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Abstract

Working within the context of countable, superstable theories, we give many
equivalents of a theory having NOTOP. In particular, NOTOP is equivalent to V-DI,
the assertion that any type V -dominated by an independent triple is isolated over the
triple. If T has NOTOP, then every model N is atomic over an independent tree of
countable, elementary substructures, and hence is determined up to back-and-forth
equivalence over such a tree. We also verify Shelah’s assertion from Chapter XII of
[9] that NOTOP implies PMOP (without using NDOP).

1 Introduction
The notion of a complete theory T having NOTOP was introduced by Shelah in [9]. This
notion was the capstone of his celebrated “Main Gap” theorem. There, he proves that a
complete theory T in a countable language has fewer than 2κ non-isomorphic models of
some uncountable cardinal κ if and only if T is superstable, has NDOP and NOTOP, and is
shallow. In more detail, call a complete theory T in a countable language classifiable if it is
superstable with NDOP and NOTOP.1 In [10], Shelah and Buechler prove that a countable
theory T is classifiable if and only if every model N is constructible and minimal over
an independent tree of countable, elementary submodels. In particular, N is uniquely
determined up to isomorphism by such a tree.

∗Both authors partially supported by NSF grant DMS-2154101.
1NDOP, ‘not the Dimensional Order Property’ is defined in Subsection 4.2 and NOTOP, ‘not the Omitting

Types Order Property’ is defined in Definition 1.2.
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Historically, the notion of NOTOP was only defined after Shelah proved that any count-
able, superstable theory with DOP had 2κ non-isomorphic models of size κ for every un-
countable cardinal κ. Consequently, relatively little effort was made in studying countable,
superstable theories with NOTOP, without additionally assuming DOP. Here, we remedy
this by proving many equivalents of a (countable, superstable) theory T having NOTOP.
We see that such theories admit a structure theorem that is only slightly weaker than in the
classifiable case, namely

Theorem 1.1. If T is countable, superstable, with NOTOP, then every model N is atomic
over an independent tree of countable, elementary submodels.

Thus, N is determined up to back-and-forth equivalence by such a tree.
So, what is NOTOP? Unlike other stability theoretic dividing lines, it is expressed in

terms of a family of models MR that can code arbitrary graphs via omitting types. It is
noteworthy that the definition makes sense for any complete theory, without even assuming
stability.

Definition 1.2. A theory T has OTOP, the Omitting Types Order Property, if there is a
type p(x, ȳ, z) such that for every binary relation R on any set X , there is a model MR of
T and {āi : i ∈ X} from MR such that, for every (i, j) ∈ X2, MR omits p(x, āi, āj) if and
only if R(i, j) holds.
T has NOTOP if it does not have OTOP.

Here, within the context of countable, superstable theories, we give many equivalents
of NOTOP that can be described in terms of finite configurations of sets. Most notably,
the property that T satisfies V-DI – short for ‘V-Domination implies Isolation,’ which as-
serts that tp(c/A1A2) is isolated whenever c is V -dominated by an independent triple
(A0, A1, A2) of finite sets, is one such equivalent. Independent triples and V-domination
are defined in Definitions 2.1 and 2.3. Lemma 2.6 lists several equivalent statements, any
one of which is equivalent to V-DI.

Theorem 1.3. The following are equivalent for a countable, superstable theory T .

1. T has V-DI;

2. T has Pe-NDOP and PMOP;2

3. T has Pe-NDOP and countable PMOP;
2PMOP, Prime models over pairs, is classical and asserts the existence of a constructible model over

every independent triple of models, see Definition 3.1. Regular types being Pe is defined in Definition 4.2,
and T having Pe-NDOP is defined in Definition 4.31.
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4. T has linear NOTOP;3

5. T has NOTOP.

In particular, we prove that NOTOP implies PMOP for countable, superstable theories.
This implication had previously been proved under the additional assumption of NDOP
[9, 3].

Throughout the paper, we assume T is a complete, superstable theory in a countable language.

In Section 2 we define V -domination and V-DI. With Lemma 2.6 we prove many
equivalences of V-DI. It is immediate from these characterizations that V-DI implies count-
able PMOP, but in Section 3 we show that V-DI implies full PMOP, i.e., constructible
models exist over independent triples of models of any size. This requires us to consider
P−(n)-stable systems of models for all n ≥ 2.

In Section 4 we develop an idea of Baisalov [2] by defining a family of non-orthogonality
classes of regular types Pe in terms of the existence of a stationary, weight one (not nec-
essarily regular!) type in the class being non-isolated over some finite set containing its
canonical base. Following the thesis of [7], we localize the notion of NDOP to the specific
class Pe of regular types and show its relation to V-DI. With Theorem 4.33 we show that
V-DI is equivalent to the conjunction of Pe-NDOP and PMOP.

On the flip side, we use ideas from [6] to study dull pairs M � N , where every
c ∈ N \M has tp(c/M) ⊥ Pe. We see that if M � N is a dull pair, then M and N are
back-and-forth equivalent over any finite subset of M .

In Section 6, we show that theories with V-DI admit tree decompositions in the same
sense as for classifiable theories. In both cases, arbitrarily large models N are atomic
over an independent tree of countable, elementary substructures. In the classifiable case,
this is tight, i.e., N is prime and minimal over the tree. Here, we show that if N,N ′ are
two models that admit the same tree decomposition, then N and N ′ are back-and-forth
equivalent over the tree.

In Section 7, we explore more about the class of regular types Pe. In the ω-stable case,
having Pe-NDOP is equivalent to the older notion of eni-NDOP, but with Example 7.2,
we see that they can differ in some countable, superstable theories.

Many of the old, standard results we use are relegated to the Appendix. There is a small
amount of new material in the ‘na-substructures’ subsection, but mostly it is a recording
of definitions and facts that are presented for the convenience of the reader.

We are grateful to Saharon Shelah for many insightful conversations about potential
variants of OTOP.

3See Definition 6.2.
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2 V -domination and V-DI
The notion of V -domination is due to Harrington, who as early as the 1980’s, realized its
connection to NOTOP. Our story starts with an investigation of independent triples of sets.

Definition 2.1. An independent triple of sets A = (A0, A1, A2) is any triple of sets satis-
fying A0 ⊆ A1 ∩ A2 and A1

Â0

A2.

Given two independent triples A = (A0, A1, A2) and B = (B0, B1, B2) of sets, we
say that B extends A, written AvB if Ai ⊆ Bi for each i, B0

Â0

A1A2, B1
B̂0A1

A2, and

B2
B̂0A2

B1 hold.

It is easily checked that the relation v is transitive. Whereas M1M2 need not be a
model for an arbitrary independent triple M , the category of independent triples with v
acts similarly to the category of models with �. In particular, we have the following.

Fact 2.2. 1. For any independent triples, MvB implies M1M2 ⊆TV B1B2 (see Defi-
nition A.4);

2. (Upward LS) For any independent triple A, there is an independent triple M w A
consisting of a-models (or even, κ-saturated for any cardinal κ);

3. (Downward LS) For any independent triple M of models, for any infinite cardinal
λ, and for any set X ⊆ M1M2 with |X| < λ, there is AvM with X ⊆ A1A2 and
|A1A2| < λ.

Definition 2.3. We say that c is V -dominated by A if c
Â1A2

B1B2 for every B w A.

Many facts about V -domination are evident.

Fact 2.4. 1. If c is V -dominated by A, then stp(c/A1A2) ` tp(c/B1B2) for every
B w A.

2. If c is V -dominated by A, then c is V -dominated by every B w A.

3. If c is V dominated by B and B w A with c
Â1A2

B1B2, then c is V -dominated by A.

4. If M is an independent triple of models and if tp(c/M1M2) is `-isolated, then c is
V -dominated by M .
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Proof. (1) Choose c′ such that stp(c′/A1A2) = stp(c/A1A2). Clearly, c′ is V -dominated
byA as well, so we have both c

Â1A2

B1B2 and c′
Â1A2

B1B2, hence tp(cB1B2) = tp(c′B1B2).

(2) is immediate by the transitivity of v. (3) and (4) are respectively, Lemmas 2.2 and
2.6 of [3].

If the independent triple consists of a-models, we can say more.

Fact 2.5. Suppose M = (M0,M1,M2) is an independent triple of a-models. Then the
following are equivalent for a finite tuple c.

1. c is V -dominated by M ;

2. There is an independent tripleBvM of finite sets with tp(c/B1B2) ` tp(c/M1M2);

3. tp(c/M1M2) is a-isolated;

4. tp(c/M1M2) is `-isolated (see Definition A.6).

Proof. (1)⇒ (2) : By superstability, choose a finiteX0 ⊆M1M2 such that c
X̂0

M1M2. In

fact, by either Shelah’s Conclusion XII.3.5 in [9] or Hart’s Relative Stationarity Lemma,
Lemma 1.19 of [3], there is a finite X , X0 ⊆ X ⊆M1M2 for which tp(c/X) is based and
relatively stationary inside M1M2. Find a finite AvM with X ⊆ A1A2. By Fact 2.2(3),
c is V -dominated by A, hence stp(c/A1A2) ` tp(c/M1M2) by Fact 2.4(1). However, by
the relative stationarity, this is strengthened to tp(c/A1A2) ` tp(c/M1M2).

(2)⇒ (3) is trivial, and (3)⇒ (4) is by Conclusion XII.2.11 of [9]. Finally, (4)⇒ (1)
is immediate from Fact 2.4(4).

We ostentatiously ask when all of these variants of isolation over independent triples
are actually isolated over the triple. There are many equivalent ways of formalizing this
idea.4

Lemma 2.6. The following are equivalent for any countable, superstable theory.

1. For every independent triple A of sets and for every finite c, if c is V -dominated by
A, then tp(c/A1A2) is isolated;

2. For every independent tripleM of a-models and for every finite c, if c is V -dominated
by M , then tp(c/M1M2) is isolated;

3. For every independent triple M of countable models and for every finite c, if c is
V -dominated by M , then tp(c/M1M2) is isolated;

4The analogous statement involving `-isolation over arbitrary sets would not be equivalent, as e.g., every
type over a finite set is always `-isolated.
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4. For every independent triple M of models and for every finite c, if tp(c/M1M2) is
`-isolated, then tp(c/M1M2) is isolated;

5. For every independent triple M of a-models and for every finite c, if tp(c/M1M2) is
`-isolated, then tp(c/M1M2) is isolated;

6. For every independent tripleM of countable models and for every finite c, if tp(c/M1M2)
is `-isolated, then tp(c/M1M2) is isolated.

Proof. As (5) and (2) are equivalent by Fact 2.5, it suffices to show the equivalence of
(1), (2), (3) and (4), (5), (6) separately.

(1) ⇒ (3) is trivial. (3) ⇒ (2): Suppose c is V -dominated by a-models N . Choose
a finite BvN with tp(c/B1B2) ` tp(c/N1N2). By Fact 2.2(3), choose an independent
triple MvN of countable models with B1B2 ⊆M1M2. By Fact 2.4(3), c is V -dominated
by M1M2, hence tp(c/M1M2) is isolated by (3). In particular, tp(c/B1B2) is isolated,
hence tp(c/N1N2) is isolated as well.

(2) ⇒ (1): Suppose c is V -dominated by A. By Fact 2.2(2), choose a triple M of
a-models with AvM . Then c is V -dominated by M , hence tp(c/M1M2) is isolated. As
c
Â1A2

M1M2, tp(c/A1A2) is isolated by the Open Mapping Theorem, Fact A.3.

Turning to (4), (5), (6), (4)⇒ (6) is trivial. (6)⇒ (5): Suppose N is an independent
triple of a-models and tp(c/N1N2) is `-isolated. As T is countable, choose a countable
A ⊆ N1N2 such that for every ϕ(x, y), tpϕ(c/N1N2) is isolated by some L(A)-formula
ψ(x). By Fact 2.2(3), choose a triple of countable models MvN with A ⊆ M1M2. By
(6), tp(c/M1M2) is isolated, hence tp(c/N1N2) is isolated as well by Fact 2.2(1) and
Lemma A.5.

(5) ⇒ (4): Say M is an arbitrary triple of models and tp(c/M1M2) is `-isolated. By
Fact 2.2(2), choose an independent triple of a-models N w M . By Fact A.8, tp(c/N1N2)
is also `-isolated, hence tp(c/N1N2) is isolated by (5). Thus, tp(c/M1M2) is isolated by
the Open Mapping Theorem.

Definition 2.7. A (countable, superstable) theory T has V-DI, read V-domination implies
isolation, if any one of the conditions in Lemma 2.6 hold.

