
ically NIP and (I,≤) is endless. Suppose (āi : i ∈ I) is indiscernible and
b ∈ C is a singleton such that (āi : i ∈ I) is not indiscernible over b. Then
one of the following holds.

(1) There is a cut I = Ia0 I1 such that (āi : i ∈ I0) and (āi : i ∈ I1) are
mutually indiscernible over b.

Furthermore in this case, the cut is unique. And i∗ ∈ I is such
that (āi : i < i∗) and (āi : i > i∗) are mutually indiscernible over b
if and only if i∗ is either the maximal element of I0 or the minimal
element of I1.

(2) There is a unique i∗ ∈ I such that (āi : i < i∗) and (āi : i > i∗) are
mutually indiscernible over b.

Furthermore in this case, they are mutually indiscernible over ai∗b.

Proof. By [7, Lemma 2.20], choose M and a full D ⊃M so that (āi : i ∈ I)
is an M -f.s. sequence over D and indiscernible over D. We then apply the f.s.

Cut Lemma. If there is a cut I = Ia0 I1 such that (āi : i ∈ I0)a(b)a(āi : i ∈ I1)
form an M -f.s. sequence over D, then (āi : i ∈ I0) and (āi : i ∈ I1) are
mutually indiscernible over b by Lemma 2.17. The uniqueness of the cut
follows from Lemma 2.16(1). If i∗ is either the maximal element of I0 or the
minimal element of I1, it is immediate that (āi : i < i∗) and (āi : i > i∗) are
mutually indiscernible over āi∗b. The “only if” part about i∗ follows from
Lemma 2.16(2).

If there is no cut I = Ia0 I1 such that (āi : i ∈ I0)a(b)a(āi : i ∈ I1) form an
M -f.s. sequence over D, then there is i∗ ∈ I such that (āi : i < i∗)a(āi∗b)

a(āi :
i > i∗) is an M -f.s. sequence over D, and so by Lemma 2.17, (āi : i < i∗)
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and (āi : i > i∗) are mutually indiscernible over ai∗b. The uniqueness of i∗

follows from Lemma 2.16(3). �

3. Distality in hereditary classes and monadic distality

This section contains some collapse results regarding (monadic) distality. It
is not immediate that distality of a hereditary class implies monadic NIP, but
it implies NIP and by [8, Theorem 4.6], this implies monadic NIP. The first
collapse result is monadic NIP and distality is equivalent to monadic distality,
mirroring the collapse of monadic NIP and stability to monadic stability.
The second is the collapse of distality to monadic distality in hereditary
classes, mirroring similar results for monadic stability and monadic NIP
from [8]. After these collapse results, we begin studying distality and distal
expansions in hereditary classes, showing that various natural definitions
of distality coincide and proving that classes of bounded twin-width admit
distal expansions in a way that also lifts to infinite models of their universal
theory.

3.1. Monadic distality.

Definition 3.1. A complete theory T is distal if for every indiscernible

sequence I = Ia1 I
a
2 I3 such that I1 has no maximum, I2 no maximum or

minimum, and I3 no minimum, and for every ā, b̄, if Ia1 ā
aIa2 I3 and Ia1 I

a
2 b̄
aI3

are each indiscernible, then so is Ia1 ā
aIa2 b̄

aI3.
An incomplete theory T is distal if Th(M) is distal for every M |= T .
A (possibly incomplete) theory T is monadically distal if Th(M+) is distal

for every monadic expansion M+ of every M |= T .

Note that unlike many model-theoretic properties such as (monadic) sta-
bility/NIP, (monadic) distality is not preserved under reducts; for example,
the theory of equality is not distal. Furthermore, the example below shows
monadic distality is not preserved under passing to substructure. Neverthe-
less, we will recover various results for monadic distality paralleling those for
monadic stability and monadic NIP.

Example 1 (A theory T that is monadically distal, but T∀ is not distal).
Let L = {U, V,<,E } be a relational language with U, V unary and <,E
binary. Let M be an infinite L-structure where U, V partition the domain,
each point is E-related to a unique point, any two E-related points are in
different unary relations, and < is a linear order on U(M). It is easy to
check that M is monadically distal. However, the substructure V (M) is a
pure set and so is not distal.

