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Abstract

For a countable, complete, first-order theory 7', we study Atr, the class of atomic
models of T'. We develop an analogue of U-rank and prove two results. On one hand,
if some tp(d/a) is not ranked, then there are 2™ non-isomorphic models in Aty
of size N;. On the other hand, if all types have finite rank, then the rank is fully
additive and every finite tuple is dominated by an independent set of realizations of
pseudo-minimal types.

For a countable, complete first order theory 7', a model M is atomic if tp(a) is princi-
pal, i.e., is generated by a complete formula for every finite tuple a from M. In this paper,
we continue our investigations of dichotomies among classes At of atomic models of a
countable, complete, first-order theory 7". One reason for studying such classes relates to
complete sentences of L, . Itis well known, see e.g., [Bal09, §6] that for every complete
L., .-sentence @, there is a complete first-order theory 7" in a possibly larger countable
language such that the reducts of models of ® are in 1-1 correspondence with the atomic
models of 7.
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We wish to develop a classification theory for atomic classes At akin to the work of
the third author concerning M od(T") for complete, first order 7". In the first-order context,
a fundamental dividing line is superstability. The third author proved that if 7" is unsuper-
stable, then Mod(T') contains 2" non-isomorphic models of size « for each uncountable
cardinal x. On the other hand, if T" is superstable, then models of 7" admit a desirable
independence relation, non-forking. From this, one can measure the forking complexity
of a type by assigning ranks to the space of types, e.g., R*°(p) or U(p). These ranks allow
one to prove structural results for Mod(T") by way of inductive arguments on the space of
types.

When one is only considering the class Aty of atomic models of 7', the usual dividing
lines are not relevant and the test questions need to be altered. It is notable that in the
context of atomic models, even (first order) stability is not relevant. See, for example, Ex-
ample 2.4. There, ' = T'h(N) is not stable in the first order context, yet At has a unique
atomic model in every infinite cardinality. Worse, as the Upward Lowenheim-Skolem
theorem can fail for atomic models, asking for many atomic models in all uncountable
cardinalities may well be meaningless; e.g. if there are models only up to N;. However,
by classical results of Vaught, an atomic model of size N, exists if and only if the (unique)
countable atomic model is not minimal. Thus, it is natural to call an atomic class At
unstructured if it contains 2%! non-isomorphic atomic models, each of size X, and then to
ask what effect does ‘structured’ have on its countable models.

In this paper, we introduce and develop a rank, rk(d/a), on all finite tuples d, a from
a fixed countable atomic model N and with Theorem 5.4.2 we prove that if if Aty is
structured (fewer than 2™ non-isomorphic atomic models of size X;) then rk(d/a) exists
for all d,a C N. Our rank rk is similar to U-rank, which, in the first order context, is
the foundation rank on the space of complete types, which are tree ordered by the relation
p < q iff g 1s a forking extension of p. In first order, a theory is superstable if and only if
U(p) is ordinal valued for every complete type p.

Our rank can also be viewed as a foundation rank of types tp(d/a) with respect to
the relation of ‘an extension making some element pseudo-algebraic.” However, because
rk(d/a) is determined by tp(d/a), which is generated by a complete formula, we ad-
ditionally get that our rank is continuous, which is not generally true of U-rank in first
order, superstable theories. For such theories, an alternate rank is R°°-rank, but it is
a rank on formulas as opposed to types. Its natural generalization to types, given by
R>*(p) = min{R>(0) : § € p} is only semi-continuous. It is pleasing that our rank pos-
sesses both of the desirable properties of R*°-rank and U-rank — it is a rank on types that
is fully continuous and is a foundation rank of a natural extendibility property.

The new rank is defined in Section 2, with the salient features developed in Sections 3
and 4. The main results are stated explicitly in Theorem 2.5, but here is a summary. We



prove semantic equivalents of the rank in terms of the existence of certain chains, which
shows that rk(d/a) = 0 and rk(d/a) = 1 are equivalent to being pseudo-algebraic and
pseudo-minimal, respectively. Continuing upward, we see that ‘having rank n < w is
extendible,’ i.e., if rk(d/a) = n, then for every type ¢ € S,;(a) there is some b realizing
q with rk(d/ab) = n. This result implies that among finitely ranked atomic classes, the
rank is fully additive. Using this additivity, we conclude that any finite set is dominated
in some sense by an independent sequence of psuedo-minimal types. Collectively, these
results show that finitely ranked atomic classes Aty are similar to finitely ranked super-
stable theories in the first order context. Finally, in Section 5, we prove our main result,
Theorem 5.4.2. Its rather lengthy argument shows that the assumption of ‘few atomic
models in N;’ implies that the class Aty is ranked. Even though the theorem is proved in
ZFC, heavy use is made of certain forcing constructions.

1 Context

En route to proving a first order theory 7' is categorical in ¥, is categorical in all uncount-
able cardinalities, Morley [Mor65], Morley exploited the upwards Lowenheim-Skolem
theorem. He applied the Erdos-Rado theorem to deduce that the unique model in X; can
be represented as an Ehrenfeucht-Mostowski over the cardinal ¥; and concluded that the
theory admitted only countably many types over a countable set. He called this property
totally transcendental, now usually called w-stable. Shelah later extended this result under
the set theoretic hypothesis 2% < 2%+ by showing a complete L, ,-sentence that is
categorical in all infinite cardinals below X, is excellent and consequently, has arbitrarily
large models and is categorical in all uncountable cardinalities.

As described in [BLS16], [She83], and [Bal09, Chapter 6], the models of such a sen-
tence can be thought of as the atomic models (all finite sequences in each model realize a
principal type) of a first order theory; we work here with that assumption.

[She83, She09] proved (See also [Bal09, Chapter 17]):

Fact 1.1 (Martin’s Axiom). There is a sentence 1) in L(Q)) with the joint embedding prop-
erty that is k-categorical for every k < 280, In ZFC one can prove 1) is R-categorical but
the associated AEC has neither the amalgamation property in N, nor is w-stable.

L(Q) is first order logic extended by the quantifier, ‘there exists countably many’.
Shelah proposed a variant to get such a counterexample in L, ,,; however, there was a
gap. This article is part of a more than 20 year effort to fill the gap or, mostly, to prove
no such example exists by showing N;-categoricity implies w-stability; the existence of a
model in 3] is state of the art in that direction [BLS24]. This particular paper is in the



midst of those alternatives: establishing the existence of a rank analogous to the U-rank in
superstable theories from the assumption that there are few (atomic) models in N;.

The hope was to show that any ranked sentence has a model in the continuum, but
sadly that goal remains unattained.

2 The new rank and statements of the main results

Throughout this section, fix a complete theory 7" in a countable language and assume there
is a countable atomic model N that is not minimal. So long as we restrict to complete types
of finite tuples over finite subsets of [NV, N serves as a ‘monster model’. For every finite
a, N realizes all types over a, and moreover N is homogeneous — if a, b, ¢ are finite tuples
from N with tp(a/c) = tp(b/c), then there is an automorphism o € Aut(N) fixing ¢
pointwise with o(a) = b.

Throughout Sections 2-4, we assume all finite tuples are from this countable,
atomic model N.

We recall a definition from [BLS16, §2].

Definition 2.1. We say d is in the pseudo-closure of a, d € pcl(a), if every model M < N
containing a also contains d. For a finite tuple a, pcl(a) = {d € N : d € pcl(a)} and for
A C N any set, pcl(A) = J{pcl(a) : a € A finite}.

A complete type p € S(a) is pseudo-algebraic if d € pcl(a) for some (equivalently
every) d realizing p.

As we are assuming /V has a proper elementary substructure, psuedo-closure is not
degenerate, i.e., N # pcl(0).

Definition 2.2. In [BLS16], a type p = tp(d/a) is pseudo-minimal if d ¢ pcl(a) and for
every b, ¢, if ¢ € pcl(abd) \ pcl(ab), then d € pcl(abe).

We say that the pseudo-minimal types are dense if, for every non-pseudo-algebraic
p = tp(d/a), there is some a* such that tp(d/aa*) is pseudo-minimal.

Definition 2.3. Let P denote the set of all types tp(d/a) for finite tuples a,d C N. As N
is atomic, every p € P is principal.

We define a rank rk : P — ON U {oo} by induction on « requiring for any finite
sequence a :

o 1k(d/a) > 0

e rk(d/a) > a > 0if and only if for every r(y) € S.:(a) and for every < «, there
exist tuples a’, b, ¢ from N such that



1. tp(d'/a) =,
2. rk(tp(d/aa’bc)) > (; and
3. ¢ € pcl(daa'b) \ pcl(aa'b).

e For an ordinal o, rk(p) = a if rk(p) > a, but rk(p) # a + 1.
e Call Aty ranked if rk(p) is ordinal-valued for every p € P.
e Call At finitely ranked if rk(p) < w for every p € P.

Observe that d € pcl(a) if and only if rk(d/a) = 0. While the ranks are on complete
formulas, not all formulas have been ranked. To remedy this we can define rk(p(z,a)) =
sup{rk(p) : ¢(z,a) € p € P}. The following example may give some intuition.

Example 2.4. Let L = {A, B, 7, <} and let N be the L-structure where A and B partition
the universe with B infinite, 7 : A — B is a total surjective function and (771(b), <) =
(Z, <), with a £ o’ whenever m(a) # m(a’). Then N is an atomic model of 7" = Th(N),
and any M | T will be atomic if and only if (7~(b), <) = (Z, <) for every b € B.

Now choose elements a,b € N such that 7(a) = b. Clearly, a is not algebraic over b
in the classical sense, however they are “equi-pseudo-algebraic” i.e., b € pcl(a) (trivially)
and a € pcl(b).

In terms of ranks, note that pcl(()) = 0, so for any e € N, rk(e/()) > 1. For a, b with
7(a) = b, rk(a/0) = rk(b/0) = 1 and both of these types are pseudo-minimal. However,
rk(a/b) = rk(b/a) = 0. Here, Aty is categorical in every infinite power and is finitely
ranked. To give an example of a structure of rank 2, add an equivalence relation £ and
insist that each class is a model of the current example.

We will prove four main results about this rank:

Theorem 2.5. Let T' be a complete theory in a countable language for which there is an
uncountable atomic model. Then:

1. (Proposition 3.16) For p = tp(d/a) € P, rk(p) = oo if and only if there is an infinite
sequence of models My < My = --- =< N with a € My and tuples c,, € M, 1 such
that ¢, € pcl(M,d) \ M, for each n.

2. (Theorem 5.4.2) If Aty has < 28t non-isomorphic atomic models of size N, then
Aty is ranked.

3. If Aty is ranked, then: (Corollaries 3.8,3.9, and Proposition 3.11)

(a) The pseudo-minimal types are dense;
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(b) Ifrtk(d/a) = n < w then there is a model M 2 a with tk(d/M) = n;

(c) Among types of finite rank, the rank is fully additive, i.e., tk(de/a) = rk(d/ea)+
rk(e/a) whenever rk(de/a) < w

4. (Proposition 4.4) If At is finitely ranked, then for every pseudo-minimal 0(x), for
every independent tuple ¢ € 0(N)" and every finite b C N, there is a finite h C N
for which ¢ 0-dominates b over h (Definition 4.3).

