GENERALIZED ORDINAL SUMS AND THE
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ABSTRACT. We present a general construction of a family of or-
dinal sums of a sequence of structures and prove an elimination
theorem for the class of ordinal sums in an expanded language.
From this we deduce the decidability of the class of ¥-ordinal sums
of models of a decidable theory T. As an application of this result
we prove that the theory of BL-chains is decidable.

1. INTRODUCTION

B L-chains, otherwise known as linearly ordered BL-algebras, were
introduced by Héjek [Ha] to provide a general framework for proving
completeness theorems in fuzzy logics. Traditionally, BL-chains are
presented in a larger language, but it is fruitful to consider them as a
class of ordered semigroups with additional properties that make the
other operations definable (see Definition 4.2).

In this paper we begin by offering a very general definition of an
ordinal sum of models of a theory (see Definition 2.3). This definition
is general enough to include both the classical notion of an ordinal sum
of relational structures given by Tarski [Ta] and analyzed by Feferman-
Vaught [FV] and Fuchs’ notion of an ordinal sum of ordered semigroups
given in [Fu]. Our interest in this notion is that the classification of BL-
chains we give in [LS] says that the class of BL-chains is identical with
the class of certain ordinal sums of basic forms (see Definitions 4.2 and
4.4 and Theorem 4.5). Thus, general theorems about classes of ordinal
sums immediately give information about the class of BL-chains.

In Definition 2.3 we designate a family of L-structures to be ordinal
sums of a sequence (M, : ¢ € I) of disjoint models of an L-theory T’
indexed by a linear order (I, <). All of these structures have universe
[[{M; : i € I} and each M, is a a substructure of each of these
structures. The ordinal sums differ in how the function and relation
symbols are defined on tuples from the universe that are not contained
in a single M;. Any specific way of expanding a disjoint union to an
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ordinal sum is an assignment >.. We investigate the class of ¥-ordinal
sums of models of 7. Unfortunately, Example 2.4 demonstrates that
the class of Y-ordinal sums need not be an elementary class in the
original language L. To remedy this, Definition 2.5 provides us with a
canonical way of expanding and extending an ordinal sum to a larger
language L*. In this larger language the class of expanded »-ordinal
sums of models of T is elementary and is amenable to analysis.

Theorem 2.11, which is the main theorem of the paper, provides an
elimination result for the class of expanded Y-ordinal sums of mod-
els of T'. Specifically, it asserts that every L*-sentence is equivalent
to a separated L*-sentence (see Definition 2.10) modulo the theory of
expanded Y-ordinal sums of models of 1. This theorem is similar to
the elimination result given by Feferman-Vaught [FV], but there are
two important improvements. First, as noted above, the theorem here
holds for a much more general notion of an ordinal sum. Second, the
expansion and extension of an ordinal sum mentioned above is much
milder than what is done in Feferman-Vaught. That is, when Fefer-
man and Vaught analyze ordinal sums they expand the structure to a
language much richer than L*. For our subsequent results it is desir-
able to have an elimination theorem with respect to the language L*
as opposed to their richer language. In particular, Theorem 3.1, which
asserts the decidability of the class of ¥-ordinal sums of models of T'
whenever T is decidable, follows by a straightforward reduction of the
consistency of separated L*-sentences to the consistency of colored lin-
ear orderings, which is known to be decidable by a theorem of Lauchli
and Leonard [LL].

Finally, in Section 4 we use Theorem 3.1 to demonstrate that the
elementary theory of BL-chains is decidable. Specifically, Theorem 3.1
reduces the decidability of the theory of BL-chains to the decidability
of the theory of basic forms. However, Corollary 4.8 shows that the
decidability of the theory of basic forms follows easily from the decid-
ability of the theory of ordered abelian groups, which was established
by Gurevich [Gur].

2. AN ELIMINATION THEOREM FOR ORDINAL SUMS

Definition 2.1. An ordered partition p of (1,...,n) is a sequence (s; :
J < t), where each s, is a nonempty subsequence of (1, ...,n) such that
for each 1 < k < n, k occurs in exactly one s;.