Proposition 3.2. If T is a theory that is monadically NIP but not monadi-
cally distal, then some M |= T contains an infinite totally indiscernible set
of singletons.
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Proof. Passing to an appropriate completion of T and renaming, we may
assume T is complete. Let T ′ be a monadic expansion of T that is not
distal. Since T is monadically NIP, so is T ′, and so T ′ is dp-minimal. By
[24, Corollary 9.19], if a theory is dp-minimal, then it is not distal if and only
if some unrealized global invariant 1-type is generically stable. Let p′(x) be
such a type in T ′, and consider a Morley sequence I ′ in p′ (as described after
[24, Lemma 2.23]). Then by [24, Theorem 2.29], I ′ is totally indiscernible,
and thus so is the T -reduct I. �

Corollary 3.3. Let T be a theory. Then T is monadically distal if and only
if T is distal and monadically NIP.

Proof. The forward direction is clear, so suppose that T is monadically NIP
and distal. If T is not monadically distal, then by the previous lemma some
M |= T contains an infinite totally indiscernible set, contradicting that T is
distal. �

3.2. Distality in hereditary classes.

Definition 3.4. A hereditary class is a class of structures closed under
substructure.

Given a class C of structures, we define Th(C) as
⋂
M∈C Th(M).

In addition to Definition 3.1, distality can be characterized in terms of
strong honest definitions, which we now describe. This can be stated entirely
at the level of a class of structures C, rather than having to look at models
of Th(C).

Definition 3.5. Let C be a class of structures. A formula φ(x̄, ȳ) admits
a strong honest definition in C if there is a formula ψ(x̄, z̄) such that for

all M ∈ C, all finite A ⊂ M with |A| ≥ 2, and all b̄ ∈ M |x̄|, there is some

d̄ ∈ A|z̄| such that M |= ψ(b̄, d̄) and all elements of ψ(M, d̄) realize the same
φ-type over A.

We say φ admits a strong honest definition in M if it does so in {M }. We
say a class C of structures admits strong honest definitions if every formula
admits strong honest definitions in C, and that a (possibly incomplete) theory
T admits strong honest definitions if the class of models of T does.

We remark that the definable cell decompositions described in [10, Defini-
tion 2.7] are nearly the same as strong honest definitions, but allow for more
refined quantitative results, which we will not be concerned with.

Fact 3.6 ([11, Theorem 21]). A complete theory T is distal if and only if it
admits strong honest definitions.

The following lemma extends this fact to incomplete theories of the form
Th(C). The main point is (1)⇒ (2) that from knowing only that φ admits
a strong honest definition separately in each completion of Th(C), we may
deduce the uniformity result that there is a single strong honest definition
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for φ that works across all completions of Th(C). This shows that there is a
single robust definition of distality for a class of structures.

Lemma 3.7. Let C be a class of L-structures. The following are equivalent.

(1) Th(C) is distal.
(2) Th(C) admits strong honest definitions.
(3) C admits strong honest definitions.

Proof. The key point is that for a fixed formula φ(x̄; ȳ) and a fixed formula
ψ(x̄; z̄), we may express by a set of sentences that ψ is a strong honest
definition for φ(x̄; ȳ). Namely, for each n ≥ 1, we may write a sentence θn
stating that for every choice of n elements a1, . . . , an, for one of the finitely-
many choices of ψ-definable families of sets over these elements, this family
covers the whole structure and the truth value of φ(x̄; ā) is constant on each

set in this family for each of the finitely many choices of ā ∈ { a1, . . . , an }|ȳ|.
Using this, the equivalences follow by standard compactness arguments.

(1)⇒ (2) Suppose there is some φ(x̄; ȳ) such that there is no strong honest
definition for Th(C). So for each formula ψ(x̄, z̄), there is some M |= Th(C)
such that ψ fails over some parameter set a1, . . . , anΨ . As above, we may
write a sentence χψ saying that there exist elements a1, . . . , anΨ over which
ψ fails. Note that by the “standard coding trick” (as in [14, Lemma 2.5]) if
there is some finite set Ψ of formulas such that for each M ∈ C, some ψ ∈ Ψ
serves as a strong honest definition for φ in M , then φ admits a strong honest
definition in C. So Th(C)∪{χψ | formulas ψ(x̄, z̄) } is finitely satisfiable, and
thus satisfiable. Thus there is some M |= Th(C) such that there is no strong
honest definition for φ(x̄; ȳ) in M .