Note that the main result from [BLS16], that failure of density of pseudo-minimal
types implies the existence of 2% non-isomorphic atomic models of size ¥;, follows im-
mediately from Theorem 2.5.

3 Properties of the rank, chains, and additivity

We first record some properties of the new rank. We begin with two easy monotonicity
results.

Lemma 3.1. Suppose dy C d and a C a* are from N. Then:
1. tk(dy/a) <r1k(d/a); and
2. tk(d/a*) < 1k(d/a).

Proof. (1) is easy and is left to the reader. For (2), we prove that for any ordinal «,
rk(d/a*) > o + 1 implies rk(d/a) > « + 1, which suffices. Suppose rk(d/a*) > o + 1.
Choose any r € S,;(a) and any realization aq of r. Let r* := tp(ag/a*). As rk(d/a*) >
a + 1, choose a realization @’ of 7* and b, ¢ such that rk(d/a*a’bc) > «, ¢ € pel(a*a’bd) \
pcl(a*a’d). Put b’ := a*b. As a’'l = a’a*b (as sets), a’, V', ¢ satisfy @’ = r, rk(d/a’bc) > a,
and ¢ € pcl(a’b'd) \ pcl(a't'). Thus, rk(d/a) > a + 1. O

The following two Lemmas establish that the rank is continuous.

Lemma 3.2. For any ordinal o, ifrk(d/a) = «, then forall < a thereis f*, f < f* < «
and e C N such that vk(d/ae) = *.

Proof. First, since rk(d/a) # a + 1, choose some r € Sy;(a) for which there do not exist
a',b,c from N such that o’ realizes r, rk(d/aa’bc) > « and ¢ € pcl(ad’dbd) \ pcl(aa'd).
Now choose < «. By the definition of rk(d/a) > « applied to 5 and the r from above,
there are a’, b, ¢ such that o’ realizes r, ¢ € pcl(aa’bd) \ pcl(aa’b), and rk(d/aa’bc) > 5.
Take e := a’bc and 5* := rk(d/ae). O



Lemma 3.3. For any ordinal «, if tk(d/a) = «, then for every -y < « there is some b C N
such that rk(d/ab) = .

Proof. We prove this by induction on «. For av = 0 there is nothing to prove, so fix o > 0
and assume the statement holds for all 5 < «. Choose any 7 < « and apply Lemma 3.2
to get e C N such that rk(d/ae) € [, «). If rk(d/ae) = v we are done. Otherwise, apply
the inductive hypothesis to rk(d/ae) to get b* such that rk(d/aeb*) = ~. Then b := eb* is
as required. L

Proposition 3.4. . There is some countable ordinal v* such that, for all finite d,a C
N, ifrk(d/a) > ~v*, then tk(d/a) = oo. If tk(d/a) > wy, then rk(d/a) = oc.

2. Iftk(d/a) = oo, then

(a) Foranyr € Sy (a) there is o' realizing r with tk(d/aa’) = oo; and
(b) There are b*,c C N with ¢ € pcl(ab*d) \ pcl(ab*) with rk(d/ab*c) = oo.

Proof. (1) Let I be the image of the rank function rk : P — ON U {c0}. By Lemma 3.3
I'\ {oo} is downward closed and is countable since P is. Thus, I \ {co} = ~ for some
countable ordinal . Then v* := ~y + 1 satisfies (1).

(2) Suppose rk(d/a) = oo. Then rk(d/a) > v* + 1 for v* as in (1). It follows from the
definition of rk(d/a) that for every r € S,;(a) there are @, b, ¢ in N such that o’ realizes r,
¢ € pcl(aa’bd) \ pcl(aa’d), and tk(d/aa’bc) > ~v*. Then rk(d/aa’) > rk(d/aa’bc) > ~v*,
sork(d/aa’) = oo, satisfying (2a). For (2b), take b* := a’b. O

3.1 Finite and infinite chains

We begin with a notational extension of our rank function and show that rk(d/a) > n can
be characterized by a certain finite chain of submodels of N.

Definition 3.5. Suppose A C N is infinite. For d C N finite, say rk(d/A) := min{rk(d/a) :
a C A finite}. In particular, rk(d/A) = oo if and only if rk(d/a) = oo for all finite a C A.

Proposition 3.6. For all n € w, for all finite d,a C N, tk(d/a) > n if and only if there is
a chain My < My = --- 2 M,, = N with a C My and pcl(M;d) N (M1 \ M;) # 0 for
all v < n.

Proof. By induction on n. This is trivial when n = 0, so assume the result for n. First,
assume rk(d/a) > n + 1. Take r(y) := ‘y = o/, § = n, and choose d’, b, ¢ such that
realizes r (hence o’ = a), rk(d/abc) > n, ¢ € pcl(abd) \ pcl(ab). Apply the inductive
hypothesis to tp(d/abc) to get My < --- < M, = N with abc C M, and pcl(M;d) N
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(M1 \ M;) # 0 forall i < n. Since ¢ & pcl(ab), there is M_y < My with ab C M_4, but
c € Mo\ M_q. As ¢ € pcl(abd), we have ¢ € pcl(M_1d),so M_1 < My < --- X M, =
N is a requisite chain of length n + 1.

Conversely, assume a chain My < -+ < M, = N satisfies a C M, and pcl(M;d) N
(M1 \ M;) # 0 forall i < n+ 1. To see that rk(d/a) > n + 1, choose any r € Sy(a).
Choose any a' € M, realizing r. From our assumption on the chain, choose ¢ € M; \ M,
with ¢ € pcl(Mod). Choose a finite b C M, such that ¢ € pcl(aa’dd). As ¢ ¢ M,,
¢ ¢ pcl(aa’b). However, aa’bc C M and the n-chain M; < --- < M, = N satisfies
pcl(M;d) N (M1 \ M;) # 0 forall 1 < i < n+ 1. Thus, rk(d/aa’bc) > n by our
inductive hypothesis. The above witnesses that rk(d/a) > n + 1, so we are done. []

Proposition 3.6 has many corollaries. The first indicates that the adjectives of pseudo-
algebraic and pseudo-minimal occur naturally.

Corollary 3.7. Suppose d,a C N are finite sets. Then:
1. tk(d/a) = 0 if and only if tp(d/a) is pseudo-algebraic; and
2. tk(d/a) = 1 if and only if tp(d/a) is pseudo-minimal.

Proof. (1) Note that rk(d/a) = 0 iff rk(d/a) # 1 iff there does not exist M < N with
aC M,dZ M iff tp(d/a) is pseudo-algebraic.

(2) First, suppose rk(d/a) = 1. By (1), rk(d/a) is not pseudo-algebraic. To see
that tp(d/a) is pseudo-minimal, choose any ¢ € pcl(da) \ pcl(a), and assume by way
of contradiction that d ¢ pcl(ac). Since d ¢ pcl(ac), choose M; < N with ac C d,
but d € M. Also, since ¢ & pcl(a), there is My < M; with a C M,, but ¢ € M,.
Then the 2-chain (M, My, N) witnesses that rk(d/a) > 2. Conversely, assume tp(d/a)
is pseudo-minimal and we show there cannot be a 2-chain M, < M; < N with a C M,
and ¢ € M, \ M, with ¢ € pcl(Mod) \ M. If there were, then taking any finite b C M, for
which ¢ € pcl(bd), the elements «, b, ¢, d contradict the pseudo-minimality of tp(d/a). [

Corollary 3.8. If Aty is ranked, then the pseudo-minimal types are dense.

Proof. Choose any d,a C N such that tp(d/a) is not pseudo-algebraic. Since rk(d/a)
exists, by Corollary 3.7, rk(d/a) > 1. By Lemma 3.3 there is b C N such that rk(d/ab) =
1, hence tp(d/ab) is pseudo-minimal. O

Finally, we see that finitely ranked types can be extended to types over models with
the same rank.

Corollary 3.9. Suppose rk(d/a) = n < w. Then:



1. Foranyr € S,(a) there is a' realizing r such that rk(d/aa’) = n.
2. There is a model M < N witha C M and rk(d/M) = n.

Proof. (1) Using Proposition 3.6, choose an n-chain My < ... M, = N with a C M, and
pel(M;d) N (M1 \ M;) # 0 for all i < n. Choose any a’ € r(Mj). Then the same chain
demonstrates that rk(d/aa’) > n. Hence rk(d/aa’) = n by Lemma 3.1.

(2) follows immediately by iterating (1) w times. O

3.2 Additivity

Lemma 3.10. Suppose X is finite and tp(d/X) < w. If ¢ € pcl(dX) \ pcl(X), then
rk(d/Xc) < rk(d/X).

Proof. Say rk(d/Xc) = n and choose an n-chain My < ... M, = N with Xc¢ C M,
and pcl(M;d) N (M1 \ M;) # 0 for all i < n. Since ¢ € M but ¢ € pcl(X), choose
M_y < My with X C M_; and ¢ € My \ M_;. This gives an (n + 1)-chain for tp(d/X),
hence rk(d/X) > n+ 1. O

Note that the same result holds when X is infinite as well (so long as the ranks are
finite).

Proposition 3.11. Suppose a,d,e C N are finite.
1. If tk(e/a) = k and vk(d/ae) = { are both finite, then rk(de/a) = k + {, so in

particular is finite.
2. Iftk(de/a) < w, thenrk(de/a) = rk(e/a) + rk(d/ae).

Proof. (1) Choose any n € w such that rk(de/a) > n and we argue that n < k + . To see
this, choose an n-chain My < --- < M,, = N witha C My and pcl(M;de)N(M; 11\ M;) #
() for all i < n. We argue by induction on 7 that

rk(e/M_;) + tk(d/M,_e) > i

for all 0 < ¢ < n. For ¢+ = 0 this is obvious, so assume it holds for ¢+ < n and we show this
fori+ 1. Let j = n—¢— 1. Choose ¢ € (M1 \ M;) Npcl(de/M;). There are two cases.
If ¢ € pcl(eM;) \ M; then by Lemma 3.10, rk(e/M;) > rk(e/M;11). On the other hand,
if ¢ € pcl(deM;) \ pcl(eM;), then rk(d/eM;) > rk(d/eM ). In either case, the sum is
incremented by at least one.

However, by Lemma 3.1, rk(e/M,) < rk(e/a) = k and rk(d/Mye) < rk(ae) = £. It
follows that n < k + ¢. In particular, n := rk(de/a) is finite. To show that n > k + ¢,
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it suffices to produce an n-chain for tp(de/a). For this, since rk(d/ea) = ¢, find M, <
-+« =X M, with ea € My and pcl(M;d) N (M1 \ M;) # 0 forall ¢ < £.

Next, fix an isomorphism f : N — M, fixing ea pointwise. Since rk(e/a) = k,
there exist M_; < .-+ < My with @ C M_; and pcl(M;e) N (M1 \ M;) # 0 for all
—k < i < 0. The concatenation of these gives a (k + ¢)-chain M_; < ... M, witnessing
that rk(de/a) > k + (.