Note that if a (countable, superstable) T is V-DI, then a constructible model exists over
every independent triple of countable models. [Given such an M , by Fact A.7(2) choose a
countable, `-atomic model over M1M2. Since T is V-DI, N is atomic over M1M2, hence
constructible by Fact A.2(2).] In the next section we will improve this by showing that
V-DI implies the existence of a constructible model over any independent triple of models.
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3 V-DI implies PMOP
Definition 3.1. A theory T has Prime Models Over Pairs, PMOP, if there is a constructible
model over every independent triple of models.

The main goal of this section is to prove Theorem 3.6, that a countable superstable the-
ory T with V-DI also has PMOP. Although V-DI was never explicitly described, this result
was essentially proved by both Shelah [9] and Hart [3], under the additional assumption of
NDOP. Here, we prove the theorem without assuming NDOP. Curiously, the proof without
NDOP is arguably more straightforward than either of the previous proofs.

For this, we pass from independent triples of models to certain stable systems of mod-
els. All of this development is due to Shelah and can be found in Chapter XII of [9].

Definition 3.2. For n ≥ 2, let P−(n) denote the partial order defined by subset on the set
P(n) \ {n} with 2n − 1 elements. A P−(n)-stable system of models M = (Ms : s ∈
P−(n)) satisfies:

• Mt �Ms whenever t ⊆ s; and

• for each s, Ms
M̂<s

⋃
{Mt : t 6⊇ s}.

Given two P−(n)-stable systems M,N , we say MvN if, for each s ∈ P−(n), Ms � Ns

and Ns ^
Ms

⋃
N⊂s

⋃
{Nt : t 6⊇ s}.

We say a finite tuple c is P−(n)-dominated by P−(n)-stable system M if c ⋃̂
M

⋃
N

for all N wM .

Note that an independent triple (M0,M1,M2) of models is precisely a P−(2)-stable
system of models and the definitions of v given in definitions 2.1 and 3.2 coincide. As
well, Facts 2.2, 2.4 and 2.5 go through in this more general setting.

Fact 3.3. SupposeM is a P−(n)-stable system of a-models. Then the following are equiv-
alent for a finite tuple c.

1. c is P−(n)-dominated by M ;

2. There is someP−(n)-systemBvM of finite sets such that tp(c/
⋃
B) ` tp(c/

⋃
M);

3. tp(c/
⋃
M) is a-isolated;

4. tp(c/
⋃
M) is `-isolated.
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The following notion is a simplification of Hart’s ‘λ-special P−(n)-system’ and She-
lah’s sp. stable system in XII.5.1 of [9]. The crucial distinction is that we only require our
”special” nodes to be atomic, as opposed to constructible. By e.g., Fact A.2(2), the notions
coincide over systems of countable models, but typically are distinct over uncountable sys-
tems.

Definition 3.4. An atomic-special P−(n)-stable system of models has the additional prop-
erty that for all s ∈ P−(n) with {0, 1} ⊆ s, Ms is atomic over

⋃
M<s.

We say T has a-s P−(n)-DI if there is an atomic model M∗ over
⋃
M for every atomic-

special P−(n)-stable system of models.

Note that any independent triple M = (M0,M1,M2) of models is an atomic-special
P−(2)-stable system of models, so V-DI implies a-s P−(2)-DI by the discussion at the end
of Section 2. The following Proposition extends this to higher dimensional a-s systems.

Proposition 3.5. Suppose T has V-DI. Then T has a-s P−(n)-DI for all n ≥ 2.

Proof. We prove this by induction on n ≥ 2. That T has a-s P−(2)-DI was noted above,
so fix n ≥ 2 and assume T has a-s P−(k)-DI for all 2 ≤ k ≤ n. Let M = (Ms :
s ∈ P−(n + 1)) be an atomic-special P−(n + 1)-stable system. We first note that, under
these hypotheses, the standard method of blowing up M to a P−(n + 1)-system of ℵ1-
saturated models preserves being atomic-special. To see that, choose an enumeration (si :
i < 2n+1 − 1) of P−(n + 1) such that si ⊆ sj implies i ≤ j. We recursively construct
a sequence (Nsi) of ℵ1-saturated models satisfying Nsi ^

Msi

⋃
{Nsj :j<i}

⋃
{Mt : t 6⊇ s} and

when |si| ≥ 2, Nsi is chosen to be ℵ1-prime over Msi

⋃
N<si . It follows from XII.2.6 of

[9] that the resulting system N = (Ns : s ∈ P−(n + 1)) is a stable system, and in fact
MvN . To see that N is atomic-special, we argue by induction on i, that if {0, 1} ⊆ si,
then Nsi is atomic over N<si . Choose i for which {0, 1} ⊆ si and assume that this holds
for all j < i. Let k = |si|. Our inductive hypothesis implies the subsystem N⊂si is an
atomic-special P−(k)-system. Since M was assumed to be atomic-special, Msi is atomic
overM⊂si . However, since

⋃
M⊂siv

⋃
N⊂si , we also have that the setMsi is atomic over⋃

N⊂si by Lemma A.5. As Nsi was chosen to be ℵ1-atomic over MsiN⊂si , it follows that
Nsi is also ℵ1-atomic over N⊂si . Since the subsequence (Nt : t ⊂ si) is an a-s P−(k)-
stable system of ℵ1-saturated models, it follows from Fact 3.3 thatNsi isP−(k)-dominated
by (Nt : t ⊂ si). Thus, Nsi is atomic over N⊂si since a-s P−(k)-DI holds.

Now suppose c is P−(n + 1)-dominated by M and choose an a-s P−(n + 1)-stable
system N w M consisting of ℵ1-saturated models. We will show that tp(c/

⋃
N) is

isolated, which, since c
M̂
N , directly implies tp(c/M) is isolated by the Open Mapping

Theorem.
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Next, we unpack N into three pieces. Let K0 = (Ns : s ∈ P−(n)) and let K1 =
(Ns∪{n} : s ∈ P−(n)), with the third, remaining piece Nn. Note that K0vK1 as P−(n)-
systems;

⋃
K0 ⊆

⋃
K1, hence

⋃
N =

⋃
K1 ∪ {Nn}; and that K1 is an a-s P−(n)-stable

system.

Claim. Nnc is P−(n)-dominated by K1.

Proof. Since Nn is atomic over
⋃
K0, Nn is P−(n)-dominated by K0. As K0vK1, it

follows thatNn is P−(n)-dominated byK1 as well. Now choose any P−(n)-stable system
E w K1. It follows that

Nn ⋃̂
K1

⋃
E

Form a P−(n + 1)-stable system E
∗

by piecing together K0, E, and Nn. It is readily
checked that NvE∗ as P−(n+1)-structures, hence c ⋃̂

N

⋃
E
∗
, so by transitivity we have

cNn ⋃̂
K1

⋃
E, proving the Claim.

By the Claim and K1 being an a-s P−(n)-DI, we have that cNn is atomic over
⋃
K1.

Additionally, by Fact 2.5, there is a finite b ⊆
⋃
N for which

tp(c/b) ` tp(c/
⋃

N)

Recall that
⋃
N =

⋃
K1 ∪Nn. Thus, tp(bc/K1) is isolated, which implies tp(c/K1b) is

isolated as well. As tp(c/b) ` tp(c/N), the same formula isolates tp(c/N) as well.

At this point, we could simply quote Theorem 3.3 of [3] to conclude the following
theorem. However, our new notion of being atomically special simplifies the argument
somewhat.

Theorem 3.6. If a countable, superstable theory T has V-DI, then it has PMOP.

Proof. We argue that for all infinite cardinals κ,

For all n ≥ 2, there is a constructible model N over any atomic-special
P−(n)-systemM with |

⋃
M | ≤ κ. (∗∗)

To begin, note that this holds for κ = ℵ0 by coupling Fact A.2(2) with Proposition 3.5. So
fix an uncountable cardinal κ and assume we have the above for all λ < κ. Choose n ≥ 2
and an atomic-special P−(n)-stable system M = (Ms : s ∈ P−(n)) with |

⋃
M | = κ.

Let µ = cf(κ). By iterating the analogue of Fact 2.2(3), choose an elementary chain
(M

α
: α < µ) of P−(n)-systems such that

9



1. |
⋃
M

α| < κ;

2. M
αvMα+1

for all α; and

3. M =
⋃
{Mα

: α < µ}.

We will recursively build a sequence of sequences c̄α for each α such that

1. c̄α is an initial segment of c̄β whenever α ≤ β < µ:

2. c̄α enumerates a constructible model Nα over
⋃
M

α
;

3. c̄α is also a construction sequence over M (hence also over any M
β
, β ≥ α).

To begin, since |
⋃
M

0| < κ, apply (∗∗) to get c̄0, enumerating a constructible model
over M

0
. As

⋃
M

0 ⊆TV M , c̄0 is also a construction sequence over
⋃
M . For γ < µ a

non-zero limit, take c̄γ to be the concatenation of all c̄α, α < γ.
Say α < µ and c̄α has been found. Let Nα =

⋃
c̄α. Note that since M

αvMα+1
,

the three pieces (M
α
,M

α+1
, Nα) form a P−(n + 1)-stable system. We also claim that

it is atomic-special. For this, choose s ∈ P−(n + 1) with {0, 1} ⊆ s. There are three
cases. First, if s = n = {i : i ∈ n}, then as Nα is constructible over

⋃
M

α
, it is atomic

over
⋃
M

α
as well. Second, if s ⊂ n, s 6= n, then by M

αvM we have Mα
s
M̂α

<s

M<s.

But, as M is atomic-special, every finite e ∈ Mα
s has tp(e/

⋃
M<s) isolated. Thus,

by the Open Mapping Theorem, tp(e/M
α+1

<s ) is isolated as well. Third, if n ∈ s, then
similarly, Mα+1

s
M̂
α+1
<s

M<s and tp(e/
⋃
M<s) is isolated for all finite e ∈Mα+1

s , so again,

tp(e/M
α+1

<s ) is isolated by the Open Mapping Theorem.
Thus, by our inductive hypothesis, there is a constructible modelNα+1 over

⋃
M

α+1
c̄α.

However, as M
α ⊆TV M

α+1
, c̄α is also constructible over

⋃
M

α+1
. Thus, there is a con-

struction sequence c̄α+1 end extending c̄α that enumerates Nα. For any such choice of
c̄α+1, since M

α+1 ⊆TV M , we have that c̄α+1 is also a construction sequence over
⋃
M ,

as required.

4 Pe and always isolated types
Following an idea of Baisalov [2], we begin with a novel definition.

Definition 4.1. An e-type is a stationary, weight one type p(x, d) with d finite that is non-
isolated.
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Following the template given in [7], we use this notion to define a family of regular
types. In [2] he called elements of Pe w-types.

Definition 4.2. Pe is the set of all regular types that are non-orthogonal to an e-type.

It is evident that the class Pe of regular types is closed under automorphisms of C and
non-orthogonality. The latter uses that non-orthogonality is an equivalence relation on the
class of all stationary, weight one types. With an eye on the results in [7], we show one
more closure property of Pe.

Definition 4.3. Suppose p, q are regular types. We say q lies directly over p if there are
a-models M � N and elements a, b such that tp(a/M) regular and non-orthogonal to p,
tp(b/N) regular and non-orthogonal to q, with N dominated by a over M and q ⊥M . We
also say p supports q if q lies directly over p.

Lemma 4.4. If q ∈ Pe and q lies directly over some regular type p, then p ∈ Pe as well.

Proof. Let M be an a-model on which p is based and let N = M [a] be a-prime over M
and a realization of p with q 6⊥ N . As q ∈ Pe choose a non-isolated weight one, stationary
r ∈ S(d) with d ⊆ N finite with r 6⊥ q. Let b be any realization of r|da. Since da is
dominated by a over M and tp(b/da) ⊥ M , we have that bda is dominated by a over M ,
from which it follows that wt(bd/M) = 1. Choose any finite e ⊆ M so that tp(bd/M)
is based and stationary on e. Then tp(bd/e) is a non-isolated weight one, stationary type
non-orthogonal to p, hence p ∈ Pe.

Thus, in the terminology of [7], Pe = Pactive
e . We now turn to the complementary

notion.

Definition 4.5. A strong type p is always isolated if, for all finite d on which p is based,
tp(a/d) is isolated for any realization of a of p|d.

Lemma 4.6. For any strong type p, if p ⊥ Pe, then p is always isolated.

Proof. By induction on wt(p). If wt(p) = 1, but there were some finite d on which p is
based with p|d non-isolated, then let b be any realization of p|d. Then p|db is stationary,
weight one, and non-isolated by the Open Mapping Theorem, contradicting p ⊥ Pe, so
the Lemma holds for wt(p) = 1.