(2)⇒ (1) is immediate from Fact 3.6.
(3) ⇒ (2) Suppose C admits strong honest definitions. Fix a formula

φ(x̄; ȳ) and let ψ(x̄; z̄) be strong honest definition. By assumption, every θn
as described in the first paragraph is in Th(C).

(2) ⇒ (3) We may express the assumption of (2) via sentences θn as in
the first paragraph. As M |= Th(C) for each M ∈ C, the same strong honest
definitions will work for M . �

The equivalences in the following two results are analogous to results for
monadic NIP and monadic stability in [8]. For the following proposition,
recall that Example 1 shows passing monadic distality from a theory to its
universal part is not in general automatic.

Proposition 3.8. Let C be a hereditary class of relational structures. Then
the following are equivalent.

(1) Th(C)∀ is monadically distal.
(2) Th(C)∀ is distal.
(3) Th(C) is monadically distal.
(4) Th(C) is distal.
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Proof. For the equivalences (1) ⇐⇒ (2) and (3) ⇐⇒ (4), note that if the
theory T in question is distal then it is NIP, and thus monadically NIP by
[8, Theorem 4.6]. Thus T is monadically distal by Corollary 3.3.

Clearly (1)⇒ (3), so we show (3)⇒ (1). Suppose Th(C)∀ is not monadi-
cally distal. If it is not monadically NIP, then neither is Th(C) by [8, Proposi-
tion 2.5], and we are finished, so assume it is monadically NIP. By Proposition
3.2, there is some M |= Th(C)∀ containing an infinite totally indiscernible set
I = { ai | i ∈ ω }. By induction on quantifier complexity, any finite subset
of I considered as structure is still totally indiscernible. Thus C contains
arbitrarily large totally indiscernible sets, and so by compactness Th(C)
has a model containing an infinite totally indiscernible set, contradicting
distality. �

Lemma 3.9. Let C be a hereditary class of relational structures. Then the
following are equivalent.

(1) Th(C) is monadically distal
(2) For every monadic expansion C+ of C, Th(C+) is distal

Proof. (1)⇒ (2) Let C+ be a monadic expansion of C, i.e., a class where every
element is a monadic expansion of some element of C. Let M+ |= Th(C+)
and let M be the reduct of M+ to the language of C. Then M |= Th(C) is
monadically distal, so Th(M+) is distal.

(2)⇒ (1) Let M |= Th(C) and let M+ be an arbitrary monadic expansion
of M to an L+-structure. Let C+ consist of all L+-structures N+ whose
L-reduct is in C. As C is hereditary, so is C+. Also, since M |= Th(C)∀, it
follows that every finite L+-substructure N+ ⊆ M+ is an element of C+.
Thus, M+ |= Th(C+)∀. But Proposition 3.8, combined with (2), implies that
Th(C+)∀ is distal, so Th(M+) is distal as required. �

Distality in hereditary classes very restrictive; for example, Ramsey’s
theorem implies that no hereditary graph class is distal. Since many of
the good combinatorial properties of distal classes are preserved by passing
to reducts, this motivates considering classes that have a distal expansion.
As with distality, we are faced with choices about how much uniformity to
require: we could ask only that every model of Th(C) admit some distal
expansion, or that there is a single expansion of Th(C) with single uniform
strong honest definition for every formula, or that there is an expansion C+

of C such that Th(C+) is distal. There seems to be little reason to think
these equivalent, but we will use the following implication.

Lemma 3.10. Let C be a class of relational L-structures. If C admits an
expansion to a class of L+-structures C+ so that Th(C+)∀ is distal, then
every model of Th(C)∀ admits a distal expansion to a model of Th(C+)∀.

Proof. Let M |= Th(C). Consider the theory given by the atomic diagram
of M together with Th(C+)∀. This is finitely satisfiable as witnessed by
structures in C+, and so has a model N+, which embeds an L+-expansion
M+ of M . Then M+ |= Th(C+)∀ is distal. �
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Lemma 3.11. Let C be a class of structures such that Th(C) is monadically
NIP. If the structures in C admit a ∅-definable linear order, then T is distal.