(2) By monotonicity, if rk(de/a) < w, then both rk(d/ea) and rk(e/a) are finite as
well (and, in fact, are at most rk(de/a)). So we are done by (1). O

We record the following immediate corollary (recall Definition 2.3).

Corollary 3.12. If Aty is finitely ranked then
rk(ab/c) = rk(a/bc) + rk(b/c)
for all finite a, b, c from N.

Next, we consider infinite chains and see that their existence characterizes rk(d/a) =
00. The chains defined here are crucial for the construction of 2% models in ;.

Definition 3.13. Fix tp(d/a) € P. A d/a-chain is an w-sequence ((M;, ¢;) : i € w) with
union M ™ such that

1. a C Mj and ¢; is meaningless;
2. My <X M; < ...M* = N is a nested sequence of (countable atomic) models;
3. ¢ip1 € M1\ M, forevery i € w; and
4. ¢4 € pel(M;d).
A better d/a-chain also satisfies:
5. For every ¢ € pcl(M*d), if rk(d/M*c) = oo, then ¢ € M*; and

6. For every finite ¢ € M*, every non-pseudoalgebraic 1-type g € Sy (e) is realized in
N\ M*.

Note that it follows from Clauses (3) and (4) that d ¢ UiEw M;. With Proposition 3.16
we show that having a (better) d/a-chain characterizes rk(d/a) = co. We begin by defin-
ing finite approximations of a d/a-chain.

Definition 3.14. A d/a-approximation is a sequence e = ((e;, ¢;) : @ € lg(e)) where

10



1. a Cey CN,cy=0andlg(e) < w;
2. ¢4 € pel(e;, d) \ pel(e;); and

3. e U{ci1} Ceins

4. tk(d/eig(e)) = 00.

Lemma 3.15. Given any n > 1 and any d/a-approximation e = ((e;, ¢;) : i € lg(e)) of
length n = lg(e), there is a sequence My < --- = M, _1 < N such that for eachi < n

o ¢, C N, and
® Ciy1 € N;

Proof. By reverse induction. First, since ¢, & pcl(e,_1), there is a (countable, atomic)
model /N,,_; that contains e,,_; but not ¢,,. Next, we work inside N,,_1. As ¢,—1 C e,_1,
¢n-1 € N,_1. Since ¢, & pcl(e,_2), there is IV,,_5, which we can construct inside of
N,,_1, that contains e,,_» but not ¢,,_;. Now continue. ]

The following Proposition is a slight strengthening of Theorem 2.5(1). Better d/a-
chains constitute the Data used in proving Theorem 5.4.2.

Proposition 3.16. The following are equivalent for any tp(d/a) € P.
1. tk(d/a) = oo;
2. A d/a-chain exists;
3. A better d/a-chain exists.

Proof. (3) = (2) is trivial.
(2) = (1): Fix a d/a-chain ((M;, ¢;) : i € w). To show that rk(d/a) = oo, it suffices
to prove that for all ordinals «,

For every finite e C | M;, rk(d/e) > a.

We establish this by induction on «. Fix « and assume that this holds for every § < a.
Fix any finite e C J M;. We directly argue that rk(d/e) > « from the definition of rk.
So fix r € Su(e) and B < «a. Choose n such that e C M,,. Pick any realization a’ of r
in M,,. Since ¢, 11 € pcl(M,d), we can find a finite b C M, such that ¢, ,; € pcl(ea’bd).
Let ¢ = tp(d/ea’bc,41). By our inductive hypothesis, rk(¢) > 3. Thus, rk(d/e) > a by
the definition of rk.
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(1) — (3): Suppose rk(d/a) = oo. Trivially, ((a, ()) is a d/a-approximation of length
1. We will construct a d/a-chain satisfying Clause (5) of Definition 3.13 in w steps and
then modify it to obtain Clause (6) as well. To get the first part, it suffices to show that any
d/a-approximation can be extended in each of three ways.

Extending the sequence

Fix any d/a-approximation e of length n. In order to get a d/a-approximation of length
(n + 1) extending e, first note that rk(d/e,_1) = oc. Thus, taking r = ) (or, if you prefer,
let 7(y) := ‘y = el,_,) there are b, ¢ such that ¢ ¢ pcl(e,_1b), but ¢ € pcl(e,_1bd), and
rk(d/e,—1bc) = 0o. So, lete;, ;| = e, 1band e;, = e, _1bc (with e}, = e; forall j < n—1).

Enlarging ¢; one step toward a model
Fix any d/a-approximation e = ((e;, ¢;) : i € 1g(e)) of length n = lg(e). Choose any
J < nand fix any consistent formula ¢(z, ;). We will produce a larger d/a-approximation
e’ where ¢’ contains a realization of p(z, ¢;). To do this, first choose a sequence of models
Ny C Ny C---C N, jasinLemma 3.15. So,¢; C e; C N; and ¢;1; € ;. Next, choose
a* from Nj realizing ¢(z, e;). Let r* = tp(a*/e,—1).
Finally, we apply Proposition 3.4(2) to get @/, b, ¢ with «’ realizing r* and rk(d/e,_1a'bc) =
oo. Let ¢ = tp(d/e,—1a’) be the restriction, which also has rk(g) = co. Now, for i < j,
let e = e;, while €] = e;a’ forall j <i < n.

One step toward Clause (5) of Definition 3.13

Fix any d/a-approximation e = ((e;,¢;) : ¢ € lg(e)) of length n = lg(e), and
choose any ¢ € pcl(e,—1d). If rk(d/e,_1¢) < oo, then do nothing at this stage. But if
rk(d/e,_1c) = oo, then affix ¢ to e,,_; and continue.

By dovetailing these three processes, we can construct a d/a-chain ((M,,, ¢,) : n € w)
satisfying Clause (5) in w steps. To obtain Clause (6), Let M* = | J{M,, : n € w}. As M*
is countable and S,;(b) is countable for every finite tuple b from M*, there is a countable,
atomic model N’ > N such that for every finite b € M* every non-pseudoalgebraic
q € Su(b) is realized in N' \ M*. As pcl(Z, N) = pcl(Z, N') for all sets Z C N, we see
that (M,, : n € w) and M* is also a d/a-chain satisfying (5) with respect to N’ as well
as with respect to N. Thus, if f : N’ — N is any isomorphism fixing da pointwise, then
(f(M,) :n € w) and f(M™*) are a better d/a-chain in N, as required. O

4 Pseudo-minimal types and finitely ranked classes

Fix a (complete) pseudo-minimal type p € S,:(0)) and assume 6(z) isolates p. Then for
any finite tuple a from /N, the relation of pseudo-closure over a, is an exchange space
on O(N). That is, (§(N),pcl,), where ¢ € pcl,(B) iff ¢ € pcl(Ba) satisfies the van
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der Waerden axioms. This implies there is a good notion of independence, i.e., for any
a and any pcl,-closed C', any two maximal pcl,-independent subsets of C' have the same
cardinality, which we dub the dimension of C' over a. We note the following easy facts
about independent tuples from 6(NV).

Lemma 4.1. Suppose 0(x) is a complete, pseudo-minimal formula and a C N is any finite
tuple.

1. If a finite tuple ¢ C O(N) is independent over a, then there is M < N, with a C M,
butcn M = (.

2. Say © = ¢, N ¢y is any partition, then ¢, is independent over Cyb, hence there is a
model M < N withcsa C M andc; N M = (.

3. Foranyt¢ € O(N)™, € is independent over a if and only if tk(¢/a) = n.

The reader is cautioned, however, that although any two elements of §(/V) have the
same 1-type over the empty set, there can be infinitely many 2-types of independent tuples
in 0(N)?, e.g., if Aty is the class of atomic models of REF(bin), the theory of infinitely
many refining equivalence relations, where each F,, ; partitions each F,-class into two
pieces. Thus, the apt analogue of §(N) is that of a weakly minimal formula in the first
order context. Despite this, we have the following, which follows from the homogeneity
of V.

Lemma 4.2. Suppose a,b C N are finite and ¢ € O(N)" is independent over a. Then
there is© € O(N)" such that tp(¢/a) = tp(¢'/a) and T is independent over ab.

Proof. By Lemma 4.1(1), choose M < N witha € M and ¢ N M = (). Choose an
isomorphism f : N — M with f(a) = a and let ¥’ € M be such that tp(ab) = tp(ab’).
Since ¢ N M = ), ¢ is independent over al/. Choose an automorphism o € Aut(N)
with 0(a) = a and o(b') = b. Then @ := o(¢) is independent over ab and tp(¢'/a) =
tp(¢/a). O

For the remainder of this section, we assume that At is finitely ranked, so we have
full additivity of rank.

Definition 4.3. Suppose b,h C N and ¢ C 0(N). We say ¢ 0-dominates b over h if
1. ¢is independent over h; and

2. Forall¢* C §(N) and all h* O h, if e¢* is independent over h*, then ¢* is indepen-
dent over h*ch.
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Under the assumption that Aty is finitely ranked, the following existence lemma
shows that dominating sets are easily attained.

Proposition 4.4. (At finitely ranked). Suppose b,d C N are finite and ¢ C O(N) is
independent over d. Then:

1. There is a finite h O d such that ¢ 0-dominates b over h.

2. Moreover, if ¢ C 6(N) is initially chosen such that €*C is independent over d, then
we may additionally have ¢°¢C is independent over h.

Proof. (1) Among all finite tuples » C N with i O d and ¢ independent over h, choose

one such that rk(b/hc) is minimized. We argue that ¢ #-dominates b over h. To see this,

choose any @ C O(N) and i/ D h such that ¢¢ is independent over h’. We verify that @

is independent over h'cb by proving that rk(¢'/h'eb) = rk(¢'/h'¢) = lg(¢’). The second

equality is clear, as ¢¢ is independent over i/, but the first equality takes some work.
Note that ¢ is independent over h'?, so the minimality property of h yields

rk(b/h'd'e) = rk(b/h'c)
Now we use additivity of rk, Corollary 3.12, twice. On one hand,
rk(bc /h'e) = rk(b/h'ec) + rk(¢'/h'C)
while on the other hand,
rk(bé' /h'c) = rk(¢' /h'eb) + rk(b/h'C)

Combining these three equalities gives the requisite rk(¢'/h'cb) = rk(¢' /h'c).

(2) Now suppose ¢* is given in advance with ¢*¢ independent over d. By (1), choose
h O d with ¢ f-dominating b over h. This h might not have ¢*¢ independent over h, but we
apply Lemma 4.2 to get one that is. Choose ¢’ C (V) such that tp(¢”/bdc) = tp(¢* /bde)
with ¢ independent over bdch. Note that since ¢ is independent over h, so is ¢’¢.

As they have the same type, choose an automorphism o € Aut(N) such that o [ = id
and o(¢") = ¢*. Put h* := o(h). By the automorphism, ¢*¢ is independent over h*. As
well, h* D d and since tp(¢bh) = tp(cbh*), ¢ f-dominates b over h*. O

We obtain the following Corollary that may be helpful in constructing an atomic model
of size continuum.

Corollary 4.5. (At finitely ranked) Suppose ¢ C O(N) is given, and ¢, b, h, @, b satisfy
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1. ¢ 0-dominates b over h;

¢*C is independent over h;

@ is independent over ¢*heb,; and
tp(¢'b'/h) = tp(cb/h).