If p=(s;:j <t)is an ordered partition of (1,...,n) and @ is an

n-tuple, then s;(@) is the subsequence (a; : i € s;) of a.
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If p=(s; : j <t)isan ordered partition of (1,...,n) and A =
[T{A; : i € I'} is a disjoint union of sets indexed by a linear order (1, <)
then we say that @ € A" induces p if there are i < i1 < --- < 441
from I such that the elements of s;(a@) are from A;, for all j < t. As
notation, we denote each i; by i;(a).

Definition 2.2. Let T be any theory in the language L. A (k-ary)
T-definable function h is a (k + 1)-ary L-formula ¢, (%, y) such that
T = Vi3 lyp,(7,y). If a model M of T is a substructure of an L-
structure N, then hM(@) is the unique b € M such that N = p2'(a, b),

where p! is the relativization of ¢;, to M.

Definition 2.3. Fix a language L without constant symbols and fix
an L-theory T. An L-structure M is an ordinal sum of models of T if
the universe of M = [[{M; : i € I} is a disjoint union of universes of
models M; of T and

e Each M, is a substructure of M;

e For each n-ary function symbol f € L and each ordered par-
tition p = (s; : j < t) of (1,...,n), there is a k < t and a
T-definable function g such that

£4() = 0 (s0(@)
for all @ € M™ that induce p; and

e For each n-ary relation symbol R € L and each ordered parti-
tion p = (s; : j <t)of (1,...,n), there is a sequence (6;(s;(¥)) :
j < t) of L-formulas and a truth function ® : {T, F'}* — {T, F'}
such that

RM(@) & Wy, ..., W) =T

for all @ € M™ that induce p, where, for each j < t, W; =T if
and only if M;, @& = 9;(s;(@)).
A mapping ¥ which sends function symbols of L and ordered partitions
to T-definable functions and sends relation symbols of L and ordered
partitions to sequences of L-formulas and truth functions is called an
assignment. An ordinal sum of models of T" whose assignment is X is
called a X-ordinal sum of models of T

The example below indicates that the class of ¥-ordinal sums of
models of a theory need not be an elementary class of L-structures.

Example 2.4. Let L = {<}, let T = Th(w,<), and let ¥ be the
assignment making < into a total order. Let K denote the class of
Y-ordinal sums of T'. We will show that K is not elementary by finding
elementarily equivalent L-structures M, N with M € K and N € K.
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Let M be the ¥-ordinal sum generated from (M, : i € Q), where each
M, is isomorphic to (w,<). Let N be the extension of M formed
by adding a copy of (Z, <) inside a proper cut of Q (for definiteness
say the cut of 7). It is easily verified using Ehrenfeucht-Fraissé games
(in much the same way as one shows that (w,<) = (w"Z, <)) that
M = N. (In fact, N is an elementary extension of M.) Now assume
by way of contradiction that N were the X-ordinal sum of (N : j € J),
where each N; = T. Choose j € J such that N; NZ # (). Since models
of T" are closed under successors and predecessors, Z C N;. However,
since every model of T" has a least element, some M; C N; as well.
However, since IN; is convex, our construction guarantees that some
other M; C Nj as well. Hence N; has more than one element with no
immediate predecessor, which contradicts N; = T.

In order to circumvent this example and to gain control of the ele-
mentary properties of the class, it is desirable to expand a Y-ordinal
sum of models of T" by adding new elements to represent the conden-
sation classes under the natural equivalence relation of being elements
of the same M,. As well, we add symbols to the language to make this
equivalence relation explicitly definable. More formally, we have the
following definition:

Definition 2.5. Fix a language L without constant symbols. Let
L* = LU{V,m,<}, where V is a new unary predicate, 7 is a new
unary function, and < is a new binary relation. Associated to any rep-
resentation M = [[{M, : i € I'} of an ordinal sum there is a canonical
expansion of M to an L*-structure M* which is defined as follows:

e The universe of M* is M U I,

e The interpretation of V(M*) is M;

e Symbols in L are only interpreted on V(M*), and their inter-
pretation there is identical to their interpretation on M;

e The symbol < is only interpreted on =V (M?*) and its interpre-
tation is (I, <);

e The symbol 7 is interpreted as a function from V(M*) to
=V (M*), and 7™ (a) = i if and only if a € M;.