Assume the Lemma holds for all strong types of weight at most n. Choose a strong
type p ⊥ Pe of weight n + 1 and choose a finite set d on which p is based. Choose an
a-model M ⊇ d and let a realize p|M . We will show tp(a/d) is isolated. As M is an
a-model, choose an M -independent set {bi : i ≤ n} such that tp(bi/M) is regular and
a /̂
M
bi for each i. Choose an a-model N∗ = M [bi : i ≤ n] with a ∈ N∗ and within
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N∗, choose N � N∗ to be a-prime over M ∪ {bi : i < n}. Choose any finite e ⊆ N
on which tp(a/N) is based. As e ⊆ N , e is dominated by {bi : i < n} over M , hence
tp(e/M) ⊥ Pe and wt(e/M) ≤ n. Choose a finite h ⊇ d on which tp(e/M) is based.
By our inductive hypothesis tp(e/h) is isolated. As well, eh ⊆ N and tp(a/N) is based
on this set, hence tp(a/eh) is isolated as well. Putting these together, tp(a/h) is isolated.
However, a

d̂
h, so tp(a/d) is isolated by the Open Mapping Theorem.

Proposition 4.7. Let p be any strong type. Then p ⊥ Pe if and only if every strong type
q / p is always isolated (see Definition A.10).

Proof. If p ⊥ Pe, then q ⊥ Pe for every q/p, so left to right follows from Lemma 4.6. For
the converse, assume p 6⊥ Pe. Choose a regular q ∈ Pe with q 6⊥ p. As q ∈ Pe, choose a
stationary, weight one r 6⊥ q that is not always isolated. As r / q / p, we finish.

The following Lemma is likely well-known, but as we do not know of a specific refer-
ence, we include its proof for the convenience of the reader.

Lemma 4.8. (T stable) Suppose p = tp(a/b) is any non-algebraic type and let q(x) ∈
S(ba) be the stationary non-forking extension for which stp(c/b) = stp(a/b) for some/every
realization c of q. If q is isolated, then there are only finitely many strong types ex-
tending p. In fact, there is some E∗(x, y) ∈ FE(b) such that for any a1, a2 realizing
p, stp(a1/b) = stp(a2/b) iff E∗(a1, a2) holds.

Proof. Let {αi(x, b, a) : i ∈ I} enumerate the formulas that fork over b and let {Ej :
j ∈ J} enumerate FE(b). Note that

∧
j∈J Ej(x, a) ` p(x), so by the Finite Equivalence

Relation theorem, q is generated by

{Ej(x, a) : i ∈ J} ∪ {¬αi(x, b, a) : i ∈ I}

If ϕ(x, b, a) isolates q, there are finite subsets J0 ⊆ J and I0 ⊆ I} entailing ϕ(x, b, a).
Put E∗(x, y) :=

∧
j∈J0 Ej(x, y). Then E∗(x, y) ∈ FE(b), and it suffices to show that

∀x(E∗(x, a) ` Ej(x, a)) for every j ∈ J . To see this, fix any j ∈ J and choose any a1

such that E∗(a1, a) holds. As E∗(x, a) ∈ FE(b), it is not a forking formula over b, hence
there is some a2 ∈ C such that stp(a1/b) = stp(a2, b), E∗(a1, a2), and a2

b̂
a. From

above, ϕ(a2, b, a), hence Ej(a2, a) holds. But stp(a1/b) = stp(a2/b) implies Ej(a1, a2),
so Ej(a1, a), as required.

Lemma 4.8 immediately gives the following ω-stable-like behavior of types orthogonal
to Pe.

Lemma 4.9. Suppose M is any model and p = tp(a/M) ⊥ Pe. Then there is some finite
d ⊆M on which p is based and stationary.

12



Proof. Choose a finite b ⊆ M on which p is based. Since p is always isolated, choose
ψ(x, b) isolating p0 := tp(a/b). Choose a′ ∈ p(C) with a

b̂
a′ and let q = tp(a/ba′). So

q is stationary and based on ba′. As q is parallel to p, it is always isolated, hence there is
ϕ(x, b, a′) isolating q|ba′. Choose E∗(x, y) ∈ FE(b) as in Lemma 4.8. Now a′ 6∈ M , but
ψ(M, b) contains a complete set of representatives of the E∗(x, y)-classes consistent with
ψ(x, b). Choose a∗ ∈ ψ(M, b) withE∗(a′, a∗). As both a′ and a∗ realize p0, it follows from
Lemma 4.8 that stp(a′/b) = stp(a∗/b). Choose a strong automorphism σ ∈ Aut(C/b)
with σ(a′) = a∗ and put q∗(x, b, a∗) := σ(q). Then q∗ is stationary and, since since both
a′ and a∗ are independent from a over b, it follows that tp(aa′b) = tp(aa∗b). That is, a
realizes the stationary type q∗, so p is based and stationary over ba∗.

Recall that a stationary type p ∈ S(A) is strongly regular if there is a formula ϕ(x, a) ∈
p such that for every global type q ∈ S(C) with ϕ(x, a) ∈ q, either q ⊥ p or q is the
unique non-forking extension of p to S(C). The notion of a type being na is defined in
Definition A.21 and its properties are explored in Section A.5 of the appendix.

Lemma 4.10. Suppose p ∈ S(M) is regular with p ⊥ Pe. Then p is both strongly regular
and na.

Proof. By Lemma 4.9, choose any finite d ⊆M on which p is based and stationary. Since
p is always isolated, there is a formula θ(x, d) ∈ p isolating the type p|d. We first argue
that p is strongly regular via θ(x, d). To see this, choose any global type q ∈ S(C) with
θ(x, d) ∈ q. As θ(x, d) isolates p|d, q extends the regular type p|d. Thus, if q 6⊥ p, then
q 6⊥ p|d, so q is the non-forking extension of p|d, which is also the non-forking extension
of p to S(C).

To see that p is na, choose any ϕ(x, b) ∈ p. By replacing ϕ(x, b) by ϕ(x, b) ∧ θ(x, d),
we may assume d ⊆ b and ϕ(x, b) ` θ(x, d). Since p is always isolated, p|b is isolated, say
by δ(x, b). Since M is a model, choose e ∈ M realizing δ(x, b). Then e ∈ ϕ(M, b), but
tp(e/b) = p|b, hence is non-algebraic.

Recall that a type tp(a/B) is c-isolated if there is a formula ϕ(x, b) ∈ tp(a/B) such
that R∞(q) = R∞(ϕ(x, b)) for every q ∈ S(B) with ϕ(x, b) ∈ q.

Proposition 4.11. Suppose stp(b/M) ⊥ Pe and choose c to both be c-isolated over Mb
and such that bc is dominated by b over M . Then tp(c/Mb) is isolated.

Proof. Choose θ(x, b,m) ∈ tp(c/Mb) with R∞(θ(x, b,m)) = R∞(c/Mb). By increasing
m (but keeping it finite), Lemma 4.9 allows us to assume tp(bc/M) is based and stationary
on m. As tp(bc/M) ⊥ Pe, we conclude that tp(bc/m) is isolated, say by ϕ(x, y,m). It
follows that ϕ(x, b,m) isolates tp(c/bm), but we argue that ϕ(x, b,m) isolates tp(c/Mb).
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To see this, choose any c′ realizing ϕ(x, b,m). Note that ϕ(x, y,m) ` θ(x, y,m), so
it follows that c′

b̂m
M . However, tp(c′b/m) = tp(cb/m) is stationary and both cb and c′b

are independent with M over m, hence tp(c′bM/m) = tp(cbM/m). As m ⊆ M , this
implies tp(c′/Mb) = tp(c/Mb), as required.

We do not know whether the following result requires that M be countable.

Corollary 4.12. For any countable modelM and any finite b, if tp(b/M) ⊥ Pe, then there
is a constructible model M(b) ⊇Mb.

Proof. As T and M are countable, it suffices to show that the isolated types over Mb
are dense. Choose any consistent formula ψ(x, a, b) with a from M . Among all consistent
L(Mb)-formulas that imply ψ(x, a, b), choose θ(x, a′, b) ` ψ(x, a, b) of leastR∞-rank and
then choose an element c ∈ θ(C, a′, b) that is `-isolated over Mb. Thus, cb is dominated
by b over M and tp(c/Mb) is c-isolated, hence tp(c/Mb) is isolated by Proposition 4.11.
From this density result, a constructible model over Mb exists.

4.1 Dull pairs
Definition 4.13. We call M � N a dull pair if tp(N/M) ⊥ Pe.

The following Proposition gives an easily checkable criterion for whether a given pair
of models is dull. The notion of M ⊆na N is defined in Definition A.17.

Proposition 4.14. M � N is a dull pair if and only if every regular type p ∈ S(M)
realized in N is orthogonal to Pe.

Proof. Left to right is immediate. For the converse, assume M � N and that every
regular type p ∈ S(M) realized in N is ⊥ Pe. By Lemma 4.10, every such p is na, so
by Proposition A.22, M ⊆na N . Assume by way of contradiction that tp(N/M) 6⊥ Pe.
Choose a (regular) r ∈ Pe such that tp(N/M) 6⊥ r. Since M ⊆na N , it follows from
e.g., Proposition 8.3.5 of [8] that there is b ∈ N \M such that tp(b/M) is regular and
non-orthogonal to r, contradicting our assumption.

Lemma 4.15. Suppose M � N is a dull pair. Then:

1. M ⊆na N ;

2. There is some a ∈ N \M with tp(a/M) strongly regular, and for any such choice
of a,
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(a) There is a model M ′ � N containing a, and dominated by a over M ; and

(b) For any such M ′, M ′ � N is a dull pair.

3. If (Mα : α < β) is any continuous, increasing chain of substructures of N with
Mα � N dull for each α, then

⋃
{Mα : α < β} � N is a dull pair.

Proof. (1) Choose any regular type p ∈ S(M) that is realized in N . Since p ⊥ Pe, p is na
by Lemma 4.10, so M ⊆na N by Proposition A.22.

(2) Choose any a ∈ N \M for which tp(a/M) is regular. Then tp(a/M) is strongly
regular by Lemma 4.10. Now fix such an a ∈ N \ M . For (a), the existence of such
an M ′ follows by (1) and Fact A.18(3). For (b), fix any such M ′ and choose any regular
p ∈ S(M ′) that is realized in N . Any such p is strongly regular by Lemma 4.10. We show
p ⊥ Pe by splitting into cases. If p 6⊥ M , then since M ⊆na N by (1), Fact A.18(2)
(the 3-model Lemma) implies there is some regular q ∈ S(M) non-orthogonal to p that is
realized in N . Since M � N is dull, q ⊥ Pe, hence p ⊥ Pe as well. On the other hand, if
p ⊥M , then p lies directly above tp(a/M), hence p ⊥ Pe by Lemma 4.4.

(3) Let M∗ :=
⋃
{Mα : α < β} and choose any regular type p ∈ M∗ that is realized

in N . By superstability, choose α∗ < β such that p is based and stationary on Mα∗ . Since
Mα∗ � N is dull, p|Mα∗ and hence p are ⊥ Pe.

Definition 4.16. Suppose M � N are models. A strongly regular filtration of N over M
is a continuous, elementary chain (Mα : α ≤ β) of models satisfying M0 = M , Mβ = N ,
and for each α < β, there is some aα ∈ Mα+1 such that tp(aα/Mα) is strongly regular
and Mα+1 is dominated by aα over Mα.

We say that a strongly regular filtration is prime if, in addition, Mα+1 is constructible
over Maα.

Proposition 4.17. Suppose M � N is dull. Then a strongly regular filtration of N over
M exists. Additionally, if N is countable, then a prime strongly regular filtration exists.

Proof. Given M � N , construct a maximal continuous chain of submodels (Mα : α < γ)
of N such that M0 = M , each Mα � N is dull, and Mα+1 is dominated over Mα by
some aα ∈ N for which tp(aα/Mα) is strongly regular. By Lemma 4.15(3), γ cannot be
a limit ordinal, so say γ = β + 1. We argue that Mβ = N . If this were not the case, then
as Mβ � N is dull, by Lemma 4.15(2) there is some aβ ∈ N and Mγ contradicting the
maximality of the chain.

In the case where N is countable, we argue similarly, but at stage α, if we are given
Mα and aα ∈ N \Mα with tp(aα/Mα) strongly regular, we use Corollary 4.12 to choose
a constructible model Mα(aα) over Mαaα to serve as Mα+1.

Proposition 4.17 begets the following Corollaries.
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Corollary 4.18. 1. Suppose M � N is dull and K is any model satisfying M � K �
N . Then both M � K and K � N are dull.

2. Suppose M � K is dull and K � N is dull. Then M � N is dull.

Proof. (1) Given M � K � N with M � N dull, it is trivial that M � K is dull, hence
has a strongly regular filtration (Mα : α ≤ β) with Mβ = K. By Lemma 4.15(2,3),
depending on whether or not β is a limit ordinal, K � N as well.