Then ¢ is independent over hcbc'b'.

Aowbd

Proof. By (3), @ is independent over ¢*ch, hence by (2),
¢*c’c is independent over h

so by (1), ¢¢ is independent over hch.
As they have the same type, (4) implies that ¢ #-dominates b’ over h. Apply this with
h* := heb givens ¢* independent over hebc'l' . O

S Few atomic models implies ranked

Throughout this section, we assume that Aty is not ranked, i.e., rk(p) = oo for some
p € P. The goal of this section is to prove that Aty contains a family of 2% non-
isomorphic (atomic) models, each of size N;. To begin, we fix the following Data that is
obtained from the existence of a better a* /a chain via Proposition 3.16. (Note that as we
are producing so many models, we may absorb a into the signature so we are left with
a better a*/() chain.) Similarly, we can always add a constant symbol to the language,
thereby assuring that pcl()) # (.

Data 5.0.1. Fix a countable N* € Atx, an elementary chain (M, : n € w) with union
M* < N*, a distinguished element a*, elements c,, € M, 1 \ M, and finite tuples d,,
from M, such that

1. Each c,, € pcl(a*d,,, N*);
2. Foreverye € N*\ M* ife € pcl(M*a*, N*), then rk(a*/M*e) < oo, and

3. For every finite b € M*, every non-pseudoalgebraic q € Sy(b) is realized in N* \
M*,
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Our strategy is similar to the proof of the non-structural result in [BLS16]. In Subsec-
tion 5.1, which is nearly identical with [BLS16, §4.1], we define a family of orders I°,
indexed by stationary/costationary subsets of w; and discuss weakly striated models in-
dexed by such an I°. The forcing (Q;, <) is defined in Subsection 5.2. In Subsection 5.3
we prove Proposition 5.2.2, that verifies that (Q;, <) forces the existence of atomic N;
with cardinality R; determined by the order /. Finally, in Subsection 5.4, we show that
having this uniform process of forcing an extension allows us build families of atomic
models (Ng : S C wy) in V (as opposed to in a forcing extension) in such a manner that if
SAS' is stationary, then Ng 2 Ng/. Theorem 2.5(2) follows easily from this.

5.1 A class of linear orders and weakly striated models

We begin by describing a class of N;-like linear orders, colored by a unary predicate P and
an equivalence relation £ with convex classes. A related notion of striation was discussed
in [BLS16].

Definition 5.1.1. Let L,q = {<, P, E'} and let I* denote all L,q-structures (I, <, P, F)
satisfying:

1. (I, <) is an N;-like dense linear order (i.e., |I| = Ny, but pred;(a) is countable for
every a € I) with minimum element min(/);

2. P is aunary predicate;
3. E is an equivalence relation on / with convex classes such that

(a) If t = min(]) orif P(t) holds, thent/E = {t};

(b) Otherwise, t/E is (countable) dense linear order without endpoints.

4. The condensation //F is a dense linear order with minimum element, no maximum
element, such that both sets {¢t/E : P(t)} and {t/E : —P(t)} are dense in it.

We are interested in well-behaved proper initial segments of elements of I*.

Definition 5.1.2. Fix (I, <, P, E) € I*. A proper initial segment J C I is endless if it
has no maximum element and is suitable if, for every s € J thereist € J, t > s, with
—FE(s,t). Finally, call a suitable .J seamless if I \ J has no minimal F-class.

Clearly, J suitable implies J endless. The following Lemma and Construction are
Lemma 4.1.3 and Construction 4.1.4 of [BLS16].
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Lemma 5.1.3. If (I, <, P,E) € I and J C [ is a seamless proper initial segment, then
for every finite S C I and w € J such that w > s for every s € S N J, there is an
automorphism m of (I, <, P, E) that fixes S pointwise, and w(w) & J.

Construction 5.1.4. Let S C w, with0 € S. There is I° = (I°, <, P, E) € I* that has a
continuous, increasing sequence (J, : « € wy) of proper initial segments such that:

1. Ifa € S, then I°\ J, has a minimum element a,, satisfying P(a,); and
2. Ifa & S and o > 0, then J, is seamless.

Definition 5.1.5. Fix an atomic N € Aty and some [ = (I, <, F, P) € I*. We say N is
weakly striated by I if there are w-sequences (a, : t € I) satisfying:

o N =|J{a, :t € I};(Asnotation, fort € I, No, = |J{a, : j < t}.)

e If t = min([), then a; C pcl((, N);

e Fort > min(/), a;g & pcl(Net, N);

e For each s such that = P(s) and for every n € w, as, € pcl(NesU{aso}, N).

The final clause of this definition is weaker than the notion of striation [BLS16, Def-
inition 4.5] in that it only constrains levels where P fails. However, the definition of the
forcing will put a constraint (albeit weaker) on levels for which P holds.

Note: In the definition above, we allow a; ,,, = a;,, in some cases when (s, m) # (t,n).
However, if s < ¢, then the element a; g # as,, for any m.

The idea of our forcing will be to force the existence of a weakly striated atomic model
N7 indexed by the linear order / € I* formed from Construction 5.1.4. We will begin with
the array X; = {2, : t € I,n € w} of symbols. The forcing will give us a complete type
I' in the variables X; in which every finite subset realizes a principal type with respect
to 7. This I' defines a congruence on X;, with z;,, ~ x4, if I' - 24,, = x5,,. The
universe of N; will be X;/ ~, with " providing interpretations of each symbol of 7. Such
an N; will have a ‘built in’ continuous sequence (N, : a € w;) of countable, elementary
substructures, where the universe of N, will be {[z;,]| : t € J,,n € w} for some suitable
initial segment J, of /. The idea will be to use the data concerning the pair of models
(M*, N*) given in Data 5.0.1 to make

{a € wy : I'\ J, has a minimum element}

(infinitarily) definable in a language 7* that codes all of the data mentioned above.
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5.2 The forcing

Fix the Data from Data 5.0.1. Fix a stationary/costationary subset S C w; and use Con-
struction 5.1.4 to form I° = (I, <, E, P) € I*. We describe three adjectives on a weakly
striated model.

Definition 5.2.1. Suppose N is weakly striated by (I, <, P, F), J C [ suitable, and b €
N\ N,

e b rk oco-catches Ny if, tk(b/N;, N) = oo and for every e € N, e € pcl(N; U
{b}, N) \ N, implies rk(b/N, U {e}, N) < oc.

e b admits a cofinal chain in Nj if there is a strictly increasing, cofinal sequence
(8, : n € w) from J such that for every n, pcl(N,, U {b}, N) N N, ,, # N;,.

e b has bounded effect in N if there exists s* € .J such that pcl(N;U{b}, N)N N, =
N for every s > s* with s € J.

Note that any sequence (s,, : n € w) witnessing ‘b admits a cofinal chain’ must also
satisfy s,/E < s,.1/E. As well, any infinite subsequence would also be a witness.
Clearly, if b has bounded effect in N, then b cannot admit a cofinal chain in N;.

Proposition 5.2.2. Suppose N*, a*, M* = J,,,c., Mm, dyn, Cm, are from Data 5.0.1 and let
I = I® be from Construction 5.1.4 with S stationary/costationary. There is a c.c.c. forcing
Qg such that in V|G, there is a full, atomic N; |= T weakly striated by (I, <) such that:

1. For every suitable initial segment J C I, Ny < Ny;

2. If t € I and P(t) holds, then a; rk oco-catches and admits a cofinal chain in Ny;
and

3. If J C I is seamless, then for every b € Ny \ Ny, if b rk co-catches N, then b has
bounded effect in N .

Recall that by naming a constant if necessary, we are assuming pcl((), M) # (). Fix
a specific complete formula ~y(y) isolating a specific type of an element in pcl(, M).
Additionally, fix, for the whole of the proof, some (I, <, £/, P) € I*. We aim to construct
an atomic model N; € Aty, whose complete diagram consists of {z;, : t € I,n € w}
that is weakly striated by (1, <). We first accomplish this via the forcing notion (Q;, <g
), defined below. Elements of Q; will record ‘finite approximations’ of this complete
diagram. More precisely:
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Definition 5.2.3. An approximation sequence T from (x;, : t € I,n € w) has the form
T = (Tgm : t € uym < ny), where v C [ is finite and 1 < n; < w for every ¢ € w.
Given a finite sequence 7 indexed by w and (n, : ¢ € u) and given a proper initial segment
JCLletul;=unJandZ[; = (xem : t € uly,m < ng). As well, if p(T) is a complete
type in the variables 7, then p|; denotes the restriction of p to T|;, which is necessarily
a complete type. For s € I, the symbols u[.4 and Z[<, are defined analogously, setting
J = 1I|.sand I <, respectively.

Definition of (Qr, <g): p € Qy if and only if the following conditions hold:

1. pis a complete (principal) type with respect to 7" in the variables Z,, which are a
finite sequence indexed by u,, C I and n,,; € w. In addition, p comes equipped with
a pair of functions g, = (go, 91,), €ach of which have domain u, N P. . (When p
is understood we sometimes write n;, go, g1, €tc.);

2. Striation constraints:

(@) ZTmin(1),0 € Tp and Y(Tmin(1),0) € P(Tp);

(b) If t = min(I), then p ‘says’ {z;, : n < n;} C pcl(f);

(c) Forallt € uy, t # min([), p ‘says’ z:¢ &€ pcl(T,[<¢); and

(d) For all s € wu, such that =P(s) and m < ng, p ‘says’ Zs,, € pcl(T,l<s U

{zs0}).

3. Foreacht € u, N P, go(t) is a finite approximation to a cofinal sequence below ¢:

(a) dom(go(t)) is a positive integer ¢,,; and for i < £, ; we write s; for go()(i);
(b) Every s; € u, and min(/) < so/E < s51/E < --- < sy, ,1/E <t
(¢) s¢,,, 1s in the topmost E-class of u,, below ¢; and
(d) —P(si)
4. For each t € u, N P, g(t) gives an ‘elementary map’ from 7, [<; into N*. For

X C Tyl let g1 (8)[X] := {g1(t)(z) : © € X}, the image of g;(¢)[x. We require
that each g (t) satisfy:

(a) For any subset W C T,[<, and 7-formula ¢(w), p(T,) F ¢(w) if and only if
N* = o(g1(t)(w));

(b) g1(t)(z0) = a™;

© gi(®)[TpI=] € N*\ M*;and
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) 1) [zpl<] € M

5. Interconnections: For every ¢t € w, N P and for each ¢ < ¢,,;_1, there is some m € w
such that, letting s; = go(¢)(¢) and recalling Data 5.0.1:

@ dn C g1(8)[Tpl <o,/
(b) (251 (t) (x37;+170) =Cm

For p,q € Q;, we define p <g, ¢ if and only if 7, C 7,, the complete type p(T,) is
the restriction of ¢(7,) to 7,, and for all £ € u, N P, gy, end extends g ,, and g; , extends

91,p-
We make the following observations:

e Striation constraint 2(a) implies that min(/) € u, for every p € Qy;
e For any p € Q, for each ¢t € u, N P, because of 3(c), ~P(max(u, N I[));

e Because of the interplay between 4(c,d), for any p € Qy, for any x; ,,, Ts , € T, if
P(t) holds and s < ¢, then p - x;,, # x5 ,,; and

o Ift, ¢ € u,NP witht’' # t, then, other than each of ¢;(¢) and g, (') being elementary
maps on their common domains, there is no assumption of coherence between these
maps. In particular, if ¢ < ¢/, we do not enforce that ¢;(¢)[Z,[ ;] be contained in

91 (t/)[fp r<t’]'

5.3 Proof of Proposition 5.2.2

We begin this rather lengthy subsection by describing ways of extending conditions, The
first two Lemmas are immediate.