Proof. Since C is monadically NIP, it is dp-minimal. Since the structures in
C are ∅-definably linearly ordered, they are distal by [24, Example 9.20]. �

We thus have a dichotomy for monadically NIP hereditary classes: either
the structures in C admit an order-expansion (i.e., a class where every
element is an expansion of some element of C by a linear order) that remains
monadically NIP, which is also a distal expansion, or no distal expansion of
C can have a ∅-definable linear order. In the case where C consists of binary
relational structures, the classes that admit an order-expansion remaining
monadically NIP coincides with the classes of bounded twin-width. The
twin-width of a binary structure has a combinatorial definition (see [6]) that
we will not use except in Example 2, and a class C has bounded twin-width
if there is a uniform finite bound on the twin-width of all members.

Lemma 3.12. Let C be a class of finite binary structures. Then C has
bounded-twin width if and only if C admits an order-expansion C< that is
monadically NIP.

Proof. Since bounded twin-width and monadic NIP are both preserved by
closing under substructure, we may assume that C and C< are hereditary. By
[5, Theorem 3], a hereditary class of ordered binary structures is monadically
NIP if and only if it has bounded twin-width.

(⇒) Suppose C has bounded twin-width. Then it admits an order-
expansion C< with bounded twin-width (see [25, Fact 2]). Then C< is
monadically NIP, and thus so is C.

(⇐) Suppose C admits a monadically NIP order-expansion C<. Then C<
has bounded twin-width, which is preserved by reducts, so C has bounded
twin-width. �

Classes with bounded twin-width include, for example, the class of planar
graphs, and more generally every graph class determined by forbidden minors
(other than the class of all graphs) [6]. The second part of the following
result generalizes [22], which showed a strong honest definition for the edge
relation, although [22] also gives an explicit bounds (as a function of the
twin-width) on the complexity of the cell decompositions arising from the
honest definition, which we do not.

Putting together the various results of this section, we obtain the following.

Theorem 3.13. Let C be a hereditary class of binary relational structures
with bounded twin-width. Then C admits a distal order-expansion, and thus
so does every model of Th(C)∀. In the distal order-expansion of C, every
formula admits a strong honest definition.

Proof. Let C be as assumed, and let C< be an order-expansion that is monad-
ically NIP. By [8, Proposition 2.5], every model of Th(C<)∀ is monadically
NIP and so is distal by Lemma 3.11. By Lemma 3.10, every model of Th(C)∀
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admits a distal order-expansion. Since Th(C<) is distal, every formula admits
a strong honest definition by Lemma 3.7. �

Corollary 3.14. Let G be an infinite planar graph. Then G admits a distal
order-expansion.

The distal expansion of such an infinite G is produced only by compactness,
so in general even if we explicitly know the distal order-expansion of Age(G),
we do not explicitly obtain the distal order-expansion of G. However, in some
cases we can obtain an explicit expansion, such as in the following example.

Example 2 (A distal expansion of the everywhere infinite forest). We
produce a distal expansion of the everywhere infinite forest, i.e. of the theory
of an infinite acyclic graph where every point has infinite degree. For a
finite forest, it is easy to describe a contraction sequence witnessing bounded
twin-width (see [3, Lemma 5]), which can be used as described in the proof
of [25, Fact 2] to construct the following distal order-expansion for the class
of finite forests. Each finite tree is ordered by choosing an arbitrary root,
and then linearly ordering the vertices so that they satisfy the following
condition (∗): for every vertex x, for each child y of x, the set of consisting
of y and its descendants form a convex set in the order. A finite forest is
then ordered by separately ordering each tree to satisfy (∗), and then making
each tree a convex set. We can choose an arbitrary root for each tree in the
everywhere infinite forest and then construct from the root upwards a dense
linear order that satisfies (∗), and completing the order to make each tree
convex. This will be a distal expansion, since the induced order on every
finite substructure will be as described above.

Note that the proof that this is a distal expansion is reduced to combina-
torics on finite forests, and does not rely on fine analysis of definability or
indiscernible sequences in the infinite model.

Since distality is supposed to capture order-like behavior, it may be that
the second possibility in the dichotomy discussed above never occurs for a
class C admitting a distal expansion (i.e. it cannot be that no distal expansion
of C has a definable linear order). In the case of binary structures, this would
yield a converse to the previous theorem, showing every hereditary class
admitting a distal expansion must have bounded twin-width.