(2) Now suppose M � K and K � N are dull. By Proposition 4.17 on each part,
there is a filtration of K over M and a filtration of N over K. The concatenation of these
filtrations gives a filtration (Mα : α ≤ β) of N over M . Note that for every α < β,
tp(aα/Mα) ⊥ Pe, either because M � K is dull (when Mα � K) or because K � N
is dull (when K � Mα). To see that M � N is dull, choose any e ∈ N \M for which
q = tp(e/M) is regular. As e ∈ Mβ = N , there is a least α such that e

M̂
Mα, but

e /̂
Mα

Mα+1. Then q is non-orthogonal to tp(aα/Mα), the latter being regular and ⊥ Pe by

our sentences above. Thus M � N is dull by Proposition 4.14.

We now embark on a series of Lemmas that will lead us to Proposition 4.24 and The-
orem 4.25. The structure of this argument is similar to what appears in Section 1 of [6],
but there we were assuming the theory was ω-stable. Indeed, these Lemmas would have
much easier proofs under the assumption of (ℵ0, 2)-existence, but here we are not even
assuming this.

Lemma 4.19. Suppose N is countable and M � N is dull. Let J ⊆ N \ M be any
M -independent set of finite sets. Then a constructible model over MJ exists.

Proof. Enumerate J = {āi : i ∈ ω} and, for each n ∈ ω, let Jn = {āi : i < n}. For
each n ∈ ω, choose Mn to be constructible over MJn. Without loss, we may assume
Mn � Mn+1 for each n. We claim that M∗ =

⋃
{Mn : n ∈ ω} is atomic over MJ . To

see this, choose any ē ⊆ M∗. Choose n ∈ ω so that ē ⊆ Mn. As Jn
M̂

(J \ Jn) we have

MJn ⊆TV MJ , hence tp(ē/MJ) is isolated by Lemma A.5. Thus, M∗ is atomic over
MJ . But as M∗ is countable, it is also constructible over MJ by Fact A.2(2).

Lemma 4.20. Suppose N is countable and M � N is dull. If J ⊆ N \M is any maximal
M -independent set, then N is constructible over MJ .

Proof. By Lemma 4.19 there is some constructible modelM∗ overMJ , which we may as-
sume is contained in N . Thus, N contains an atomic model over MJ . By Zorn’s Lemma,
let N0 � N be any maximal atomic model over MJ contained in N . By Fact A.2(2) it
suffices to show that N0 = N . Assume by way of contradiction that N0 ≺ N is proper.
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Choose any e ∈ N \N0 such that q = tp(e/N0) is regular. By Corollary 4.18(1), N0 � N
is dull, hence q ⊥ Pe. On one hand, if q 6⊥ M , then as M ⊆na N by Lemma 4.15(1),
the 3-model lemma gives d ∈ N with d

M̂
N0, but this contradicts the maximality of J .

So assume q ⊥ M . We will obtain a contradiction by showing that N0e is atomic over
MJ . For this, it suffices to show that tp(de/MJ) is isolated for any finite d ⊆ N0. So
choose any finite d ⊆ N0. Choose a finite d∗, d ⊆ d∗ ⊆ N0 on which q is based and
stationary. By superstablity, choose any finite J∗ ⊆ J for which d∗

M̂J∗
J . Note that d∗J∗

is finite and d∗J∗
M̂

(J \ J∗). Choose any finite ā∗ ⊆ M such that d∗J∗
â∗
M . It follows

by transitivity of non-forking that

d∗J∗
â∗
M(J \ J∗)

As d∗J∗a∗ ⊆ N0, tp(e/d∗J∗a∗) = q|d∗J∗a∗, and since q ⊥ M (hence q ⊥ a∗) it follows
from Fact A.11(2) that

tp(e/d∗J∗a∗) ` tp(e/d∗MJ)

However, since tp(e/N0) is always isolated, tp(e/d∗J∗a∗) is isolated, so tp(e/d∗MJ) is
isolated as well. Since d∗ ⊆ N0, tp(d∗/MJ) is also isolated. Thus, tp(ed∗/MJ) and
hence tp(ed/MJ) is isolated as well. This contradicts the maximality of N0.

Lemma 4.21. Suppose N is countable and p ∈ S(N) is regular and ⊥ Pe. Then for any
finite setA ⊆ N ,N ∼=A N(c), where c is any realization of p andN(c) is any constructible
model over Nc.

Proof. Note that by Corollary 4.12, a constructible model N(c) exists. Choose any finite
A ⊆ N , and by increasing A if necessary, we may assume p is based and stationary on
A. As p is always isolated, there is an infinite Morley sequence J ⊆ N in p|A. Partition
J = J0 ∪ J1 into two infinite pieces and choose B ⊆ N maximal such that B

ÂJ0
J1.

Claim 1. B is the universe of an elementary submodel M � N .

Proof. If not, choose α least for which R∞(ϕ(x, b)) = α for some consistent L(B)-
formula ϕ(x, b) that is not realized in B. Since N is a model, choose e ∈ ϕ(N, b). We
argue that e

B̂
J1, which contradicts the maximality ofB. Assume by way of contradiction

that this non-forking failed. Then there would be some finite b∗ ⊆ B such that e /̂
AJ0b∗

J1,

and we may assume b∗ ⊇ b. Choose a forking formula δ(x, a, b∗, h0, h1) ∈ tp(e/AJ0b
∗J1),

where a ∈ A, h0 ⊆ J0 and h1 ⊆ J1. By replacing δ by δ ∧ ϕ, we may assume
δ(x, a, b∗, h0, h1) ` ϕ(x, b), yet R∞(δ(x, a, b∗, h0, h1)) < α. We will obtain a contra-
diction by ‘dropping h1 down into J0,’ thereby contradicting the minimality of α.
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By superstability again, by enlarging h0 ⊆ J0 we may additionally assume that b∗
Âh0

J0,

hence also
b∗

Âh0
J0J1

by transitivity of non-forking. As J = J0 ∪ J1 is indiscernible over A and J0 is infinite,
we can find some h

′
0 ⊆ J0 such that

stp(h
′
0/Ah0) = stp(h1/Ah0)

Thus, as both h1 and h
′
0 are independent from b∗ over Ah0, tp(b∗ah0h

′
0) = tp(b∗ah0h1).

It follows that R∞(δ(x, b∗, a, h0, h
′
0)) < α and is a consistent L(B)-formula that is not

realized in B. This contradicts our choice of ϕ(x, b).

Claim 2. J1 is a maximal M -independent subset of N \M .

Proof. Choose any e ∈ N with e
M̂
J1. Since M

ÂJ0
J1, Me is independent from J1 over

AJ0, hence e ⊆M by the maximality of M .

It follows from Claim 2 that M � N is dull. To see this, choose e ⊆ N with tp(e/M)
regular. Since J1 is Morley sequence in p|M , the fact that e /̂

M
J1 implies that tp(e/M) 6⊥

p, hence tp(e/M) ⊥ Pe. Thus M � N is dull by Proposition 4.14. From this, it follows
from Lemma 4.20 that N is constructible over MJ1.

Claim 3. N(c) is constructible over MJ1c.

Proof. We knowN is constructible overMJ1 and since c
M̂
J1, we haveMJ1 ⊆TV MJ1c,

thus by Lemma A.5, the universe of N is a construction sequence over MJ1c. As N(c)
is constructible over Nc, it follows that the concatenation of these two sequences is a
construction sequence of N(c) over MJ1c.

Finally, since both J1 and J1c are infinite Morley sequences in p|M , any bijection
f0 : J1 → J1c extends to an elementary map f : MJ1 → MJ1c with f�M = id. By the
uniqueness of constructible models, it follows that f can be extended to an isomorphism
f ∗ : N → N(c) fixing M (and hence A) pointwise.

Definition 4.22. Given two structures M,N and finite tuples of the same length ā ∈ Mk,
b̄ ∈ Nk, we say tp∞M(ā) = tp∞N (b̄) if the structures (M, ā) and (N, b̄) are back and forth
equivalent.

We say M �∞,ω N if, M ⊆ N and tp∞M(ā) = tp∞N (ā) for all finite ā ∈M<ω
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It is evident that the relation�∞,ω is transitive. Moreover, whenM ⊆ N are countable,
then for ā ∈ Mk, b̄ ∈ Nk, tp∞M(ā) = tp∞N (b̄) if and only if there is an isomorphism
f : M → N with f(ā) = b̄.

We record the following easy Lemma.

Lemma 4.23. Suppose {Mn : n ∈ ω} are countable withMn �∞,ω Mn+1 for every n ∈ ω
and let M∗ =

⋃
{Mn : m ∈ ω}. Then Mn �∞,ω M∗ for every n ∈ ω.

Proof. Note that since M` �∞,ω M`′ whenever ` ≤ `′ < ω, tp∞M`
(b̄) = tp∞M`′

(b̄) for every
b̄ ⊆M`. It suffices to show that M0 �∞,ω M∗. For this, we claim that

F = {(ā, b̄) : ā ⊆M0, b̄ ⊆M∗, and tp∞M0
(ā) = tp∞M`

(b̄) whenever b̄ ⊆M`}

is a back-and-forth system.
Since (ā, ā) ∈ F for any ā ⊆M0, F is nonempty. Next, choose (ā, b̄) ∈ F and choose

c ∈ M0. Choose ` such that b̄ ⊆ M`. As tp∞M0
(ā) = tp∞M`

(b̄), choose an isomorphism
f : M0 → M` with f(ā) = b̄. Put d := f(c). Then (āc, b̄d) ∈ F . Finally, choose
(ā, b̄) ∈ F and choose d ∈ M∗. Choose ` such that b̄d ⊆ M`. As tp∞M0

(ā) = tp∞M`
(b̄),

choose an isomorphism g : M` → M0 with g(b̄) = ā. Then taking c := g(d) yields
(āc, b̄d) ∈ F .

GIven that F is a back and forth system, showing M0 �∞,ω M∗ is easy. Choose
ā ∈ Mk

0 . Since (ā, ā) ∈ F and both M0 and M∗ are countable, there is an isomorphism
h : M0 →M∗ with h�ā = id, as required.

Proposition 4.24. Suppose N is countable and M � N is dull. Then for any finite set
A ⊆M , M ∼=A N . In particular, M and N are isomorphic.

Proof. By Proposition 4.17, choose a prime, strongly regular filtration (Mα : α ≤ β)
of N over M . As Mα+1 is constructible over Mαaα with tp(aα/Mα) ⊥ Pe, it follows
from Lemma 4.21 that Mα �∞,ω Mα+1 for each α < β. Additionally, for any countable
limit ordinal γ < β, Mα �∞,ω Mγ for all α < γ. That is, (Mα : α ≤ β) is a �∞,ω-
chain of countable models with with M0 = M and Mβ = N . Thus, M �∞,ω N , which
suffices.

Theorem 4.25. Suppose (only) that T is countable and superstable. Suppose M � N
is dull with M,N of arbitrary size. Then for any finite set A ⊆ M , (M,a)a∈A ≡∞,ω
(N, a)a∈A. In particular, M and N are back and forth equivalent.

Proof. Fix any finite A ⊆ M and choose an enumeration ā of A. We show that for all
ordinals α, (M, ā) ≡α (N, ā), i.e., are α-equivalent. To see this, pass to any forcing
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extension V[G] of V in which M and N are countable. It is easily checked that M � N
remains dull in V[G]. Thus, by Proposition 4.24, there is an isomorphism f : M → N
fixing A pointwise. The existence of f implies that (M, ā) ≡α (N, ā) in V[G] for all
ordinals α. By absoluteness it follows that this holds in V as well.

We close the subsection by showing that that dull pairs can be amalgamated, with no
new non-orthogonality classes of regular types being realized.

Lemma 4.26. Suppose M � N1 and M � N2 are both dull pairs with N1
M̂
N2. Then

there is N∗ for which N1 � N∗, N2 � N∗ and M � N∗ are all dull pairs. Moreover, for
any e ∈ N∗ \M with p := tp(e/M) regular, either there some is h ∈ N1 or there is some
h ∈ N2 with tp(h/M) regular and 6⊥ p.

Proof. As T is countable and superstable, choose an `-contructible model N∗ over N1N2.
We first show that no new non-orthogonality classes of regular types overM are realized in
N∗. To see this, choose e ∈ N∗ \M with p := tp(e/M) regular. Since N1

M̂
N2 and since

wt(e/M) = 1, e forks with either N1 or N2 over M . By symmetry, assume the former.
Then p 6⊥ tp(N1/M), and since M � N1 dull implies M ⊆na N1 by Lemma 4.15(1), it
follows from Fact A.18(1) that there is h ∈ N1 such that tp(h/M) is regular and 6⊥ p.

In particular, since every regular type tp(h/M) ⊥ Pe, for every h ∈ N1 and every
h ∈ N2, the regular type p is also ⊥ Pe. Thus, by Proposition 4.14, M � N∗ is a dull
pair. That N1 � N∗ and N2 � N∗ are dull as well follows from Corollary 4.18(1).