Lemma 5.3.1. For every p € Q; and suitable J C I, pl; € Qrand pl; <g, p.

Lemma 5.3.2. Every automorphism 7 of (I, <, E, P) naturally extends to an automor-
phism ' of Qr via the mapping x,, — Tx() n-

Our aim is to prove Proposition 5.3.19 below, which yields that the forcing is ccc. This
will require a number of preparatory lemmas.

Definition 5.3.3. A condition p € Qy is non-trivial if u, # {min(/)}. [Recall that
min(/) € u, by Striation constraint 1(a).]
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Definition 5.3.4. For p, ¢ € Q;, we say q is a simple extension of p if ¢ > p and ‘u, has
no new E-classes’ i.e., for every s € u, there is s’ € u,, such that E(s, s’).

What makes simple extensions simple is that (among other things) g, cannot be in-
creased.

Lemma 5.3.5. If q is a simple extension of p, then
1. ugN P =wu,NP;and

2. 9o,q = 90,p-

Proof. (1) is immediate, since P(t) implies that ¢/E = {t}. (2) First, because of (1),
9o,q and go , have the same domain. However, for any ¢ € w, N P, the definition of ¢ >¢ p
implies that g ,(¢) end extends gy ,(t). In addition, the ‘last element’ go ,(t)(¢,) is an
element of the largest [/-class below ¢. But, by simplicity, the largest E-class of p below ¢
is equal to the largest E-class below ¢. As Condition 3(b) implies that the s;/ E are strictly
increasing, we must have go ,(t) = go,(t). Osss

Definition 5.3.6. Suppose that ¢(y, Z) is a complete formula with respect to 7" and p € Q.
We say ¢(y,z) includes p if Z = T, and ¢(y,Z) = p(T,). For each w € u,, define
©w(Y, Tpl<w) to be the restriction of ¢ to the displayed variables. Clearly, each such
©w(Y, Tpl<w) is a complete formula that includes p[<,,.

As p(T,,) describes a complete type and the relation ‘a € pcl(b, M)’ only depends on
the complete type tp(ab, M), we say that a complete formula ¢(y,7,) that includes p is
pseudo-algebraic if for some/every M € Aty and for some/every b from M realizing

p(Tp), ¢(y, b) is pseudo-algebraic in M.

Remark 5.3.7. Note that if ¢(y,Z,) is not pseudo-algebraic and 6(Z, 7,) is any complete
formula, then there is a complete, non-pseudo-algebraic ¢ (y, Z, 7) extending p(y,T,) A
0(%z,7,). To see this, choose any ca realizing ¢(y,T,) in N. As ¢(y,a) is not pseudo-
algebraic, choose M =< N containing @ but not c. Choose any € from M witnessing
(e, a). Then the complete formula 1) isolating tp(c, €,a) in N suffices.

Lemma 5.3.8. Suppose p € Q is non-trivial and p(y,T,) includes p. Then there is a
one-point, simple extension q of p such that:

1. Ty = {5 m} UT, for some (s,m) € I X w;
2. q(Tq) = o(Tsm, Tp);

3. for every w € uy, if v, (Y, Tpl<w) is pseudo-algebraic, then s < w; and
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4. if (y,T,) is not pseudo-algebraic and u, C J for some endless J, then we can
require s € J as well.

Moreover, given any sequence ((t,c;) : t € u, N P,c; € N*) such that for each t,
tp(ce, g1.,(t)[Tpl<t], N*) contains ©i(y, T, <¢), we can find q as above with the additional
property that g1 4(%s ) = ¢ forall t > s.

Proof. Our proof will split into several cases. However, in all cases, as we are requiring
q to be a simple extension, we must have u, N P = u, N P and gy, = go . Consequently,
since p € Q;, Constraint groups 3 and 5 will be automatically satisfied for g.

As p is non-trivial, max(u,) # min(]).

Case 1a: ¢(y, T,) is not pseudo-algebraic and =P (max(u,)).

Let s’ = max(u,). Given any endless J with u, C J, as s’/ E is dense we can choose
s € s'/E suchthats € J,but s > w for all w € u,. Take m = 0. Let T, = {z,0} UT,
and let ¢(7,) = ¢(zs,0, Tp). Take g, = g, and there is really nothing to check.

Case 1b: ¢(y,7,) is not pseudo-algebraic and P(max(u,)) holds.

Let t* = max(u,). We now consider two Subcases, depending on our choice of se-
quence ((t,¢;) : t € u, N P) in the ‘Moreover clause.’

Subcase: ¢~ € N*\ M*. Here, let (s,m) = (t*,n+). Put 7, = {2 .} UT, and
q(T,) = . Fort € u, N P with t < t*, put g1 4(t) = ¢1,(¢) and there is nothing to
check. Finally, let g, ,(¢*) be the one-element extension of ¢; ,(¢*) formed by putting
91,4(t*)(ne+) = ¢+. As we are adding a new point at a level where P holds, the Striation
constraints are trivially satisfied, and everything is easy.

Subcase: c;- € M*. Here, Constraint 4(c) forbids us from putting the new element at level
t*. Let s = go,(t*)(¢;» — 1). Then ~P(s'), and s’/ E' is the maximal E-class represented
in u, below t*. Choose s € I such that E(s, s") holds, but s > w for every w € u, \ {t*}.
Take m = 0. That is, T, = {x 0} UT, and put ¢(T,) = ¢. As above, put g1 ,(t) = g1,(¢)
for every t € u, N P with t < t*. Finally, let g; ,(¢*) be the one-point extension of g; ,,(t*)
formed by putting g1 ,(t*)(2s0) = c:.

The non-trivial point to check is that this extension ¢ preserves the Striation constraints.
To see this, for w € w, \ {¢*} there is nothing to check. As ¢(y,T,) is non-pseudo-
algebraic, =59 ¢ pcl(T,l<s). And finally, as g ,(t*)(z4) = a* ¢ M*, while {¢;} U
91,,(t)[Tpl<t+] € M*, we conclude that 24+ o & pcl(Ty [ <4+ ).

For the remainder of the proof, assume that p(y,T) is pseudo-algebraic. Indeed, let
w* € u, be least such that the restriction ¢, (y, T, <w+) is pseudo-algebraic. In each of
the cases below, we will either take s = w*, or s will be less than w* but greater than any

22



w € u, with w < w*. Thus, the Striation constraints for each w € u, with w < s will be
trivially satisfied since they hold for p. Also, since (Y, T, [ <+ ) is pseudo-algebraic, for
every w € u, with w > w* we will have pcl(Z,[ <) = pcl(Tp[<y). It follows from this
that the Striation constraints for g are satisfied for every w € u, with w > w*. Because of
this, in each of the cases below, we only need to establish the Striation constraints for ¢ at
levels s and w*.

Case 2a: = P(w*).

In this case, let (s,m) = (w*,ny~). Take T, = {25} UT, and ¢(T,) = ¢. Note
that since ¢+ (y, T, [ <w+) is pseudo-algebraic, the Striation constraints are satisfied for ¢
at level w*, hence at all levels by the comments above. To complete the description of
g, for t < w*, put gy 4(t) = g1,(t). As well, given any sequence ((¢,¢;) : t € u, N P)
satisfying the ‘Moreover clause,” for each ¢ > w*, let g; ,(¢) be the one-point extension of
g1,»(t) formed by putting ¢, ,(t) = ¢;. Constraint group 4 is trivially satisfied for ¢ for each
t < w*. So fix t > w*. By Constraint 4(d) on p, we have that A = ¢, ,(¢)[Z,[ <] C M*.
However, since ¢ > w*, we also know that the restriction of ¢ to the variables (v, T,[ <)
is pseudo-algebraic. Thus, it follows that ¢; € M*. So Constraint 4(d) holds for ¢, ,(t) as
well. The other conditions are trivially satisfied, so g € Q.

Case 2b: P(w*) holds and, letting t* = w*, ¢;» € N* \ M*.

In this case, we can place the new element at level ¢*. That is, T, = {a:tm} U Ty,
where m = n,,;+ and ¢(T,) = . As P(t*) holds, the Striation constraints at level t* hold
for ¢ as they held for p. As noted above, this implies that the Striation constraints hold
for ¢ at all levels. Now, for ¢ < t*, let g1 ,(t) = g1,(t) and for ¢t > t*, let g ,(¢) be the
one-point extension of gy ,(¢) formed by putting g1 ,(¢) (x4 ) = ;. We must verify that
Constraint group 4 is satisfied. For ¢ < t*, this is trivial. At level ¢*, there is no problem
as ¢« € N*\ M*. For levels t > t*, we argue just as in Case 2a) above. That is, since
@i+ (Y, Tp[ <4+ ) 18 pseudo-algebraic, we must have that ¢;« € AM*. Thus, there is no problem.

Case 2¢: P(w™*) holds and, letting t* = w*, ¢, € M*.

As in the second Subcase above, Condition 4(c) forbids us from adding the new ele-
ment at level t*. Let s’ € u, be maximal below t*. As =P(s’) holds, s’/ E is dense linear
order, so we can choose s € §'/E with s > . Let T, = {z,0} UT, and ¢(T,) = .
We need to check the Striation constraints at levels s and w*. At level s, note that the
minimality of w* = t* implies that x, ¢ pcl(Z,[<s), so we are fine at level s. At level
w* = t*, note that A = gy ,(t*)[T,[<+] € M* and we are assuming ¢, € M*. As well,
91p(t*)(z4+0) = a*, which is in N* \ M*. Thus, the elementarily of the map assumed
by the ‘Moreover clause’ implies that x4 o & pcl(T,[ <4+ ), so the Striation constraints are
satisfied at level ¢* as well.
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Finally, we complete the description of ¢ by putting ¢, ,(t) = ¢1,,(¢) forall ¢ < ¢*, and
for t > t*, let g; ,(t) be the one-point extension of g, ,(t) given by g1 ,(t)(xs0) = c;. We
need to show that Constraint group 4 is maintained. This is trivial for all ¢ < ¢*. At level
t*, it is satisfied because of our assumption that ¢, € M ™. Finally, fix any £ > ¢* and recall
that A = ¢1,(¢)[Tp[<t] € M*. As x5 € pcl(T,[<;), this means that ¢; € pcl(A, N*), so
¢ € M*, asrequired in 4(d). [l53s

Although Lemma 5.3.8 is very strong, we still need some technique for producing
extensions that need not be simple. [Indeed, if p is trivial, then Lemma 5.3.8 does not
apply to p at all.]