It is clear that for any L-theory T and any assignment Y, the class
of expanded X-ordinal sums of models of T is an elementary class of
L*-structures.

We think of L* as being a ‘2-sorted’ language and we will primarily
concern ourselves with L*-formulas whose variables ‘know their sorts’.
The following definition makes these notions precise.
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Definition 2.6. An L*-formula ¢ is 2-sorted if p = V() or ¢ = =V (x)
for every free variable x occurring in ¢. As notation, we typically
denote the V-variables by y’s and the —V-variables by Z’s. The 2-
sorted formulas ¢ and ¢ are comparable if

ek V(z) ifandonlyif ¢ F V(x)

for every variable x occurring freely in both ¢ and . If ¢ is 2-sorted,
then its 2-sorted negation —'¢ is the 2-sorted L*-formula that is com-
parable to ¢ for which o(M*) N =p(M*) = () for every L*-structure
M*. If ¢ and 9 are comparable 2-sorted formulas then the 2-sorted
disjunction is defined to be ='(='o A="y). If F is any set of comparable
2-sorted formulas, then the set of 2-boolean combinations of F' is the
closure of F' under conjunction and 2-sorted negation.

Our goal is to isolate a specific subset of the L*-sentences, namely
the set of separated L*-sentences (see Definition 2.10) for which the
dependence on the theory T is separated from the dependence on the
linear order (/,<). To begin we give two variants of equivalence of
formulas.

Definition 2.7. Let T be an L-theory, let p be an ordered partition
of (1,...,n), and let ¥ be an assignment.

—

(1) Two comparable 2-sorted L*-formulas v (y1, ..., yn, Z) and

—

Yo(Y1, - - s Yn, Z) are (X, p)-equivalent if

M ’: 71(67@ = 72(67@
for every expanded Y-ordinal sum M* of models of T', every
@ € V(M*)" that induces p and for every d € =V (M*)*.
(2) Two comparable 2-sorted L*-formulas v;(y1,...,¥yn, Z) and

—

Y2(Y1,s .- Yn, Z) are p-equivalent if

M* ): ’}/1(&:@ = 72(6ad_>
for every expanded ordinal sum M* of models of T', every a €
V (M*)™ that induces p and for every d € =V (M*)E,

Definition 2.8. For any nonempty set S of variable symbols, let I'g
denote the 2-sorted L*-formula A, .4V (y) A7(y) = 7(y').

We define a 2-sorted L*-formula 6% for any L-formula whose free
variables are among S by induction on the complexity of § as follows:
For § atomic, 6§ := 6 Al'g; (=) := 0 ATs; (6 AB)§ =65 A B%; and
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If the L-formula 6(yy, . . ., y;) has its free variables displayed (or more

precisely if its free variables are among {y,...,y;}) we simplify nota-
tion and simply write 6*(yi,...,y;) in place of the more cumbersome
)y .

{y1,u1}

For o any L-sentence and Z any (—V)-variable symbol, let oZ de-
note the 2-sorted L*-formula that represents the relativization of o to
771(Z). That is,

o If 0 is Jwé(w) then 0Z := Jw(n(w) = Z A §*(w));
o If 0 is Vwé(w), then o := Vw(r(w) = Z — 6*(w)).

The intuition is that 6*(yi,..., ;) or o7 represents a finite piece of
information about a specific condensation class, namely 7=!(m(y;)) or
n=1(Z), respectively.

Definition 2.9. A separated L*-formula is a 2-sorted L*-formula of
the form Q1 7y ... QrZyn(Z1, . .., Zky Zii1y - - -, Zm), Where each Q;Z; is
either 37; or VZ; and n is a 2-boolean combination of formulas of the
form Z; < Z;, Z; = Z; (which we call order atoms) and L*-formulas of
the form 0%, where o is a sentence of L.