4.2 Pe-NDOP
We begin with some general comments about DOP witnesses. In [7], this was extensively
studied for regular types. The following definition appears as Definition 3.1 of [7]. Among
superstable theories T , the definition of DOP given here is equivalent to Shelah’s original
definition via X 2.2 of [9].

Definition 4.27. A regular type r has a DOP witness if there is an independent triple
(M0,M1,M2) of a-models and an a-prime model M3 over M1M2 such that the canonical
base Cb(r) ⊆M3, with r ⊥M1 and r ⊥M2.
A theory T has DOP, the Dimensional Order Property, if some regular type has a DOP
witness. T has NDOP if it does not have DOP.

Clearly, if a regular type r has a DOP witness, then by Fact A.16, every stationary,
weight one type p(x, d) non-orthogonal to r is also orthogonal to bothM1 andM2. So, go-
ing forward, we consider ‘having a DOP witness’ to be a property of the non-orthogonality
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class of a regular type. In applications, the dependence on a-models make the definition a
bit awkward to use. The following two Lemmas use V -domination to get more malleable
conditions.

Lemma 4.28. Let A = (A0, A1, A2) be any independent triple, let A∗ be V -dominated by
A and let p(x) be any stationary, weight one type whose non-orthogonality class does not
have a DOP witness. If p 6⊥ A∗, then p 6⊥ A1 or p 6⊥ A2.

Proof. By way of contradiction, suppose p 6⊥ A∗, but p ⊥ A1 and p ⊥ A2. We will obtain
a contradiction by constructing a DOP witness for some regular type r non-orthogonal to p.
Suppose p is based and stationary on the finite set d. Choose any e such that p 6⊥ stp(e/A∗)
(where stp(e/A∗) need not be regular). Choose a finite b ⊆ A∗ such that e

b̂
A∗. By

Fact 2.4,(3) choose a finite BvA such that b is V -dominated by B. Now let M be any
independent triple of a-models such that BvM and d

B̂1B2

M1M2. Note that for ` = 1, 2,

p ⊥ A` implies p ⊥ B`. However, from BvM and d
B̂1B2

M1M2, it follows that d
B̂`
M`,

hence p ⊥M` as well.
Since b was V -dominated by B and since BvM , we have that tp(b/M1M2) is a-

isolated. Thus, we can find an a-prime model M3 over M1M2 with b ⊆M3. As p 6⊥ b, p 6⊥
M3, hence there is a regular type r ∈ S(M3) non-orthogonal to p. Then (M0,M1,M2,M3)
and r form a DOP witness, giving our contradiction.

Definition 4.29. A stationary type p(x, d) over a finite set has a finitary DOP witness if
there is an independent triple A = (a, b, c) of finite sets satisfying:

1. d is V -dominated by A;

2. p(x, d) ⊥ b and p(x, d) ⊥ c.

Lemma 4.30. Suppose p(x, d) is a stationary, weight one type whose non-orthogonality
class has a DOP witness. Then p(x, d) has a finitary DOP witness.

Proof. Choose a regular type r 6⊥ p(x, d) and choose a quadruple (M0,M1,M2,M3) of
a-models exemplifying that r has a DOP witness, and fix a finite e ⊆ M3 on which r is
based and stationary. First, as a special case, assume d ⊆ M3. Then, as tp(d/M1M2) is
a-isolated, d is V -dominated by M via Fact 2.5. Choose a finite h ⊆ M1M2 on which
tp(d/M1M2) is based and by Fact 2.2(3), choose a finite AvM with h ⊆ A1A2. As
d
Â1A2

M1M2, it follows from Fact 2.4(3) that d is V-dominated by A. Since p(x, d) is

weight one, non-orthogonal to r, and as r ⊥ M1 with b ⊆ M1, it follows that p(x, d) ⊥ b.
Dually, p(x, d) ⊥ c, so A is a finitary DOP witness for p(x, d).
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Now for the general case, since M3 is an a-model, choose d′ ⊆ M3 with stp(d/e) =
stp(d′/e) and let p′(x, d′) be the conjugate type to p(x, d) over e. Since r is based and
stationary on e, we have that p′(x, d′) is stationary, weight one, and non-orthogonal to
r. As d′ ⊆ M3, apply the special case above to get A = (a, b, c) for p′(x, d′). Then,
take any automorphism σ of C fixing acl(e) pointwise, with σ(d′) = d. Then σ(A) =
(σ(a), σ(b), σ(c)) is a finitary DOP witness for p(x, d).

Definition 4.31. A countable, superstable theory T has Pe-DOP if some (regular) r ∈ Pe

has a DOP witness. We say T has Pe-NDOP if it does not have Pe-DOP.

Proposition 4.32. If T has V-DI, then T has Pe-NDOP.

Proof. By way of contradiction, assume some r ∈ Pe has a DOP witness, and that V-DI
holds. Choose a stationary, weight one p(x, d) 6⊥ r with d finite and p(x, d) non-isolated.
By Lemma 4.30, find a finitary DOP witness A = (a, b, c) for p(x, d). Let p′(x, dbc) ∈
S(dbc) be the non-forking extension of p(x, d) and let e realize p′(x, dbc). Since d is V -
dominated by A with p(x, d) orthogonal to b and c, Lemma A.12 implies that de is also
V -dominated by A. Thus, by V-DI, tp(de/bc) is isolated, hence tp(e/dbc) = p′(x, dbc)
is isolated as well. As p′(x, dbc) is a nonforking extension of p(x, d), this contradicts the
Open Mapping Theorem.

We close this section by summarizing our results so far, the equivalence of the first
three conditions of Theorem 1.3.

Theorem 4.33. The following are equivalent for a countable, superstable theory T .

1. V-DI;

2. Pe-NDOP and PMOP;

3. Pe-NDOP and countable PMOP;

Proof. (1)⇒ (2) is Theorem 3.6 and Proposition 4.32, and (2)⇒ (3) is trivial. So assume
T has Pe-NDOP and countable PMOP. Choose any independent triple N = (N0, N1, N2)
of a-models and assume c is V -dominated byN . We will show that tp(c/N1N2) is isolated.
For this, first note that tp(c/N1N2) is a-isolated by Fact 2.4. Choose an a-prime model N∗

over N1N2 containing c.
Construct, as a nested union of an ω-chain of finite sets, a countable M∗ � N∗ such

that, letting Mi := M∗ ∩Ni for i ∈ {0, 1, 2} we have

1. M∗
M̂1M2

N1N2;
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2. Mi ⊆na Ni for each i;

3. M = (M0,M1,M2) is a (countable) independent triple of models and MvN ;

4. c ⊆M∗.

[To get the non-forking conditions, note that by superstablity, for every finite d from
N∗, there is a finite Xd ⊆ N1N2 for which d

Â1A2

N1N2 whenever Xd ⊆ A1A2 ⊆ N1N2.

Given such an M∗, letting M = (M0,M1,M2), we have M∗ is V-dominated by M by
Fact 2.4(3). By countable PMOP, choose M ′ �M∗, constructible over M1M2.

Claim 1. For any a ⊆M∗ \M ′, if tp(a/M ′) is regular, then tp(a/M ′) ⊥M1 and ⊥M2.

Proof. Suppose p = tp(a/M ′) is regular. By symmetry, it suffices to show p 6⊥ M1. For
this, note that since M∗ is V -dominated by M , M∗ is dominated by M2 over M1. [Why?
Choose any Y with M2

M̂1

Y . It follows that Mv(M0,M1Y,M2), hence M∗
M̂1M2

Y by

V -domination. Thus, M∗
M̂1

M2Y by transitivity.]

Now, by way of contradiction, suppose p 6⊥ M1. Since M1 ⊆na M∗, the 3-model
Lemma (Fact A.18(2)) applied to M1 � M ′ � M∗ gives some h ∈ M∗ with h

M̂1

M∗,

hence h
M̂1

M2, contradicting the domination described above.

Claim 2. M ′ �M∗ is a dull pair, and tp(c/M ′) is orthogonal to Pe, M1, and M2.

Proof. Choose any a ∈ M∗ \M ′ with p = tp(a/M ′) regular. Since M ′ is V -dominated
by M and T has Pe-NDOP, it follows from Lemma 4.28 and Claim 1 that p ⊥ Pe.
Thus, M ′ � M∗ is a dull pair by Proposition 4.14. It follows by Lemma 4.15(1) that
M ′ ⊆na M∗.

Concerning the orthogonality, first suppose there were some q ∈ Pe with q 6⊥ tp(c/M ′).
Since M ′ ⊆na M∗, it follows from Fact A.18(1) that there is some a ∈ M∗ \M ′ with
tp(a/M ′) ∈ Pe, contradicting M ′ � M∗ a dull pair. Similarly, suppose tp(c/M ′) 6⊥ M1.
Then there would be some regular type q 6⊥ tp(c/M ′) with q 6⊥ M1. Since M1 ⊆na M∗,
there again would be a ∈ M∗ \M ′ with tp(a/M ′) regular and 6⊥ q, hence 6⊥ M1, contra-
dicting Claim 1. Showing tp(c/M ′) ⊥M2 is symmetric.

As tp(c/M ′) ⊥ Pe, choose a finite b ⊆M ′ over which tp(c/M ′) is based and station-
ary. By Claim 2 and Lemma A.14(1), M1M2 is essentially finite with respect to tp(c/b)
(see Definition A.13) hence there is some finite e ⊆M1M2 for which

tp(c/be) ` tp(c/bM1M2)

23



By Proposition 4.7, tp(c/be) is isolated, hence tp(c/bM1M2) is isolated as well. However,
since b ⊆M ′, tp(b/M1M2) is also isolated, hence so are tp(bc/M1M2) and tp(c/M1M2).
Finally, MvN , so M1M2 ⊆TV N1N2, hence tp(c/N1N2) is isolated by Lemma A.5.

5 Tree decompositions
The material in this section closely resembles Section 5 of [6], but here we are not assum-
ing that T is ω-stable. However, from our work above, we see that under the assumption
of V-DI (or any of its equivalents given in Theorem 4.33) enough of the consequences of
ω-stability hold to make the arguments in [6] go through. Some of the earlier results of
this section only require weaker hypotheses, such as PMOP.

Definition 5.1. A tree (I,E) is a non-empty, downward closed subset of Ord<ω, ordered
by initial segment. An independent tree of models is a sequence M = (Mη : η ∈ I) of
models, indexed by a tree (I,E), that satisfies Mη

M̂η−

⋃
{Mµ : µ 6 .η} for all η 6= 〈〉. To

ease notation, for any subtree J ⊆ I , we write MJ for
⋃
{Mη : η ∈ J}.

Any independent tree of models is a stable system, hence analogues of Facts 2.2 and
2.4 apply to this case. Our first Lemma is an easy inductive construction.

Lemma 5.2. Suppose T is countable, superstable, with PMOP. Then there is a con-
structible model over every independent tree M = (Mη : η ∈ I).

Proof. Choose any well ordering I = (ηα : α < δ) such that ηα / ηβ implies α < β.
This implies that for all α < δ, I<α = {ηβ : β < α} is a subtree of (I,E), thus

M<α :=
⋃
{Mγ : γ < α} ⊆TV

⋃
M<β := {Mγ : γ < β} ⊆TV MI

for all α < β < δ. It follows that any construction sequence c̄ over M<α is also a
construction sequence over M<β and over MI .

We recursively find a sequence (c̄α : α ≤ δ) of sequences satisfying

1. c̄α enumerates a constructible model Nα over
⋃
M<α; and

2. c̄α is an initial segment of c̄β for all α ≤ β ≤ δ.

If we succeed, then c̄δ will be a construction sequence over MI . Put c̄0 := 〈〉 and, for all
non-zero limit ordinals γ, take c̄γ to be the concatenation of (c̄α : α < γ). Assuming c̄α
has been chosen with α < δ, note that Mα is a ‘leaf’ of the subtree M≤α. As well,

Mα
M̂α−

Nα
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where Nα is the constructible model over M<α enumerated by c̄α. From above, c̄α is also
a construction sequence over M<αMα. By PMOP, there is a constructible model Nα+1

over MαNα, from which it follows there is an enumeration c̄α+1 of Nα+1 in which c̄α is an
initial segment.

Lemma 5.3. (T stable) Suppose (Mη : η ∈ I) is any independent tree of models indexed
by a finite tree (I,E). Then the set

⋃
η∈IMη is essentially finite with respect to any strong

type p that is orthogonal to every Mη (see Definition A.13).

Proof. We argue by induction on |I|. For |I| = 1, this is immediate by Lemma A.14(1)
(taking A = M〈〉 and B = ∅). So assume (Mη : η ∈ I) is any independent tree of models
with |I| = n + 1 and we have proved the Lemma when |I| = n. Fix any strong type p
that is orthogonal to every Mη. Choose any leaf η ∈ I and let J ⊆ I be the subtree with
universe I \ {η}. By the inductive hypothesis, MJ is essentially finite with respect to p, so
the result follows by Lemma A.14(2), taking A = MJ and B = Mη.