Lemma 5.3.9. Suppose p € Q; and s € I is chosen so that s' < s for every s' € u, and
—P(s). Let p(y,T,) be any complete formula including p that is not pseudo-algebraic.
There is g € Qp with ¢ > p, Ty = {xs0} UT), and q(T,) = .

Proof. Simply put 7, = {zs0} U7, and ¢(7,) = ¢. As u, = u, U {s} and as
ql<t = pl< forevery t € u, N P, we can put g, = g,. That g satisfies the Striation
constraints is immediate as ¢ is not pseudo-algebraic. Thus, ¢ € Q; and g > p as required.
U39

Definition 5.3.10. A non-trivial p € Q; is s-topped if =P (max(uy)).

Note that for any p € Q7 and any ¢ € u, N P, Clauses 3(c),(d) in the definition of the
forcing imply that p[; is s-topped.

Lemma 5.3.11. Given any p € Q and any s' € I such that v, C [y, there is an
s-topped q > p withu, C I[.g.

Proof. Choose any p € Q;. If p is s-topped, take ¢ = p. Otherwise, recall that
tp(a*, N*) is not pseudo-algebraic. Let d(y) be the complete formula generating tp(a*, N*).
By Remark 5.3.7, choose ¢(y,Z,) to be complete, include p, extend 6(y), but not be
pseudo-algebraic. Then apply Lemma 5.3.9 with this ¢ to get ¢ > p as required.  [5.3.1;

Lemma 5.3.12. For every p € Qy, for every endless J O w,, for every t € u, N P,
and for every finite C C N*, there is a simple extension q of p satisfying u, € J and
C C rangelgy 4(t)).

Proof. Arguing by induction on |C/, it suffices to prove this for C' = {c} a singleton.
Fixp € Qr, J Duyandt € u, N P. Ast € uy, pis non-trivial. Let B = range[g, ,(t)]
and, letting Z = 7, [ <1, let ¢ (y, Z) = tp(cB, N*). Extend ¢ to a complete formula (y, T,)
that includes p(Z, ). Apply Lemma 5.3.8 to p and ¢, using the ‘Moreover clause’ to require
that g1 ¢(s.m) =c.  Os312
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Lemma 5.3.13. Ifp is s-topped and ©(7y, T,) is any complete formula that includes p, then
there is a simple extension q of p such that q(%,) = .

Proof. Arguing by induction on lg(7), we may assume 7 is a singleton. But then,
as p s-topped implies p non-trivial, the result follows immediately from Lemma 5.3.8.

D5.3.13

Next, we have a series of Lemmas aimed at proving Proposition 5.3.19, which gives
a sufficient condition for two conditions to have a common extension. For the proof, we
distinguish two cases. The condition is on the sets u,, u,, and J, but they collectively
describe when we need to increase the sequence described by go ,(t*).

Definition 5.3.14. Suppose u, v are finite subsets of / and J C [ is endless. We say v
obstructs u at J if

1. t* = min(u \ J) exists and P(¢*) holds;
2. v C J is non-empty;
3. Taking s* = max(v), we have = P(s*), but s*/E > s/FE forevery s € uN J.

Lemma 5.3.15. Suppose p,q € Qq, J is endless, u, C J, and w = max(u, N J). If
E(w, max(uy)), then u, does not obstruct u, at J. In particular, if q is a simple extension
of p|J, then u, does not obstruct u,, at J.

Lemmas 5.3.16 and 5.3.17 prove the ‘easier half’ of Proposition 5.3.19 as we do not
need to extend go.

Lemma 5.3.16. Suppose p,q € Q;, J C I is endless, u, C J, u,\J = {w*} is a singleton
pls < q, and u, does not obstruct u, at J. Then thereisr € Q with@, = T, UT, 7 > p,
and r > q. Moreover, if q is a simple extension of p| j, then r is a simple extension of p.

Proof. We split into two cases, depending on whether or not P(w*) holds. In both
cases, as the r we construct will satisfy 7, = 7, U T4, the primary objective is to find an
appropriate complete type r(7,) extending p(7,) U ¢(T,).

Case 1. =P(w*) holds. [Put s* = w* to indicate this.]

Write the variables of 7, as y,7,Z, where y = g0, ¥ = (s« : 1 < j < ng) and
Z =Tpl<s. Asp(y, 7, Z) is a complete type, so is ¢(y, Z) := Jyp(y, 7, Z). By the Striation
Constraints, ¢(y, ) is not pseudo-algebraic, but p(7; yz) is pseudo-algebraic. Next, write
the variables 7, as Z, w (this uses p[.s+ = p[;and p[; < @).

Choose any M € Aty and choose AB C M such that tp(AB, M) (Z,w). As
©(y, A) is not pseudo-algebraic, we can find ¢ € M such that M = ¢(c, A), but ¢ ¢
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pcl(AB, M). Then choose d from M so that tp(cdA, M) = p(y,7,%). Necessarily, d C
pcl(cAB, M).

Now write 7, as 3,7, Z,w and let r(Z,) = tp(cdAB, M). It is easily checked that the
Striation Constraints are maintained. As for g,, put g, = g,, i.e., for every t € u, N P,
9o+ (t) = goq(t) and g1, (t) = g1,4(t). As s* > s for every s € u,, the functions g, are as
required, simply because they were for q.

Case 2. P(w*) holds. [Put t* = w* to indicate this.]

Here, write T, as 7, z, where § is T, [ —4» and Z is T, [ <4+. As p[; = p[«~ and p|J < g,
we can write 7, as z,w and we have ¢(Z,w) - p(Z). In this case, we use the function
g1p(t*) : yZ — N* as our guide. We know that B = gy,(t*)[y] C N*\ M*, A =
g1,(t")[Z] € M*, and tp(BA, N*) = p(y,Z). As q(Z,w) - p(Z), choose C' C M* such
that tp(AC, M*) = q(Z,w).

Now write T, as yzw and let 7(Z,) = tp(BAC, N*). It is evident that the Striation
Conditions are satisfied. As for g,, we can put g,(t) = g,(t) for every t € u, N P. So,
it only remains to define gy, (¢*) and gy, (t*). The latter is easy, as we used N* as our
template. That is, define g, ,.(¢*) to be the function mapping yzw to BAC.

Finally, the definition of g, (t*) is where we use our assumption that u, does not
obstruct u, at J. We are assuming that ¢* = min(u, \ J) and P(¢*) holds. Choose s € u,
to be from the largest E-class in u, below t*. Asp € Q, =P(s) holds. Let s* = max(u,).
As u, does not obstruct u, at J, s*/E < s/E. Thus, there is no reason to extend go ,(t*),
and we simply let go - (t*) = go,(t*). [s3.16

Lemma 5.3.17. Suppose p,q € Qr, J C I is endless, u, C J, pl; < q, and u, does not
obstruct u, at J. Then there is r € Qp with@, =T, UZ, v > p, and v > q. Moreover, if
q is a simple extension of p| j, then r is a simple extension of p.

Proof. Arguing by induction on |u,, \ .J|, this follows immediately from Lemma 5.3.16.

D5.3‘17
We now consider the ‘harder half” where we do need to extend g.

Lemma 5.3.18. Suppose p,q € Q, t* = max(uy,), P(t*) holds, uy, C I+, and pl 4= <
q. Then there isr € Qr, v > p, r > q, and max(u,) = t*.

Proof. Let w* = max(u,). If w*/E < s/FE for some s € u,, s < t*, then u, would not
obstruct u, at I [ .4~ and we would be done by Lemma 5.3.16. So assume that w*/E > s/E
for every s € u,, s < t*. First, by Lemma 5.3.11, we may assume that ¢ is s-topped.
Arguing as in Case 2 of Lemma 5.3.16 write T, as yz, where ¥ is T[4+ and 7 is T}, [ <4~
As well, write T, as Z, w where ¢(Z,w) - p(Z). Again, B = ¢;,(t*)[y] C N*\ M* and
A = g1,(t*)[Z] € M*, where tp(BA, N*) = p(y,%). As q(Z,w) - p(Z), choose C' C M*
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such that tp(AC, M*) = ¢(Z,w). As AC is finite, choose m € w such that AC' C M,,.
Now consider tp(d,, /AC, M,,). By applying Lemma 5.3.13, there is a simple extension ¢’

of ¢ such that tp(d,, AC, M,,) = ¢'(T,). As ¢ is a simple extension of g, max(u,) < t*.
Thus, by replacing ¢’ by ¢, we may additionally assume that d,, C AC'. Finally, choose

s* € I satisfying w*/FE < s*/E < t* and = P(s").

We are now able to define r. Put 7, = {x o} Uyzw and let r(Z,) = tp(c,, BAC, N*¥).
For t*, first let ¢, . (t*) map Z, onto ¢,, BAC. As we assumed d,,, C AC, d,, C rangelg:,(t*)].
Finally, let ¢;-, = ¢ + 1, where { = {;+ , and let gy, (t*) be the one-element end exten-
sion of gg,(t*) formed by go . (t*)(¢) = s*. It is easily verified that € Qy is as desired.
Us.3.18

Proposition 5.3.19. Suppose p,q € Q, J C I is endless, u, C J, and p|; < q. Then
there is r € Q; with max(u,) = max(u,), v > p, andr > q.

Proof. This follows immediately by induction on the number of £-classes of elements
in u, \ J, using either Lemma 5.3.16 or Lemma 5.3.18 at each step. 5319

From this, we can easily verify that Q; has the c.c.c.
Lemma 5.3.20. (Q;, <g) has the c.c.c.

Proof. Let {p; : i < ®;} C Q be a collection of conditions. We will find i #
J for which p; and p; are compatible. We successively reduce this set maintaining its
uncountability. By the A-system lemma we may assume that there is a single u* such
that for all ¢, j, u,, Nu,, = u*. Further, by the pigeonhole principle we can assume that
for each ¢ € u*, ny,; = n,, ;. We can use pigeon-hole again to guarantee that all the p;
and p; agree on the finite set of shared variables. Furthermore, by pigeon-hole, we may
assume g, (t) = g,,(t) forall t € u* N P. And finally, since [ is R;-like we can choose
an uncountable set X of conditions such that for + < j and p;, p; € X all elements of u*
precede anything in any u,, \ u* or u,, \ u* and that all elements of u,, \ u* are less that
all elements of u,,, \ u*.

Finally, choose any ¢ < j from X. Let J = {s € [ : s < min(u,, \ uy,)}. By
Proposition 5.3.19 applied to p; and p; for this choice of J, we conclude that p; and p; are
compatible.  [l53.99

In the remainder of Section 5.3 we list the crucial constraints, which are sets of condi-
tions, and we prove each of them to be dense and open in Q;. While A-C are quite similar
to [BLS16]; the later ones depend more on this context. Before stating the first constraint
we prove a lemma needed to study it.