Question 1. Let C be a hereditary class of relational structures. If C admits
an expansion C+ such that Th(C+) is distal, can we take the additional
relations in C+ to be solely a linear order (equivalently, to include a linear
order)?

This raises a related question in the setting of complete theories.

Question 2. Let T be a complete theory and T+ a distal expansion of T .
Does T+ admits an order-expansion that remains distal (or at least NIP)?
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4. Not interpreting an infinite group

In this section, we show a strengthening of the statement that if T is
monadically NIP, then T does not interpret an infinite group. We then
use this to show the existence of a (monadically) stable theory that has no
distal expansion but does not interpret an infinite group. We begin with the
following weakening of the notion of interpretation.

Definition 4.1 ([26]). Let M,N be structures (in possibly different lan-
guages). Let τ : N → Mm be an injection. We say that M trace defines
N (via τ) if for every N -definable subset X of Nn there is an M -definable
subset Y of Mmn such that:

for all a1, . . . , an ∈ N, (a1, . . . , an) ∈ X ⇐⇒ (τ(a1), . . . , τ(an)) ∈ Y
Let T, T ∗ be theories. Then T trace defines T ∗ if every T ∗-model is trace

definable in a T model, and T trace defines M if some T -model trace defines
M .

In particular, if M interprets N then M trace defines N . However, if
M trace defines N via τ : N → Mm, then the image τ [N ] need not be a
definable subset of Mm.

In [26], it was conjectured that monadically NIP theories cannot trace
define an infinite group. We confirm this with the following more general
result.

Definition 4.2. Let (G, ·) be a set equipped with a binary function. Then
(G, ·) is a cancellative magma if it satisfies the following conditions: for every
a, b ∈ G, there is at most one x ∈ G such that a · x = b and at most one
y ∈ G such that y · a = b.

The notion of dp-rank is characterized in [24, Theorem 4.18], and dp-
minimality corresponds to the case of dp-rank 1. The only result about finite
dp-rank that we need will be recalled within the following proof.

The following argument is similar to that given in [15, A.6.9] that a colored
linear order cannot interpret an infinite group (first given in [21], in the more
general setting of “local theories”).

Proposition 4.3. Let T be a theory with finite dp-rank and endless in-
discernible triviality. Then T does not trace define an infinite cancellative
magma.

Proof. Let M |= T and suppose M trace defines an infinite cancellative
magma (G, ·) via τ : G → Mn. Let M+ be the expansion of M by an n-
ary relation R naming τ(G). By passing to an elementary extension (and
renaming M and G), we may suppose there is an indiscernible sequence
I = (āi ∈ R(M+) : i ∈ Q). We now return to working in the original
language.

Since T has finite dp-rank, there is some fixed K ∈ ω, depending only
on n and the dp-rank of the theory, such that for every p̄ ∈ Mn, there is
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a finite subset F ⊆ R with |F | < K such that in the induced partition of
Q \ F =

⊔
{ Ii | i ≤ |F | } into open convex sets, each of the subsequences

Ii := (āq : q ∈ Ii) is indiscernible over p̄.
Let b̄ ∈ τ(G) correspond to the product (((ā1 · ā2) · ā3) · . . . · āK). From

above, find a finite subset F ⊆ R with |F | < K for this b̄ and choose an
integer i∗, 1 ≤ i∗ ≤ K with i∗ 6∈ F . Choose an open interval J ⊆ Q for which
J ∩ { 1, . . . ,K } = { i∗ } and for which J := (āj : j ∈ J) is indiscernible
over b̄. Since I was chosen to be indiscernible over ∅, J = (āj : j ∈ J) is
indiscernible over { āq | q 6∈ J }. By endless indiscernible triviality, J would
be indiscernible over b̄ ∪ { āi | 1 ≤ i ≤ K, i 6= i∗ }. But this is impossible.
Choose any j ∈ J \ { i∗ }. It follows from the indiscernibility that b̄′, which
is the same product but with āi∗ replaced by āj , must be equal to b̄. By
two applications of cancellation, we would obtain āj = āi∗ , which is a
contradiction. �

Corollary 4.4. If T is a monadically NIP theory, then T does not trace
define an infinite cancellative magma.