Lemma 5.4. Suppose (Mη : η ∈ I) is any independent tree of models indexed by any tree
(I,E) and let N be any model that contains and is atomic over MI . Let p ∈ S(N) be any
regular type ⊥ Pe and ⊥Mη for every η ∈ I . Then Nc is an atomic set over MI for every
realization c of p.

Proof. As notation, for K ⊆ I , we let MK denote
⋃
ν∈KMν . By Lemma 4.9 there is

a finite d0 ⊆ N over which tp(c/N) is based and stationary. It suffices to show that
tp(dc/MI) is isolated for any finite d with d0 ⊆ d ⊆ N , so choose such a d. Choose
a finite e ⊆ MI with a formula ϕ(x, e) isolating tp(d/MI). Choose a finite, downward
closed subtree J ⊆ I containing e. As tp(c/d) is stationary and ⊥ Mη for every η ∈ J ,
Lemma 5.3 implies that MJ is essentially finite with respect to tp(c/d), so there is a finite
e∗, e ⊆ e∗ ⊆ MJ for which tp(c/de∗) ` tp(c/dMJ). As tp(c/N) ⊥ Pe, by Lemma 4.6,
tp(c/de∗) is isolated. Thus, tp(c/dMJ) is isolated as well. Since tp(d/MJ) is isolated,
so is tp(cd/MJ). But now, since MJ ⊆TV MI , we conclude that tp(cd/MI) is isolated as
well.

We define three species of decompositions. We begin with the least constrained.

Definition 5.5. Fix a model M . A weak decomposition d = 〈(Mη, aη) : η ∈ I〉 inside M
consists of an independent tree d = {Mη : η ∈ I} of countable, na-substructures Mη ⊆na
M indexed by (I,E), and a distinguished finite tuple aη ∈ Mη (but a〈〉 is meaningless)
satisfying the following conditions for each η ∈ I:

1. The set Cη := {aν : ν ∈ SuccI(η)} is independent over Mη;
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2. For each ν ∈ SuccI(η) we have:

(a) If η 6= 〈〉, then tp(aν/Mη) ⊥Mη−;

(b) Mν is dominated by aν over Mη;

A regular decomposition insideM is a weak decomposition insideM such that tp(aν/Mη)
is a regular type for every η ∈ I and aν ∈ Cη.
A Pe-decomposition inside M has each tp(aν/Mη) ∈ Pe.

For a given M , let KPe ⊆ Kreg ⊆ Kwk denote the sets of [Pe, regular, weak] decom-
positions d inside M . For each of these notions, there are two ways in which a decompo-
sition d can be maximal. Thankfully, both notions are equivalent.

We can define a natural partial order ≤∗ on each of KPe , Kreg, Kwk by increasing the
index tree, but leaving the nodes unchanged. That is say

d = 〈Mη, aη : η ∈ J〉 ≤∗ d′ = 〈M ′
η, a
′
η : η ∈ I〉

if and only if the index tree (J,E) is a downward closed subtree of (I,E) and (Mη, aη) =
(M ′

η, a
′
η) for all η ∈ J .

Lemma 5.6. Fix any model M and any [weak,regular,Pe] decomposition d = 〈Mη, aη :
η ∈ I〉 inside M . Then

1. d is ≤∗-maximal inside M if and only if Cη is maximal for every η ∈ I; and

2. Every [weak, regular, Pe] decomposition d inside M can be ≤∗-extended to a max-
imal [weak, regular, Pe] decomposition inside M .

Proof. (1) If d′ is a proper≤∗-extension of d, then it is obvious that someCη gets extended.
For the converse, suppose there is some η ∈ I for which Cη can be extended. Choose a
E-least such η and choose a∗ ∈ M so that Cη ∪ {a∗} satisfies the constraints. Let I+ =
I ∪{η+} be the one-point extension of (I,E) whose extra note is a leaf, with η /η+. Since
Mη ⊆na M , we can use Fact A.18(3) to choose Mη+ ⊆na M with Mηa

∗ ⊆Mη+ and Mη+

dominated by a∗ over Mη. The verification that (Mη : η ∈ I+) remains an independent
tree of models follows from the domination and the fact that tp(a∗/Mη) ⊥ Mη− . Then
d+ = d a 〈Mη+ , a

∗〉 properly ≤∗-extends d.
(2) It is evident that decompositions inside M of any species are closed under ≤∗-

chains, so (2) follows by (1) and Zorn’s Lemma.

Definition 5.7. A [weak, regular, Pe] decomposition of M is a maximal [weak, regular,
Pe] decomposition (in either of these senses).
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Lemma 5.8 (T V-DI). Let M be any model, let d = 〈Mη, aη : η ∈ I〉 be any [weak,
regular, Pe] decomposition inside M , and let N be atomic over MI . If p ∈ Pe is any
regular type with p 6⊥ N , then p 6⊥Mη for some η ∈ I .

Proof. Recall that V-DI implies PMOP and Pe-NDOP by Theorem 3.6 and Proposi-
tion 4.32. We first prove the Lemma for all finite index trees (I,E) by induction on |I|.
To begin, if |I| = 1, then we must have N = M〈〉 and there is nothing to prove. Assume
the Lemma holds for all trees of size n and let d = 〈Mη, aη : η ∈ I〉 be a decomposition
inside M indexed by (I,E) of size n + 1. Let N be atomic over

⋃
η∈IMη and let p ∈ Pe

be non-orthogonal to N . Choose a leaf η ∈ I and let J = I \ {η}. If (I,E) were a linear
order, then again N = Mη and there is nothing to prove. If (I,E) is not a linear order,
then by Lemma 5.2, choose any NJ � N to be constructible over MJ . By Lemma 4.28,
either p 6⊥ Mν or p 6⊥ NJ . In the first case we are done, and in the second we finish by
the inductive hypothesis since |J | = n. Thus, we have proved the Lemma whenever the
indexing tree I is finite.

For the general case, fix a decomposition d = 〈Mη, aη : η ∈ I〉 inside M , let N be
atomic over MI . Fix any p ∈ Pe with p 6⊥ N . Choose q ∈ S(N), q 6⊥ p and choose a
finite set d ⊆ N on which q is based. As N is atomic over MI , we can find a finite subtree
J ⊆ I such that tp(d/MJ) is isolated. As MJ is countable, use Fact A.2(2) to choose a
constructible model N ′ � N over MJ with d ⊆ N ′. As d ⊆ N ′, p 6⊥ N ′, and J is finite, it
follows from above that p 6⊥Mη for some η ∈ J .

Theorem 5.9 (V-DI). Let M be any model and let d = 〈Mη, aη : η ∈ I〉 be any
[weak,regular,Pe] decomposition of M . Then N � M is a dull pair for any N � M
containing MI .

Proof. Choose any N � M with MI ⊆ N . By Lemma 5.2, choose a constructible model
N0 � N over MI . We first show that N0 � M is a dull pair. If this were not the case,
then by Theorem 4.14, there would be some a ∈ M \ N0 with p = tp(a/N0) ∈ Pe. By
Lemma 4.28, p 6⊥ Mη for some η ∈ I . Choose a E-least such η ∈ I . Since Mη ⊆na
M , the 3-model Lemma gives us some h ∈ M such that tp(h/Mη) is regular and 6⊥ p
with h

M̂η

N0. It follows that tp(h/Mη) ∈ Pe and, by the minimality of η, we have that

tp(h/Mη) ⊥ Mη− (provided η 6= 〈〉). Regardless of the species of d [weak,regular,Pe]
this contradicts the maximality of d. Thus, N0 � M is dull. That N � M is dull now
follows from Corollary 4.18(1).

The following Corollaries follow easily.

Corollary 5.10 (V-DI). Suppose M be any model and let d = 〈Mη, aη : η ∈ I〉 be any
[weak,regular,Pe] decomposition of M . Then M and N are back-and-forth equivalent for
every N �M containing MI .
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Proof. Immediate from Theorems 5.9 and 4.25.

Corollary 5.11 (V-DI). SupposeM andN are models, and the same d = 〈Mη, aη : η ∈ I〉
is a [weak,regular,Pe] decomposition of both M and N . Then M ≡∞,ω N .

Proof. By Lemma 5.2 there is a constructible model M ′ � M over MI . By replacing N
by a conjugate over MI , we may additionally assume that M ′ � N . Two applications of
Corollary 5.10 yield M ≡∞,ω M ′ ≡∞,ω N .

Theorem 5.9 and Corollaries 5.10 and 5.11 encapsulate what can be said for Pe-
decompositions of M as they do not touch any of the always isolated types. However,
for weak and regular decompositions of M , we can say considerably more.

Theorem 5.12 (V-DI). Let M be any model and let d = 〈Mη, aη : η ∈ I〉 be any
[weak,regular] decomposition of M . Then M is atomic over MI .

Proof. We first prove this when M is countable. By Lemma 5.2, we know there is a
constructible, hence atomic, model N0 � M over MI so choose N � M to be maximal
atomic over MI . We argue that N = M . If this were not the case, choose some e ∈M \N
such that p = tp(e/N) is regular. By Theorem 5.9, N � M is dull, hence p ⊥ Pe.
Additionally,
Claim. p ⊥Mη for all η ∈ I .

Proof. Suppose this were not the case. Choose η ∈ I E-minimal such that p 6⊥Mη. Thus,
either η = 〈〉 or p ⊥ Mη− . By the 3-model Lemma, Fact A.18(2), there is an element
h ∈M such that tp(eh/Mη) is regular and non-orthogonal to p (hence orthogonal to Mη−

if η 6= 〈〉), but h
M̂η

Nα. This element h contradicts the maximality of Cη.

By the Claim and p ⊥ Pe, Lemma 5.4 implies Nc is atomic over MI . As well,
since M and hence N is countable with tp(b/N) ∈ Pe, a constructible model N ′ � M
over Nc exists by Corollary 4.12. It follows that N ′ is atomic over MI , contradicting the
maximality of N .

For the general case, suppose M is uncountable. Choose a forcing extension V[G] of
V in which M is countable. As a counterexample to the maximality of d would be given
by a finite tuple, it follows that d is a decomposition of M in V[G]. Thus, by the argument
above in V[G], M is atomic over MI . That is, every finite tuple from M isolated by a
formula over MI . The same formulas witness that M is atomic over MI in V as well.

Corollary 5.13 (V-DI). Suppose M and N are two models that share the same maximal
[weak, regular]-decomposition d = 〈Mη, aη : η ∈ I〉. Then M and N are back-and-forth
equivalent over MI .
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Proof. As both M,N are atomic over MI by Theorem 5.12, the set

F = {partial, elementary f : M → N : dom(f) = āMI , f�MI
= id}

is a back-and-forth system over MI .

6 Equivalents of NOTOP
In Chapter XII of [9], Shelah defines a theory having OTOP.

Definition 6.1. Let T be a countable, superstable theory. We say T has OTOP if there
is a type p(x, ȳ, z) with lg(ȳ) = lg(z) such that, for all infinite cardinals λ and all binary
relations R ⊆ λ2, there is a model MR |= T and {āα : α ∈ λ} such that MR realizes the
type p(x, āα, āβ) if and only if R(α, β) holds.
We say T has NOTOP if it fails to have OTOP.

Seeing this definition, one could imagine a weakening that is reminiscent of the dis-
tinction between a formula ϕ(x, ȳ) being unstable (i.e., has the order property) and ϕ(x, ȳ)
having the Independence Property.

Definition 6.2. Let T be a countable, superstable theory. We say T has linear OTOP if
there is a type p(x, ȳ, z) with lg(ȳ) = lg(z) such that, for all infinite cardinals λ, there is a
model Mλ |= T and {āα : α ∈ λ} such that Mλ realizes the type p(x, āα, āβ) if and only
if α ≤ β.
We say T has linear NOTOP if it fails to have linear OTOP.

It is somewhat curious that among superstable theories, OTOP and linear OTOP co-
incide, since for a first order formula ϕ(x, y) (as opposed to a type) whether it codes an
order is equivalent to ϕ(x, y) being unstable, whereas its coding arbitrary binary relations
is equivalent to ϕ(x, y) having the Independence Property.

Here, with Theorem 6.4 below, we prove the two notions are equivalent by demon-
strating that each is equivalent to V-DI. We begin with one Lemma that is of independent
interest.

Lemma 6.3. Suppose T is superstable, κ any uncountable regular cardinal, and (āα :
α < κ) is any sequence of finite tuples. Then there is a stationary S ⊆ κ and a finite
F ⊆

⋃
{āα : α} such that {āα : α ∈ S} is independent over F .