Lemma 5.3.21. For every p € Qg and every t € I such that P(t) holds and w < t for
every w € uy, there is ¢ € Qy, ¢ > p, with max(u,) =t and u, N P = (u, N P) U {t}.
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Proof. Given p and ¢ as assumed, first note that by Lemma 5.3.11, we may assume p
is s-topped. Choose any B from M* realizing p(Z,). We construct ¢ as follows: T, =
{210} UZ,, and put ¢(T,) = tp(a*B, N*), where a* is the ‘preferred element’ in N*\ M*.
Fort' € u, N P, take g,(t') = g,(t'). Let g1 4(t) be the elementary map from T, onto a* B,
and let go ,(t) = s for any choice of s € u, for which s/E is maximal in w,. It is easily
verified that ¢ is as required.  [l53.9;

A. Surjectivity Our first group of constraints ensure that for any generic G C Qy, for every
(t,n) € I x w, there is p € G such that z;,, € T,. To enforce this, for any (t,n) € I X w,
let

At,n = {p S QI Ty € f10}
Claim 5.3.22. For every (t,n) € I x w, Ay, is dense and open.

Proof. Each of these sets are trivially open. We first show that A, ( is dense for every
t € I. To see this, first recall that A,in5)0 = Qr by Striation constraint 1(a). Next, fix
t # min(/) and choose p € Q; arbitrarily. Take the endless proper initial segment J = [,
and let ¢ = pJ;. Using either Lemma 5.3.11 or Lemma 5.3.21 (depending on whether or
not P(t) holds) we get ¢’ > ¢ with u, C J and ¢’ € A;. Now, using Proposition 5.3.19,
we getr > pandr > ¢'. Asr € A, we have shown A, o to be dense.

Next, we prove by induction on n that if A, ,, is dense, then so is A; 1. But this is
trivial. Fix ¢ and choose p € Q; arbitrarily. By our inductive hypothesis, there is ¢ > p
with z,,, € 7,. If 24,41 € T, there is nothing to prove, so assume otherwise. Then,
necessarily, n,; = n + 1. Let r be the extension of ¢ formed by 7, = 7T, U {x; 41} and
r(Z,) the complete type generated by ¢(7,) U {x¢n+1 = T¢,}. We take go, = go,, and for
every t' € u, N P with t < ¢/, let g1, (t') be the one-point extension of g, ,(¢') satisfying
910 (@ent1) = G1g(')(@en).  Uszon

Next we describe the Henkin constraints.

B. Henkin For every ¢t € I \ {min(/)}, finite sequence Z from I, X w (in the sense of
Definition 5.2.3) and complete formula (v, Z),

B, = {p € Q;: Z C 7, and either ~Jyp(y,Z) € p or p(z;,,,z) € pforsome s < t,m < w}
Claim 5.3.23. For everyt € I \ {min(I)} and complete )(y,Z), By is dense and open.

Proof. Fix t and ¢. Clearly, B, is open. To show density, choose any p € QQ;. By
applying Lemma 5.3.11, we may assume p is non-trivial. By iterating Claim 5.3.22, we
may also assume Z C 7,,. There are now two cases: First, if p = =3y (y, Z), thenp € By,
so assume otherwise, i.e., p(Z,) U {¢(y,Z)} is consistent. Choose any complete formula
©(y,T,) extending v that includes p. It follows immediately from Lemma 5.3.8 that there
is a simple extension g of p with g € B; .  [Us 323
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In order to ensure our generic model is ‘full’ we need a minor variant of the Henkin
constraints.

C. Fullness Suppose 7 is a finite sequence (in the sense of Definition 5.2.3),¢ € I, and a
formula (y, Z) satisfies ¢(y, Z) F 6(%Z) for some complete formula 6(Z), but (y, Z) is not
pseudo-algebraic.

Cor={p€Q: thereiss > t,5s € u,, 2 C Ty, pF p(x50,%2)}
Claim 5.3.24. Each is C,; is dense and open.

Proof. Fix ¢(y,Z) and ¢, and choose any p € Q. Fix any s* > t. By extending p as
needed, by Claim 5.3.22 we may assume s* € u, and Z C Z,. As ¢(y, Z) is not pseudo-
algebraic, there is a complete, non-pseudo-algebraic ¢(y, T,) extending ¢ and including
p. By Lemma 5.3.8 there is a simple extension ¢ of p and s > s* (hence s > t) such that
qF o(x50,%Z). s394

D. go cofinal We introduce two sets of conditions that guarantee that in any generic G,
go(t) will describe an w-chain that is cofinal in /.

Fix t € I such that P(¢) holds.
e Foreachs <t,D,; ={p € Q;:t € u,and forsome n, s/E < go,(t)(n)/E <t};
e Foreveryn € w, &, = {p € Q:t € u,andn € dom(go,(t))}.

Claim 5.3.25. For every t € [ satisfying P(t), every s < t, and every n € w, both D
and & , are dense and open.

Proof. That each set is open is immediate. Fix ¢ such that P(¢) holds. We first argue
that D, ; is dense for every s < t. To see this, fix s < t and choose any p € Q;. By
Claim 5.3.22 we may assume ¢t € u,. Choose an endless initial segment .J such that
t = max(u, N J). Let ¢ = p[; and let ¢ = p[;. Note that max(u,) = ¢. Let s* =
max(u, U {s}). From the definition of I*, choose t* € I such that s* < t* < t and P(t*)
holds.

We first find » > ¢ with max(u,) =t and r € D, ;. By Lemma 5.3.21, choose ¢» > ¢
with max(ug,) = t*. Apply Proposition 5.3.19 to ¢, and ¢ to obtain an upper bound r
satisfying max(u,) = t. As r € Q; while s is not in the maximal E-class of u, \ {t},
by Condition 3(c) there is n such that s/E < go,(t)(n). Thatis, r € D, . Finally, apply
Proposition 5.3.19 again to p and r to get an extension of p that is in D, ;.

Next, we argue by induction on n that each set &, ,, is dense. We begin with n = 0.
Given t and any p € Q;, by Claim 5.3.22 there is ¢ > p with ¢t € u,. As ¢ € Qy,
Condition 3(a) implies that g € D; .
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Finally, assume &, ,, is dense. Choose any p € Q;. Using the density of &, ,,, we may
assume n € dom(go,(t)). If (n+1) € dom(go,) then there is nothing to prove, so assume
otherwise. That is, dom(go,(t)) = {0,...,n}. Let s = go,(t)(n). Choose s’ satisfying
s/E < s'/E <t. As D,y is dense, choose ¢ > p with ¢ € D, y. As s’ € u,, s/E is not in
the maximal E-class of u, below ¢, hence go ,(t) properly extends go (), s0 ¢ € & 1.
Us.3.25

F. Adjusting the level Suppose ¢ € [ such that P(¢) holds, Z is a finite sequence (in the
sense of Definition 5.2.3) from /<, X w, w > t and n € w. Then F,z,., consists of
all p € Qy such that {z,,,,} UZ C T, and either p ‘says’ x,, ¢ pcl(Z) or p ‘says’
Ty n = Tsm for some s < t, m € w.

Claim 5.3.26. For all t,z, w,n as above, F, 3 ., , is dense and open.

Proof. As always, ‘open’ is clear. To establish density, choose any p € Q;. By
iterating Claim 5.3.22 we may assume {z,,,} UZ C 7,. There are now two cases. If
p ‘says’ T, & pcl(Z) we are done, so assume otherwise. Let ¢(y,T,) be the complete
formula including p that extends ‘y = x;,,. Now apply Lemma 5.3.8 to get a simple
extension ¢ of p with T, = {x,,,} UT, and ¢(zs ,, T,). Note that since z,,, € pcl(z), we
have that ¢, (y, T, [<;) is pseudo-algebraic. Thus, s < ¢ as required to show ¢ € F;z -
Us.3.26

We now verify that the forcing (Q;, <) satisfies the conclusions of Proposition 5.2.2.
Suppose G' C Qy is a filter meeting every dense open subset. Let

X[6] = J{p(@,) :p € G}

Because of the dense subsets A, ,,, X[G] describes a complete type in the variables {z;,, :
t € I,n € w}. There is a natural equivalence relation ~¢ on X |G| defined by

Tin ~a Tsm if and only if X|[G] ‘says’ Tyn = Tom

Let N|[G] be the T-structure with universe X [G]/ ~¢. As notation, for each ¢, n, let
atn, € N|[G] denote [x;,] = 24,/ ~c. As each p € Q; describes a complete (principal)
formula with respect to T, N[G] is an atomic set. As well, it follows from Claim 5.3.23
that N[G] = T.

For each ¢ € I such that P(t) holds, let Ny = {[x,,] : some x5, € [y ,] With s < t}.
Similarly, for each s € I \ {min(/)} with =P(s), let Ny = {[xw,] : w/E < s/E}.

By repeated use of Claim 5.3.23, each IV, and NV are elementary substructures of N[G].
Note that Ny = N, whenever E (s, s).
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Given any (w,n), if there is a least s € [ such that a,,,, = as,, for some m € w,
then we say a,,,, is on level s. For an arbitrary (w,n), a least s need not exist, but it
does in many cases. Recall that the Striation constraints imply that for every w € I, a0
is on level w. As well, for any n > 0, a;,, is on level ¢ for any ¢ such that P(¢) holds.
Because of the Level constraints (group F) for any ¢ such that P(t) holds, if b € N[G]| and
bepcl({asm:s <t,mew}, N[G]), b= [ry ] for some m' € wand s’ <t.

As |I| = N, and the fact that each a; o & pcl(Vy, N[G]), ||N[G]|| = X;. Finally, it
follows from the density of the ‘Fullness conditions’ that N [G] is full.

More information about N[G] can be gleaned from the functions g; and go. Fix any ¢
such that P(t) holds. Let B; C N[G] consist of all elements at level exactly ¢. Define

gik(t)BtUNt—)N*

by g7 (t)(asm) = g1p(t)(Tsm) for some p € G. As each map gy ,(¢) is elementary and
g1,p(t) C g1,4(t) whenever ¢ > p, this is well-defined. Because of Constraints 4(c.d), g;
maps V; into M* and takes B; into N* \ M*. Furthermore, because of Lemma 5.3.12, g}
maps onto N*. It follows that B; U N; is the universe of an elementary submodel of N[G]
that is isomorphic to N* via gi. Similarly, the restriction of ¢j(¢) to V; is onto, hence
yields an isomorphism between N, and M*. Finally, the restriction of ¢i(t) to B, is onto
N*\ M*. Also, by Constraint 4(b), g7 (¢)(aro) = a*.
Similarly, because of density groups D and &, the function

go(t) w — I

defined by ¢;(¢)(i) = go,(t)(¢) for some p € G is well-defined. Moreover, if we let s;
denote g;(t)(i), then the sequence (s; : ¢ € w) is cofinal in I, and satisfies s;/F < s;41/E
for all 7. By Constraint group 5 and our comments about g; (¢) above, for every ¢ > 0 there
is m(i) € w, b from N,, such that

o g:(t)(b) = d,, € M*;and
o gr@)(asi,O) =Cm

As s;/E < s;41/E, as,0 € Ns,,,. As well, as the Striation constraints imply that a, ¢ is
atlevel s;, as, o € Ns,. Finally, using g; (t)! the relation

Cm € pel(dya®, N¥)

translates into _
as, 0 € pcl(baso, N[G])
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It remains to verify that N [G] satisfies the three conditions of Proposition 5.2.2. (1) is
handled by the Henkin constraints, most notably Claim 5.3.23.