One important aspect of being a separated L*-formula is that it has
no free V-variables. However, a typical separated L*-formula may have
unquantified (=V') (i.e., Z) variables.

Definition 2.10. A separated L*-sentence is a separated L*-formula
Q17 ...QrZin(Zy, ..., Zy), in which all Z-variables have been quan-
tified out.

Theorem 2.11. Let L be a language without constant symbols and
let T' be any L-theory. For any assignment X and any L*-sentence o
there is a separated L*-sentence oy, such that M* |= o < oy for every
expanded Y-ordinal sum M* of models of T. Furthermore, given a
recursive presentation of L, the mapping (X, 0) — ox, is recursive.

We will obtain this as a consequence of the more general result for
formulas given in Proposition 2.19. Our strategy is to define, for each
ordered partition p of (1,...,n), a syntactically restrictive class of p-
formulas. We then give a series of lemmas leading up to Proposi-
tion 2.19, which indicates that for any assignment 3, the set of p-
formulas contains a representative of every (X, p)-equivalence class of
2-sorted L*-formulas with free V-variables among vy, ..., yx.

Definition 2.12. Fix an ordered partition p = (s; : i < ) of (1,...,n).
(1) A p-atom is any 2-sorted L*-formula of any of the following
forms:
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o Order Atoms: m(y;) < Zy; Z; < w(y;); w(y;) = Zi; Z; <
Zy;or Zj = Zi:t or
e Delta Atoms: an L*-formula 6*(s;(¢)), corresponding to
some i < t and some L-formula d(s;(¥)); or
e Sigma Atoms: an L*-formula 0% for some L-sentence o.
(2) A p-conjunction is a finite conjunction of p-atoms.
(3) A quantifier-free p-formula is a 2-boolean combination of p-
atoms.
(4) A p-formula has the form Q121 ... Q1Zim(Y1, - -, Yns Z1s - -y L),
where | < m and each @);Z; is either 3Z; or VZ;, and 7 is a
quantifier-free p-formula.

Every p-formula is clearly 2-sorted. Note that the 2-sorted negation
of a p-atom is p-equivalent to a finite disjunction of p-atoms. This
observation is the key to the following lemma, which gives a ‘standard
form’ for quantifier-free p-formulas that will be used later.

Lemma 2.13. For every ordered partition p = (s; 11 < t) of (1,...,n),
every quantifier-free p-formula n(y, Z) s p-equivalent to a quantifier-
free p-formula 1 of the form Vj<r 0;, where each 8; is a p-conjunction.
Moreover, we may assume that for every j <r and i <t, 8; contains
exactly one delta atom whose free variables are among s;(y). Further-
more, the mapping n +— 1 is recursive.

Proof: Given a quantifier-free p-formula 7, first write n in Dis-
junctive Normal Form (in the sense of Definition 2.6). Then eliminate
2-sorted negations of p-atoms one at a time and use the distributive
property of A over V, giving a formula 7 that is p-equivalent to . Fi-
nally, by taking conjunctions of delta atoms from the same s;(7) and
adding dummy delta atoms such as (yx = yr);, (7 2s needed we obtain
the requisite 7. This procedure is recursive.

The next lemma enumerates some routine operations under which
the family of p-formulas is closed.

Lemma 2.14. For any n and any ordered partition p of (1,...,n), if

YY1y -+ Yns 2) and Yo (Y1, - - -, Yn, Z) are comparable p-formulas, then
each of the formulas —'v1, y1 A7y, 3Z(=V(Z) A1) and VZ(-V (Z) —
) are p-equivalent to p-formulas.