We remark that monadically NIP theories can have non-trivial binary
functions, so long as they are not cancellative. For example, the theory of
dense meet-trees in [24, Section 2.3.1] is monadically NIP by [18].

The following characterizes which o-minimal theories are monadically NIP.
It is noteworthy that for this class of theories, indiscernible triviality and
endless indiscernible triviality coincide.

Definition 4.5. An o-minimal structure (M,<, . . . ) whose ordering is dense
is non-trivial if there is a non-empty open interval I ⊆M and a definable,
continuous function f : I×I →M that is strictly monotone in both variables.

Proposition 4.6. The following are equivalent for a complete, o-minimal
theory T whose underlying order is dense.

(1) T is trivial.
(2) T has indiscernible triviality.
(3) T has endless indiscernible triviality.
(4) T is monadically NIP.

Proof. (1) ⇒ (2) Suppose that T is o-minimal and trivial. It follows from
Lemmas 2.1 and 2.2 of [17] that T is binary, i.e. for every M |= T , the
type of any n-tuple of elements is determined by the union of the types
of its 2-element subsequences. Clearly, any binary theory T must satisfy
indiscernible triviality.

(2) ⇒ (3) is immediate. As T is o-minimal, it is dp-minimal, and so
(3)⇒ (4) follows from Theorem 2.12.

(4) ⇒ (1) Assume that (1) fails, i.e., there is a model M |= T and a
definable, continuous function f : I2 →M that is strictly monotone in both
variables. There are two arguments to show that T is not monadically NIP.
On the one hand, note that one can construct, element by element, an
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infinite G ⊆ I for which f�G2 is 1-1. [If Gn ⊆ I is finite and f�G2
n

is 1-1, then
f�(Gn∪{g})2 is 1-1 for all but finitely many g ∈ I.] This directly describes a
tuple-coding configuration as in Definition 2.11, contradicting monadic NIP.
Alternately, quoting Theorem 1.1 of [19], we see that M trace defines an
infinite group, hence T is not monadically NIP by Corollary 4.4. �

We now turn to the existence of a monadically stable theory with no
distal expansion that does not interpret an infinite group. This example
seems to be folklore to some extent ([16] credits Pierre Simon with asking for
the relevant graph class), and for its analysis it is already enough to know
that monadically stable theories have trivial forking [2]. But since it has
not appeared explicitly in the literature, we record it here as a corollary of
Corollary 4.4.

Definition 4.7. Let C be a class of graphs. Then C is somewhere dense
if for some d, there are d-subdivisions of arbitrarily large complete graphs
appearing as (not necessarily induced) subgraphs of graphs in C. Otherwise,
C is nowhere dense. We will say a single infinite graph G is nowhere dense if
{G } is.

In [20], it is shown that if G is nowhere dense (there called superflat), then
it is monadically stable. We now introduce a combinatorial condition that is
necessary for M to have a distal expansion [12, Corollary 4.10].

Definition 4.8. Given a class of structures C and a formula φ(x̄, ȳ), we
say φ has the strong Erdős-Hajnal property in C there is a fixed δ > 0
such that for every M ∈ C and finite A ⊂ M |x̄|, B ⊂ M |ȳ|, there are
A′ ⊂ A,B′ ⊂ B such that |A′| ≥ δ|A|, |B′| ≥ δ|B| and either A′×B′ ⊂ φ(M)
or (A′ ×B′) ∩ φ(M) = ∅.

Lemma 4.9 ([16, Theorem 50], [9, Proposition 5]). There is a nowhere
dense class of finite graphs R such that the edge relation does not have the
strong Erdős-Hajnal property.

We remark that the class constructed in [16, Theorem 50] comes from tak-
ing expander graphs of increasing expansion, while the class in [9, Proposition
5] comes from a probabilistic construction.

Corollary 4.10. There is a monadically stable theory without a distal ex-
pansion that does not trace define an infinite cancellative magma (so in
particular, does not interpret an infinite group).

Proof. Let R be a graph class as in Lemma 4.9, let tR be the disjoint union
of the graphs in R, and let T := Th(tR). Then tR is nowhere dense,
and so T is monadically stable, and so does not trace define an infinite
cancellative magma by Corollary 4.4. The edge relation in tR also does not
have the strong Erdős-Hajnal property, and so T does not admit a distal
expansion. �
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