Towards (2), the argument just given implies that a, o admits a cofinal chain in N; for
every t such that P(¢) holds. To complete the verification of (2) we show that a, also
rk co-catches N; whenever P(t) holds. Fix such a t. We know that N; < N[G], so it is
pseudo-algebraically closed. Choose any b € N[G] such that b € pcl(a;oNi, N[G]) \ N;.
Because of the Level constraints (group F) we have that b = a,,, for some w < t.
However, if w < t, then we would have b € N;, which it isn’t. Thus, b is of level ¢, hence
b € B, in the notation defined above. Applying g7 (¢) to a; o, Ny, b yields:

e € pcl(a®M*, N*)\ M*

where e = ¢7(t)(b). By Data 5.0.1(2) of the initial data, this implies rk(a*/M*e) < oc.
Translating back via g (t) yields rk(a;o/N;b) < co. Thus, a; o rk co-catches N;.

It remains to verify (3) of Proposition 5.2.2. Choose a seamless J C [ and let V; :=
U{N: : t € J} < N[G]. Choose any b € N[G] \ N, that rk oo catches N, and we show
that b has bounded effect in N;. Say b is [x,+ ], Where necessarily w* € I\ J. By the
fundamental theorem of forcing, there is p € G such that

p IF (2w n]a 1k 0o-catches N, [G]. *)

Thus, among other things, p |- ‘zy»,, # ., forall s € J, m € w. Choose any s* € J
such that s* > s for every s € u, N J. (Recall u, from just below Definition 5.2.3.) That
b has bounded effect in N; follows immediately from the following Claim.

Claim 5.3.27. p IF pcl({[zy n]} U No[G], N[G]) N Ny[G] C N.,-[G].

Proof. If not, then there is ¢ € Q; satisfying ¢ > p and a finite A = {x,, n, 1 @ <
k} C Iy X wsuch that, letting Ag = {[w, m;]g 1 1 < k},

qIF pl(Ag[rurnlg. NIG]) N NJ[G] € N [G]

Without loss, we may assume that for each z,, ,,, € A, then w; € u,. As J is seamless,
by Lemma 5.1.3, choose an automorphism 7 of (1, <, I/, P) such that 7[> min(u,\7) = id;
m(t*) =t wly, = id; Tly,nr,. = id, but 7(s*) € J. By Lemma 5.3.2, 7 extends to an
automorphism 7’ of Q; given by x,,, > Zr(),m. By our choice of 7, '(p) = p. Whereas
7'(q) need not equal ¢, we do have p < 7/(q).

(@) IF pel(Ag[urmlg: NIG]) N Na()[G] € Nensr)[G] (**)

We argue that this forcing statement contradicts the just defined (). To see this, choose
a generic H C Q; with 7'(q) € H. As p < 7'(q), we also have p € H. As above, let
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N[H] € At be the structure with universe X/ ~g. Put Ny[H| := |J{N;[H] : t € J} =<
N[H] and N pn[H] := U{N[H] : t € n(J)} = N[H]. As notation, let by := [Ty »]n
and Ay = {[Tw, m;|m : 1 < k}. Now:
e Applying 7’ to the statement (x), along with 7/(p) = p and 7(w*) = w* yields
p Ik [+ n]g tk co-catches Ny () (G].

As p € H and recording only half of the definition of ‘rk oco-catches’ yields

tk(bi Ny, NIH]) = o0

e From (xx), choose e € N[H] such that e € pcl(Ayby, N[H]) and e € N;)[H],
but e € N (s [H]. Thus, since J C I (s, e € Nyj[H].

However, since {e} U N;[H] C Ny [H], we conclude rk(by /N;[H]e, N[H]|) = oo.
Combining this with e € pcl(N;[H|by, N[H]) and e ¢ N;[H], we contradict ‘by rk oco-
catches N;[H]. [s397

Finally, as Claim 5.3.27 holds for any sufficiently large s* € J, b = a,,~ ,, has bounded
effect in IV;. This establishes (3), and thus concludes the proof of Proposition 5.2.2.
U522

5.4 Many non-isomorphic models in Aty

We continue to work under the assumption of Data 5.0.1 and the notation there. With
Proposition 5.4.1 below, we prove the existence of 2™ non-isomorphic atomic models,
each of size N, under the assumption that a countable, transitive model ()M, €) of ZFC
exists. The main theorem of this section, Theorem 5.4.2, follows easily from this.

Proposition 5.4.1. Assume that a countable, transitive model of ZFC exists. If we have an
instance of Data 5.0.1, then there are atomic models (Nx : X C wy) such that Nx % Ny
whenever X A\Y is stationary.

Proof. Choose N*, M*,a*,¢,,, c,, witnessing Data 5.0.1 and fix a countable, transitive
model (M, €) of ZFC containing these sets, along with 7" and 7. We begin by working
inside M. In particular, choose S C w{” such that

(M, e) = ‘S is stationary/costationary’
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Now perform Construction 5.1.4 inside M to obtain I = (I°, <, P, E) € T*.

Next, we force with the c.c.c. poset Q;s and find (M[G], €), where G is a generic
subset of Q7s. As the forcing is c.c.c., it follows that all cardinals are preserved, as well as
stationarity. Thus, w{wG] = w} and (M[G], €) | ‘S is stationary/costationary’. As well,
(I°)MIG] = I, According to Proposition 5.2.2, inside M [G] there is an atomic, full N; |=
T that is striated according to (/ S <,PE ). Write the universe of Ny as {a;, : t € I Sne
w}. Inside M[G] we have the mapping o — J,, given by Construction 5.1.4. For every

[G], let N, be the 7-substructure of N; with universe {a;,, : t € J,,n € w}. It
(G]

M
o € w;
follows from Proposition 5.2.2 and Construction 5.1.4 that for every non-zero o € in[

L NajN[;

e If o € S, then I\ J, has a least E-class t/E which is topped with t* = top(t/E),
and a;- o both rk oo-catches and admits a cofinal chain in /V,; and

o If o € S, thenevery b € N; \ N, that rk co-catches N, has bounded effect in V.

Now, still working inside M [G], we form a 3-sorted structure N* that encodes this infor-
mation. The language of N*! will be

T* :TU{U7MW7<U7<V7P7E7R17R27F}
N* 1s the 7*-structure in which

e {U,V,W} are unary predicates that partition the universe;

UV, <p) is (w9, <);

(VN" <y, P, E)is (I°,<, P, E);

e W™ is N; (the functions and relations in 7 only act on the W -sort);

Ry C U x V, with Ry(«, t) holding if and only if t € J,;

Ry C U x W, with Ry(«, b) holding if and only if b € N,; and

o F': W xUxw — V satisfies: For every b and for every limit ordinal «, (F'(b, v, n) :
n € w) is a strictly increasing, cofinal sequence in J,.

'Note the inclusion of F'!
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Note that because of £, S C win] is an 7*-definable subset of the U-sort of N*. Also,
on the W-sort, the relation ‘b € pcl(a@)’ is definable by an infinitary 7*-formula. Thus, the
relations ‘b rk oo-catches N,’, ‘b has bounded effect in N,’, and ‘(F'(b,,n) : n € w)
witnesses that b admits a cofinal chain’ are all infinitarily 7*-definable subsets of U x W.

By construction, N* |= 1), where the infinitary ¢ asserts:

For every non-zero o € U, either there is an element of W that rk oo-
catches N, and admits a cofinal chain in N, or every element of W that
rk oo-catches N, has bounded effect in NV,,.

Fix an infinitary 7*-formula #(z) such that for  from the U-sort, §(z) holds if and
only if there exists b € N; \ N, that rk oo-catches and has a cofinal chain in N, . Thus,

for a € wfw ! Wwe have

N E=f0la) <= acs

Fix a countable fragment L 4 of L, ,,(7*) to include the formulas mentioned above, along
with infinitary formulas ensuring 7-atomicity.

Now, we switch our attention to V. By applying Theorem 3.13 of [BLS16], which is
proved by the method of iterated M -normal ultrapowers, to (M[G],€), L4, and N*, we
obtain (in V'!) a family (My, E) of elementary extensions of (M[G], €), each of size Ny,
indexed by subsets X C w; (= wy). Each of these models of ZFC has an L*-structure,
which we call N% inside it. As well, for each X C wj, there is a continuous, strictly
increasing mapping tx : w; — UNX with the property that

N EO(tx(a)) < acX

Let (I%, <, E, P) be the ‘V-sort’ of N%. Clearly, each X € I*.

Finally, the I¥-sort of each 7*-structure N is an 7-structure, striated by / X We call
this ‘reduct’” Nx. Note that by our choice of L4 and the fact that Ny =, N*, we know
that every 7-structure Ny is an atomic model of 7', which is easily seen to be of cardinality
Nl.

Thus, it suffices to prove that there is no 7-isomorphism f : Ny — Ny whenever
XAY is stationary. For this, choose X, Y C w; such that X \ Y is stationary and by way
of contradiction assume that f : Ny — Ny were an 7-isomorphism. Each of Nx, Ny has
its ‘expansion’ to L*-structures Ny and Ny, respectively. As notation, for each o € w}/ ,
let NX and N denote T-elementary substructures with universes of Ry (tx(a), N%) and
Ry(ty (ar), Ny ), respectively.

Next, choose a club Cjy C w; such that for every o € Cy:

e (v is a limit ordinal;
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e The restriction of f : NX — NY is a 7-isomorphism.

Put C' := lim(C)). As C'is club and (X'\Y) is stationary, choose « in their intersection.
Fix a strictly increasing w-sequence («, : n € w) of elements from C; converging to c.
As a € X, we can choose an element b € Nx \ N2 and a strictly increasing sequence
(8, : m € w) converging to « such that b rk co-catches N and for every m € w

pel(NF U{b}) NN Z N,
As the sets J,,,, are all proper initial segments of .J,, with | J J,, = J,, there is an integer
k such that for all n > k, there is an integer m(n) such that s,,, € J,,, but s,,11 € Ja,,.
Thus, for any n > k,
pcl(N, U {b}) NN € N

But now, as ‘b € pcl(a)’ is preserved under T-isomorphisms and f [Néi | = No’; :
setwise, we have that f(b) rk co-catches N, but for every n > k,

pcl(NY U{f(b)}) N NS Z NY .

From this, as pcl is finitely based, it follows easily that for every s* € J,, there is s € J,,
s > s* such that
pel(Ny U {f(0)}, Ny) N Ny # N

That is, f(b) does not have bounded effect in NY. As o ¢ Y, we obtain a contradiction
from Ny = —0(ty(a)) and Ny = 1. O

Theorem 5.4.2. If Aty has < 2™ non-isomorphic atomic models of size N, then Aty is
ranked.

Proof. Assume that Aty is not ranked. By Proposition 3.16 we obtain a witness to
Data 5.0.1. As the proof of Proposition 5.4.1 is finite, the hypotheses there can be weak-
ened to the existence of a countable, transitive model of a large enough, finite subset of
ZFC. However, the existence of such a countable, transitive model is provable from ZFC
itself (using the Reflection Theorem). Thus, the existence of 2%! non-isomorphic atomic
models of size N; is provable in ZFC alone. ]
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