Proof: Suppose that the p-formulas v, and 5 have the form
Q21 QuZkm(yis - yn, Z) and QWi QuWima(yr, - yn, W),

Literally, each of these formulas should be conjoined with formulas specifying
the sorts of each variable, e.g., Z; < Zj, should be Z; < Z A=V (Z;) N =V (Zy).
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respectively where n; and 7y are quantifier-free p-formulas. We may
assume that the sequences of variables Z and W are disjoint. Then
Q57 ... Qi Zk—"m (where each Q* is the ‘opposite quantifier’ of @) is
p-equivalent to —'7;, and is itself p-equivalent to a p-formula by the
note preceding Lemma 2.13. Also,

Q171 QuZkQiWr . QWi (i A2) (Y1, -+ - s Yns 27 W)
is p-equivalent to v; A 5. Closure of the set of p-formulas under the
other two operations is immediate from their definition.

The main work in establishing Proposition 2.19 concerns quantifica-
tion of a V-variable, which is the content of Lemma 2.16 below. How
this quantification is handled depends both on the formula and on the
ordered partition.

Definition 2.15. Suppose that p = (s; : i < t) is an ordered partition
of (1,...,n) and k < n. We say that p links n to k if both n and k
are elements of the same s;. If p links n to k, then p~ is the ordered
partition of (1,...,n— 1) formed by replacing that s; in p by s}, which
is formed by deleting n from s;. We say that p isolates n if some
s; = (n). In this case, we let p~ be the partition of (1,...,n — 1)
formed by deleting that s; from p.

Lemma 2.16. (1) For every n and k < n, every ordered partition
p of (1,...,n) that links n to k, and every p-formula ~y there is

a p~-formula 7 that is p~-equivalent to Jy, (v A 7(yn) = 7(yx)).

(2) For every n, every ordered partition p of (1,...,n) that isolates

n, and every p-formula vy, there is a p~-formula v that is p~-

equivalent t0 3yu(y A Nycy 7(yn) 7 ().
In both cases the mapping v — 7 1S recursive.

The following general lemma, a variant of which was suggested by
the referee, unifies the proofs of the two cases.

Lemma 2.17. Let {a; : j < r} and {B; : j < r} be L*-formulas with
no Z-variables occurring in any B;. The formula 3y,QZ \/j<r(aj A Bj)

is equivalent to \ gy, Yw, where Yy == Jyn (N e Bj NQZ Vijew @)
(Here QZ denotes quantification over any subset of the Z-variables.)

Proof: An easy induction on the quantifier length of @2 implies
that QZ V,_, (o A B;) is equivalent to

V (A razya)

0AWCr \jeWw JEW
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(for left to right take W = {j < r : (; holds}). The lemma follows
since 3 commutes with \/.

Proof of Lemma 2.16 For both cases fix an ordered partition p =
(s; i < t)y of (1,...,n) and a p-formula . As notation, suppose
n € s;. By Lemma 2.13 v is p-equivalent to a p-formula of the form
Q0Z \/j<r 0;,(y1, -, Yn, Z), where each 6; is a p-conjunction with exactly
one delta atom §7(s;(¥)) with free variables among s;().

In Case (1) apply Lemma 2.17 with 8;(s;(%)) := 6;(s:(%)) and a; to
be 0; with the conjunct 07 (s;(¥/)) deleted and every occurrence of 7(y,)
replaced by 7(yx). By Lemma 2.17 the formula JynQZ V<, 0; is equiv-

alent to \/y_yc, Yw, where each ¢y has the form 3y, (A ;e 07 (si(¥)) A

Q0Z VjeW «;) Since the variable y,, does not occur in any «;, each ¥y
is equivalent to

(3,% A\ 6;<si<@7>>> N QZ\/ o
jeW jeW
But the first conjunct is simply the p~-atom (Jy, A\ ey J;(s:(¥)))* and
the second conjunct is a p~-formula by Lemma 2.14. The lemma follows

by another application of Lemma 2.14.
In Case (2) we apply Lemma 2.17 taking 3; := 65 (yn) A N\jc, 7(Ur) #
7(yn) and a; to be 0; with the conjunct 67 (y,) deleted. Then the for-

mula Hyn(éj Vier OiANg<n T(Yn) # 7(yr)) is equivalent to Vg e, Yw,
where each ¢y has the form

. (A ) A N\ wlon) £ 7l A G7\/ )