Proof. Let S0 = {α ∈ κ : α is a limit ordinal}. For each α ∈ S0, find some β(α) < α
such that tp(āα/Aα) does not fork over Aβ(α), where Aα :=

⋃
{āγ : γ < α}. By Fodor’s
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Lemma there is some β∗ < κ and a stationary S1 ⊆ S0 such that, taking B = Aβ∗ ,
āα

B̂
Aα for all α ∈ S1. Furthermore, for each α ∈ S1, there is a finite F ⊆ B for which

āα
F̂
B. As |B| < κ, there is a stationary S2 ⊆ S1 and some finite F ∗ ⊆ B for which

āα
F̂ ∗
B holds for all α ∈ S2. Then {āα : α ∈ S2} is independent over F ∗.

Theorem 6.4. The following are equivalent for a countable, superstable theory T .

1. T has V-DI;

2. T has Pe-NDOP and PMOP;

3. T has Pe-NDOP and countable PMOP;

4. T has linear NOTOP;

5. T has NOTOP.

Proof. The equivalence of (1)–(3) is by Theorem 4.33, and (4)⇒ (5) is trivial.
(5)⇒ (1) is proved on pages 122-124 of [3]. Hart’s condition (*) is precisely V-DI in

our notation. Another proof of this is given in Section XII.4 of [9].
So, it remains to prove (1) ⇒ (4). The key idea in this argument is that the existence

of a tree decomposition for a purported model witnessing linear OTOP gives too many
symmetries of the structure. We use these symmetries to show that, for κ large enough, if a
modelM∗ realizes p(x, āα, āβ) whenever α < β < κ, then it must also realize p(x, āβ, āα)
for some carefully chosen α < β < κ.

Choose a sufficiently large regular cardinal κ, a sequence (āα : α < κ), and a model
M∗ containing (āα : α < κ) for which M∗ realizes p(x, āα, āβ) whenever α < β. We will
find some β < α for which p(x, āα, āβ) is realized as well. For this, by passing to a large
subsequence, Lemma 6.3 allows us to assume that {āα : α ∈ κ} is independent over a
finite set F . Now choose a countable M〈〉 ⊆na M∗ containing F . As κ > 2ℵ0 and passing
to a further subsequence, we may additionally assume that tp(āα/M〈〉) = tp(āβ/M〈〉).
By removing at most countably many elements, we may assume that {āα : α ∈ κ} is
independent over M〈〉. Next, for each α ∈ κ, using Fact A.18(3), choose a countable
M〈α〉 ⊆na M∗ that is dominated by āα over M〈〉. Thus, d0 = 〈M〈α〉, āα : α < κ〉 a M〈〉 is
a weak decomposition insideM∗. By Lemma 5.6(2), there is a≤∗-extension d = 〈Mη, āη :
η ∈ J〉 of d0 that is a weak decomposition of M∗. Thus, by Theorem 5.12, M∗ is atomic
over MJ .

For any α < β, choose a realization d̄α,β of p(x, āα, āβ) in M∗. As tp(d̄α,β/MJ) is
isolated, choose ēα,β ⊇ āαāβ from MJ and a formula θ(x, ēα,β) isolating tp(d̄α,β/MJ).
Thus, in particular, θ(x, ēα,β) is consistent, and every realization of it realizes p(x, āα, āβ).
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As notation, for each γ, letMJ(γ) =
⋃
{Mη : η D 〈γ〉}\M〈〉. Each pair α < β induces

a partition ofMJ into three (disjoint) pieces, namelyMJ(α), MJ(β), and the complement,
MJ\(MJ(α)∪MJ(β)). This partition induces a partition of ēα,β = rα,βsα,βtα,β . Crucially,
note that for all α < β the tuples {rα,β, sα,β, tα,β} are independent over M〈〉.

By Erdös-Rado, there is a large subsequence I ⊆ κ such that, for all α < β from I ,

• The L-formula θ(x, ȳ) for which θ(x, ēα,β) isolates tp(d̄α,β/MI) is constant;

• The partition of ēα,β = rα,βsα,βtα,β is independent of α < β;

• There are unique types r∗, s∗, t∗ ∈ S(M〈〉) with tp(rα,β/M〈〉) = r∗, tp(sα,β/M〈〉) =
s∗, and tp(tα,β/M〈〉) = t∗.

Let I0 ⊆ I have the maximum and minimum elements of I removed (if they exist).
Thus, for every γ ∈ I0, MJ(γ) contains a realization of r∗ (in particular, rγ,β for any
β ∈ I , β > γ), and dually MJ(γ) contains a realization of s∗.

Now choose β < α from I0. From above, choose ŝ ∈ MJ(β) realizing s∗, r̂ ∈ MJ(α)
and let t̂ = tβ.α. Put ê := r̂ŝt̂. Then, as {r̂, ŝ, t̂} are independent over M〈〉, we have
tp(ê/M〈〉) = tp(ēβ,α/M〈〉). It follows that M∗ |= ∃xθ(x, ê) and, moreover, any such
realization of θ(x, ê) realizes p(x, āα, āβ).

7 Some context for Pe

Many of the results presented here generalize results of Shelah and the first author [6]
under the stronger assumption of ω-stability. Recall that a regular type p is eventually non-
isolated, eni, if there is a finite set b on which it is based and stationary, and a modelM ⊇ b
that omits the restriction p|b. As in the discussion following Definition 4.27, we say that
a theory T has eni-NDOP if no non-orthogonality class of weight one types containing an
eni type has a DOP witness. In [6], it is proved that for T ω-stable, NOTOP is equivalent to
eni-NDOP. Noting that because an ω-stable has constructible models over every subset, the
following Corollary is immediate from Theorem 6.4, since both properties are equivalent
to NOTOP.

Corollary 7.1. If T is ω-stable, then Pe-NDOP is equivalent to eni-NDOP.

However, outside of ω-stable theories, the following example shows that the notions
are distinct.

Example 7.2. A small, superstable theory T with Pe-DOP, but eni-NDOP.
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Let L = {U,+, 0, Un}n∈ω ∪{P,E1, E2}∪ {V, π, g, Vn}n∈ω and fix a cardinal κ ≥ 2ℵ0 .
We will describe a saturated L-structure M of size κ, and T = Th(M) will be as claimed.

The two unary predicates U(M) and V (M) partition the universe of M . One sort,
(U(M),+, 0, Un)n∈ω is a (κ-dimensional) F2-vector space with a nested sequence of sub-
spaces Un(M), where U0(M) = U(M) and each Un+1(M) has co-dimension one in
Un(M). As M is saturated,

⋂
n∈ω Un(M) has dimension κ.

The unary predicate P (M) ⊆
⋂
n∈ω Un(M) consists of a linearly independent set (of

size κ) such that its linear span 〈P (M)〉 has co-dimension κ in
⋂
n∈ω Un.

So far, P (M) has no structure, i.e., is totally indiscernible. However, the binary re-
lations E1, E2 are interpreted as cross-cutting equivalence relations, each with infinitely
many classes, on P (M), with Ei(M) ⊆ P (M) × P (M) for each i. As notation, let
E∗(x, y) := E1(x, y) ∧ E2(x, y). As M is saturated, E∗(M,a) ⊆ P (M) has size κ for
every a ∈ P (M). One should think of (P (M), E1, E2, E

∗) as coding the ‘standard DOP
checkerboard.’

Continuing, V (M) has size κ, and π : V (M) → P (M) is a surjection. The function
g : U × V → V is a group action that acts regularly on π−1(a) for every a ∈ P (M).

Finally, for each n ∈ ω, Vn is interpreted so that Vn+1 ⊆ Vn for each n, and for every
a ∈ P (M), the set {u ∈ U(M) : g(u, v) ∈ Vn(M) ∩ π−1(a)} is a coset of Un(M).

It is readily checked that T = Th(M) is small and superstable. We describe the
five species of regular types occurring in S(M). Let p0 be the complete type asserting that
P (x) holds, but¬E1(x, a)∧¬E2(x, a) for every a ∈ P (M). For i = 1, 2, let pi(x, a) assert
that Ei(x, a) holds, but E3−i(x, b) fails for every b ∈ P (M). Let p∗(x, a) be generated by
E∗(x, a)∧x 6= a, and let q(x) be the complete type asserting that x ∈

⋂
Un(M)\〈P (M)〉.

As dcl(c)∩U(M) 6= ∅ for any finite tuple c, every non-algebraic type is non-orthogonal to
one of these types. As it is akin to the DOP checkerboard, p∗(x, a) has a DOP witness, and
it can be checked that the only regular types with a DOP witness are those non-orthogonal
to p∗(x, a).

We argue that p∗(x, a) ∈ Pe. Choose any b ∈ P (M) with E∗(b, a) ∧ b 6= a and
choose any c ∈ π−1(b) ∩

⋂
Vn. The type w(x, a) := tp(c/a) is visibly non-isolated, and

since bc is dominated by b over a, w(x, a) has weight one. As b ∈ dcl(c) realizes p∗(x, a),
w(x, a) 6⊥ p∗(x, a) so p∗(x, a) ∈ Pe. Thus, T has Pe-DOP.

The type w(x, a) is not regular, and it can be shown that the non-orthogonality class of
p∗(x, a) does not contain any eni (regular) type. Thus, T has eni-NDOP.

We conclude by observing two extreme cases of Pe.

Corollary 7.3. Assume T is countable and superstable, but Pe = ∅. Then T is ω-stable
and ω-categorical.

Proof. Let M be any countable model of T . If Pe = ∅, then by Lemma 4.9, every
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p ∈ S(M) is based and stationary over a finite set. As M is countable, this implies S(M)
is countable, hence T is ω-stable. To get that T is ω-categorical, we argue that every
countable model is saturated. Since T is ω-stable, a countable, saturated model N exists.
Let M be any countable model of T . Since N is countably universal, we may assume
M � N . Since Pe = ∅, it is also dull. Thus, by Proposition 4.24, M is isomorphic to N ,
so M is saturated as well.

Corollary 7.4. Assume T is countable and superstable, but every regular type is in Pe.
Then T has NOTOP if and only if T is classifiable.

Proof. Right to left is immediate. By our assumption on T , Pe-NDOP is equivalent to
NDOP, so left to right follows from Theorem 6.4.

Remark 7.5. We close by observing that the countability of the language is crucial in the
equivalents of Theorem 6.4. Indeed, the notion of V-DI is preserved under the addition or
deletion of constant symbols, but NOTOP is not. In particular, the theory in Example 7.2
has OTOP, since the language is countable and T has Pe-DOP. However, if one expands
by adding constants for an a-model (equivalently, replacing the theory T by the elemen-
tary diagram of M ) then the expanded theory cannot code arbitrary relations, hence has
NOTOP.

A Appendix

A.1 Isolation, construction sequences, and TV-substructures
The initial definitions are well known.

Definition A.1. An n-type p(x) ∈ Sn(A) is isolated if ψ(x, a) ` p(x) for some ψ(x, a ∈ p.
A model N is atomic over B if B ⊆ N and tp(a/B) is isolated for every finite tuple a
from N .
A construction sequence over B is a sequence c̄ = (aα : α < δ) with, for each α < δ,
tp(aα/BAα) isolated, where Aα =

⋃
{aβ : β < α}.

A model N is constructible over B if there is a construction sequence c̄ over B and the
universe of N = B ∪

⋃
c̄.

The following facts are also well known.

Fact A.2. Let T be any complete theory.

1. If N is constructible over B, then N is atomic over B.
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2. If N is atomic over B and is countable, then any enumeration of N of order type ω
is a construction sequence over B.

3. If B ⊆ M and c̄ is a construction sequence over B, then there is c̄′ ⊆ M with
tp(c̄/B) = tp(c̄′/B).

In many places, we use the Open Mapping Theorem, which holds for an arbitrary
stable theory.

Fact A.3 (Open Mapping Theorem). If A ⊆ B and c
Â
B, then tp(c/B) isolated implies

tp(c/A) isolated.

Definition A.4. For any setsA,B, we sayA is a Tarski-Vaught subset ofB, writtenA ⊆TV
B,5. if A ⊆ B and, for every A-definable formula ϕ(x, a), if there is some b ∈ B with
ϕ(b, a), then there is some a∗ ∈ A with ϕ(a∗, a).

Obviously, for any model M , M ⊆na B whenever M ⊆ B. As well, if A
M̂
B, then

the fact that MA ⊆TV MAB is a restatement of the Finite Satisfiability Theorem. More
generally, for arbitrary stable systems MvN of models we have

⋃
M ⊆TV

⋃
N .

Tarski-Vaught subsets play well with isolation.

Lemma A.5. Suppose A ⊆TV B and tp(c/A) is isolated. Then tp(c/B) is isolated by
the same formula and, moreover, Ac ⊆TV Bc. Consequently, if (c̄α : α < γ) is any
construction sequence over A, then it is a construction sequence over B via the same
formulas.