JjeEW k<n JEW

Since p isolates n, for every W 3y, A,y 0j(yn) is an L-sentence which
we denote by op,. Additionally, the only occurrences of the variable
Y, in the a;’s involve 7(y,). Consequently, if we let Z* denote a new
variable symbol that does not occur in 7y, then each ¥y, is p~-equivalent
to

1z <ﬁv<z*> NoZ N\ 2 % nlg) N OZ ] a>
k<n JjEW
where @, is formed from «; by replacing every occurrence of m(y,) by
Z*. BEach &; is a p~-formula since each a; was a p-formula. So the
lemma follows by applications of Lemma 2.14.

Lemma 2.18. For every assignment ¥, n € w, and ordered partition

—

p of (1,...,n), every 2-sorted atomic L*-formula p(yi,...,yn, Z) is
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(2, p)-equivalent to a quantifier-free p-formula n(yy, ..., yn, Z). Fur-
thermore, the map (X, p, p) — n is recursive.

Proof: One first proves the following result for L-terms:

Claim 1. For every L-term 7(y1,...,yn) and for every ordered parti-
tion p=(s; :j <t) of (1,...,n), there is a k <t and a T-definable
function h in the variables sk (y) such that

TM(@) = W@ (s1.(a))

for all ¥X-ordinal sums M of models of T and for all @ from M that
induce p.

Then, given this result for L-terms, one can read off the p-formula
corresponding to each atomic L-formula from p and the assignment .
Finding p-formulas that are (X, p)-equivalent to the other L*-atomic
formulas such as V(7(%)), 7(7(¥)) = Z and 7(7(¥)) < 7(72(¥)) is also
routine.

We our now ready to prove our main elimination result. Note that
since every L*-sentence is trivially 2-sorted, Theorem 2.11 follows as
an immediate corollary to the following proposition.

Proposition 2.19. Let L be a language without constant symbols and
let T be any L-theory. For any assignment X, for any 2-sorted L*-
formula o(y1, . .., Yn, 2), and for every ordered partition p of (1,...,n),
there is a p-formula s, , that is (X, p)-equivalent to p. Moreover, given
a recursive presentation of L, the mapping (X, ¢, p) — ¢x., s recursive.

Proof: Fix an assignment . Call a 2-sorted L*-formula ezplicitly
2-sorted if it is in the closure of the atomic 2-sorted L*-formulas under
the operations of conjunction, 2-sorted negation, Jy(V(y) A ...) and
AZ(=V(Z) N ...). A straightforward induction shows that every 2-
sorted formula is equivalent to an explicitly 2-sorted formula. We argue
that every explicitly 2-sorted L*-formula @ (y1, ..., yn, Z) satisfies the
following condition: For every ordered partition p of (1,...,n), there
is a p-formula that is (X, p)-equivalent to .

That the condition holds for all atomic 2-sorted L*-formulas is the
content of Lemma 2.18. If ¢(yi,...,yn, Z) and ¥(y1,...,yn, Z) are
comparable explicitly 2-sorted L*-formulas that satisfy the condition,
then o A ¥, ='p and IZ(=V(Z) A ¢) all satisfy the condition by
Lemma 2.14. Thus, it suffices to prove that if the explicitly 2-sorted
L*-formula o(y1, ..., Yn, 7 ) satisfies the condition, then for every or-
dered partition p of (1,...,n—1) there is a p-formula (3, p)-equivalent

to Jy,p.
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So fix such a ¢ and an ordered partition p of (1,...,n—1). It follows
from Lemma 2.14 that the formulas ¢ == @ A7 (y,) = 7(yx) for k <n
and the formula ¢, := @A\, _,, T(yn) # 7(yi) also satisfy the condition.
For each k < n let py be the (unique) ordered partition of (1,...,n)
that extends p and links n to k& and let p,, be the ordered partition of
(1,...,n) that extends p and isolates n. Note that (px)~ = p for all

< n. For each k < n let ye(y1,- .., Yn, Z) be a pp-formula that is

, Pr)-equivalent to . It is easily checked that the p-formula

\/ ;yk(ylv <oy Yn—1, Z)

k<n

k
(2

(where 4y is generated from Jy,, v using Lemma 2.16) is (X, p)-equivalent
to Jy,p.