Proof. Suppose ϕ(x, a) isolates tp(c/A). If it were not the case that ϕ(x, a) isolates
tp(c/B), then there would be some δ(x, a, b) with b from B such that

η(b, a) := ∃x∃x′[ϕ(x, a) ∧ ϕ(x′, a) ∧ δ(x, a, b) ∧ ¬δ(x′, a, b)]

However, if there were any a∗ from A such that η(a∗, a), this would contradict ϕ(x, a)
isolating tp(c/A).

For the moreover clause, assume δ(x, a′, c) has a solution in B with a′ from A. Then

θ(x, a, a′) := ∃z(ϕ(x, a) ∧ δ(x, a′, z))

also has a solution in B, hence in A. By the isolation, any realization of θ(x, a, a′) also re-
alizes δ(x, a′, c). The third sentence follows by induction on the length of the construction
sequence.

5In [9], Shelah denotes this same notion by ⊆t
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A.2 `-isolation and `-construction sequences
`-isolation is a weakening of isolation.

Definition A.6. A type tp(c/A) is `-isolated overA if, for every ϕ(x, y), there is a formula
ψ(x, a) ∈ tp(c/A) with ψ(x, a) ` tpϕ(c/A).
A model N is `-atomic over B if B ⊆ N and tp(a/B) is `-isolated for every finite tuple a
from N .
An `-construction sequence over B is a sequence c̄ = (aα : α < δ) with, for each α < δ,
tp(aα/BAα) `-isolated, where Aα =

⋃
{aβ : β < α}.

A model N is `-constructible over B if there is an `-construction sequence c̄ over B and
the universe of N = B ∪

⋃
c̄.

The advantage is that in a countable, superstable theory T , the `-isolated types are
dense over any base set A.

Fact A.7. Let T be any countable, superstable theory.

1. For any base set A, {p ∈ S(A) : p is `-isolated} is dense.

2. For any set A an `-constructible model over A exists.

Proof. (1) holds by e.g., Lemma 4.2.18(4) of [9], and (2) follows by iterating (1) over
larger and larger approximations to a model.

The analogue of Lemma A.5 holds as well, essentially by the same proof as there.

Fact A.8. If A ⊆TV B and tp(c/A) is `-isolated, then tp(c/B) is also `-isolated, with the
same witnessing formulas.

A.3 Orthogonality and domination
Throughout this subsection, all that is needed is for T to be stable. The following notions
are all due to Shelah.

Definition A.9. Suppose p ∈ S(A) and q ∈ S(B). Then p and q are orthogonal, p ⊥ q,
if, for every E ⊇ A ∪B, a

Ê
b for every a, b realizing any non-forking extensions of p, q,

respectively.
If p ∈ S(D), we say p is orthogonal to the set B, p ⊥ B, if p ⊥ q for every q ∈ S(B).
If p ∈ S(D) and D0 ⊆ D, we say p is almost orthogonal to D0 if c

D̂
e for every e such

that e
D̂0

D.
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In many texts, being almost orthogonal is written in terms of domination.

Definition A.10. We say that for D ⊇ D0, cD is dominated by D over D0 if c
D̂
e for

every e satisfying e
D̂0

D. Thus, cD is dominated by D over D0 if and only if tp(c/D) is

almost orthogonal to D0. For arbitrary strong types p, q, we write p / q if, for some/every
a-model M on which both p, q are based and stationary, for some/every b realizing q, there
is a realizing p with ab dominated by b over M .

We note the following two facts.

Fact A.11. Suppose tp(e/D) is stationary, D0 ⊆ D, and D
D̂0

Y .

1. If eD is dominated by D over D0, then tp(e/D) ` tp(e/DY ); and

2. If tp(e/D) ⊥ D0, then tp(e/D) ` tp(e/DY ) and tp(e/D) ⊥ D0Y .

Proof. (1) Choose any e′ such that tp(e′/D) = tp(e/D). Then e′D is dominated by D
over D0 as well, so we have e

D̂
Y and e′

D̂
Y . Thus, tp(e/DY ) = tp(e′/DY ) since

tp(e/D) is stationary. (2) The first clause follows from (1) and the second is X.1.1 of
[9].

For lack of a better place, we will require the following technical lemma, whose proof
is similar to the proof of (c)⇒ (d) of X, 2.2 of [9].

Lemma A.12. Suppose D is V -dominated by A = (A0, A1, A2) and tp(e/DA1A2) is
stationary and orthogonal to both A1 and A2. Then De is also V -dominated by A.

Proof. Choose any B w A and we will prove in three steps that

tp(e/DA1A2) ` tp(e/DA1A2B0) ` tp(e/DB1A2) ` tp(e/DB1B2) (*)

which implies e ^
DA1A2

B1B2. Coupling this with D
Â1A2

B1B2 from the V -domination of

D over A gives De
Â1A2

B1B2, as required. Along the way, we also prove that tp(e/D) is

orthogonal to both A1B0 and A2B0.
To obtain the first implication of (*),AvB andD V -dominated byA giveB0

Â1

A2 and

D
Â1

A2, from which it follows thatDA1A2
Â1

B0. Thus, applying Fact A.11(2) withD0 =

A1 gives tp(e/DA1A2) ` tp(e/DA2A2B0) and also tp(e/DA1A2B0) ⊥ A1B0. Also,
note that our assumptions are symmetric between A1 and A2, so arguing symmetrically
gives tp(e/DA1A2B0) ⊥ A2B0 as well.
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For the second implication, again from AvB and D V -dominated by A, we have
B1

Â1B0

A2 and D
Â1A2

B0B1. By transitivity of non-forking we have B1
Â1B0

DA2, hence

also B1
Â1B0

DA1A2. So, applying Fact A.11(2) with D0 = A1B0 gives the second

implication of (*).
Finally, since B2

B̂0A2

B1 and D
Â1A2

B1B2, we obtain DB1A2
B̂0A2

B2. As we proved

tp(e/DB1A2) ⊥ A2B0 above, applying Fact A.11(2) with D0 = A2B0 gives the third
implication of (*), completing the proof of the Lemma.

The following notion and subsequent lemma appear as Defintion 1.4 and Lemma 1.5
of [6].

Definition A.13. A set A is essentially finite with respect to a strong type p if, for all finite
sets D on which p is based and stationary, there is a finite A0 ⊆ A such that p|DA0 `
p|DA.

Lemma A.14. Fix a strong type p. If either of the following conditions hold

1. p ⊥ A and B is a (possibly empty) A-independent set of finite sets; or

2. if A is essentially finite with respect to p, p ⊥ B, and A
Â∩B

B

then A ∪B is essentially finite with respect to p.

A.4 Regular and weight one types
Definition A.15. Suppose p ∈ S(A) is stationary and non-algebraic. We say p is regular
if p is orthogonal to every forking extension q ⊃ p.
The type p has weight one if, for every B ⊇ A and every a realizing the non-forking
extension p|B, whenever b

B̂
c, we have either a

B̂
b or a

B̂
c.

The following facts are well known, see e.g., [8].

Fact A.16. Let T be any stable theory.

1. Every (stationary) regular p ∈ S(A) has weight one.

2. Non-orthogonality is an equivalence relation on the set of stationary, weight one
types.

3. If p 6⊥ q are both weight one, then

(a) for any stationary type r, p 6⊥ r if and only if q 6⊥ r; and

(b) for every set B, p 6⊥ B if and only if q 6⊥ B.
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A.5 On na-substructures and na-types
One of the tools that led to the strong structure theorems proved for classifiable theories
was the notion of an na-substructure, which is due to Hrushovski.

Definition A.17. We say M is an na-substructure of N , written M ⊆na N , if M � N
and, for every finite F ⊆ M and every F -definable formula ϕ(x), if there is some c ∈
ϕ(N) \M , then there is c′ ∈ ϕ(M) \ acl(F ).

The salient features of this notion is that for any model N and any countable subset
A ⊆ N , there is a countable M ⊆na N containing A. This is proved by the same method
as the Downward Löwenheim-Skolem theorem.

The following three Facts explain the utility of this notion. Fact A.18(1,2) appear as
Propositions 8.3.5 and 8.3.6 of [8], respectively, and Fact A.18(3) is Proposition 5.1 of
[10].

Fact A.18. 1. WheneverM ⊆na N , if p is any regular type non-orthogonal to tp(N/M),
then some regular type q ∈ S(M) non-orthogonal to p is realized in N \M .

2. (3-model Lemma) Suppose M � M ′ � N with M ⊆na N . For every regular
type p = tp(e/M ′) with e from N , there is h ∈ N such that tp(h/M) is regular,
non-orthogonal to p, and h

M̂
M ′.

3. Suppose M ⊆na N and A is any set such that M ⊆ A ⊆ N . Then there is a model
M∗ ⊆na N with A ⊆M∗, |M∗| = |A|, and M∗ dominated by A over M .

For our purposes, we need to localize this notion of ‘being na’ to individual regular
types. We begin with two very general lemmas.

Lemma A.19. Suppose M � N , c from M and b ∈ N \ M . If tp(b/c) is isolated by
δ(x, c), then there is b∗ ∈ δ(M, c) \ acl(c).

Proof. Since δ(b, c) holds with b 6∈ M , δ(x, c) is non-algebraic. As M � N there is
b∗ ∈ M realizing δ(x, c). We argue that any such b∗ 6∈ acl(c). Suppose b∗ ∈ acl(c).
Choose an algebraic α(x, c) ∈ tp(b∗/c). Since tp(b∗/c) is isolated by δ(x, c), this would
imply that ∀x[δ(x, c)→ α(x, c)], but this is contradicted by b.

The following is a slight strengthening on the fact that in a superstable theory, a real-
ization of a regular type can be found inside any pair of models. Indeed, the proof below
is simply a minor variant of Proposition 8.3.2 in [8].

Lemma A.20. Suppose M � N , d from M , and ϕ(N, d) \M is non-empty. Then there is
some e ∈ acl(ϕ(N, d) ∪M) with tp(e/M) regular.
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Proof. Let D := acl(ϕ(N, d) ∪M). As in the proof of 8.3.2 of [8], by Lemma 8.1.12(iii)
there, since D 6⊆ M , choose a regular type p that is non-orthogonal to tp(D/M) with
R∞(p) = α > 0 such that tp(D/M) is foreign to R∞<α. Choose a ⊆ D such that
tp(a/M) 6⊥ p. Note that tp(a/M) is orthogonal to all forking extensions of p. There are
now two cases. If p is trivial, then by Lemma 8.3.1 of [8], there is a′ ∈ acl(aM) ⊆ D
such that tp(a′/M) is regular, so we are done. On the other hand, if p is non-trivial, look
at the proof of Lemma 8.2.20 in [8]. The first two moves are to apply 7.1.17 to obtain
a1 ∈ acl(aM) that is p-simple of positive p-weight, and then to apply 8.2.17 to find a2 ∈
dcl(Ma1) such that tp(a2/M) contains a formula θ as in the statement of 8.2.20. Note
that a2 ∈ D. Thus, by shrinking θ slightly (but staying within tp(a2/M)) we may assume
that θ(N) ⊆ D. Now, continuing with the proof of 8.2.20, find c ∈ θ(N) ⊆ D as there.
The verification that tp(c/M) is regular follows as in the proof of Proposition 8.3.2.

Definition A.21. For M any model, a type p ∈ S(M) is na if, for every ϕ(x, d) ∈ p, there
is b ∈ ϕ(M,d) \ acl(d).

Proposition A.22. For M � N , M ⊆na N if and only if every regular p ∈ S(M) realized
in N is na.

Proof. Left to right is obvious. For the converse, assume M is not an na-substructure.
Choose ϕ(x, d) realized in N \M with d ⊆ M , but ϕ(M,d) ⊆ acl(d). By Lemma A.20,
choose e ∈ acl(ϕ(N, d) ∪M) such that q := tp(e/M) is regular. We show that q is not
na. For this, choose ā from ϕ(N, d) for which e ∈ acl(Mā). Say ψ(x, ā, d′) ∈ tp(e/Mā)
has exactly n solutions and d′ ⊆M . Put

θ(y, d, d′) := ∃x[∧iϕ(xi, d) ∧ ψ(y, x, d′) ∧ ∃=nzψ(z, x, d′)]

We claim that the formula θ(y, d, d′) witnesses that q is not na. Clearly, θ(y, d, d′) ∈
tp(e/d, d′), so it suffices to show that θ(M,d, d′) ⊆ acl(dd′). To verify this, choose
b′ ∈ θ(M,d, d′) and choose ā′ from M witnessing this. Then ā′ ⊆ ϕ(M,d), hence ā ⊆
acl(dd′) by our choice of ϕ(x, d). But b′ ∈ acl(ā′d′) via ψ(z, ā′, d′), so b′ ∈ acl(dd′), as
required.
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