The following corollary follows easily.

Corollary 2.20. Fiz a language L without constant symbols, an L-
theory T, an assignment ¥, and sequences (M : i € I) and (N; : i € I)
of models of T', each indexed by the same linear order (I, <), such that
each M; is L-elementarily equivalent to N;. Then the expanded Y-
ordinal sum generated by (M; : i € I) is L*-elementarily equivalent to
the expanded YL-ordinal sum generated by (N; :i € ).

Proof: Let M* and N* be the expanded Y-ordinal sums of models
of T generated by (M, : i € I) and (N; : i € I) respectively. Because
of Theorem 2.11 it suffices to show that

M* =~ ifand only if N* vy

for all separated L*-sentences. But this follows immediately since the
underlying linear orders of M* and N'* are identical and for every order
atom oZ, M* |= o' if and only if N* |= ¢° for every i € 1.

3. THE DECIDABILITY OF YX-ORDINAL SUMS

The following theorem is the goal of this section. By examining
the proof it is clear that the assumption of a finite language can be
eliminated if one instead assumes a recursive presentation of both the
language and the assignment X.

Theorem 3.1. If T is a decidable theory in a finite language without
constant symbols, then for all assignments 33, the elementary class of
expanded Y-ordinal sums of models of T is decidable. Moreover, the
decidability is uniform in X.
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In Corollary 3.6 we prove that the decidability of the class of Y-
ordinal sums of models of T' (in the original language L) follows from
this.

Our proof of Theorem 3.1 reduces the decidability of the class of
expanded Y-ordinal sums of models of T' to the decidability of the
class of colored linear orderings. To make this latter notion precise
requires the following definition.

Definition 3.2. (1) For every i € w, let U; be a unary predicate
symbol. Let L¢ := {<} U{U; : i € w}, which we call the
language of colored linear orders.

(2) Let T}, denote the usual theory of linear orders, (i.e., axioms
that assert that < is reflexive, transitive, and antisymmetric)
in the language L°.

(3) For 7 any sentence of L€, let |7| = max{i € w : U; occurs in
T}+ 1.

(4) For any k € w, let Ay be the L®-sentence:

(\/ Uj<a:>> AN S(U) AT ) |

j<k i<j<k

YV

(5) A k-colored linear order is an L°-structure D such that D |
Tio U{Ax}.

The following theorem is due to Lauchli and Leonard [LL]. A proof
of this result in the language of pure linear orders appears in [Ros].
However, as noted in the original paper of Lauchli and Leonard, there
is no obstruction in extending the argument to the language L¢ (see
e.g., Theorem A.6.10 of [Hod]).

Theorem 3.3. T}, is a decidable L°-theory.

We will reduce the decidability of ¥-ordinal sums of models of T to
the set A defined in the following corollary.

Corollary 3.4. Let A := {(k,"0c ") : k > |o| and o is an L°-sentence
that holds in some k-colored linear order}. Then A is recursive.

Proof: This follows immediately from Theorem 3.3 since (k,"¢ ) €
A if and only if T}, P~ (Ax — —0).

The following proposition specifies the reduction mentioned above.

Proposition 3.5. Let L be a finite language without constant symbols.
Fiz a decidable L-theory T'. For any separated L*-sentence -y, there is
an integer k() € w and an L°-sentence h(y) such that |h(y)| < k()
and the following two conditions hold:
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(1) If 7y is true in the expansion of some ordinal sum of models of
T, then h(v) is true in some k(y)-colored linear order.

(2) If h(7) holds in some k(v)-colored linear order, then for every
assignment 3, vy is true in some expanded Y-ordinal sum of
models of T

Furthermore, both k() and h(vy) can be obtained recursively from -.

Proof: We will begin by giving the construction of the map h. Let
vi=@Q1 2y ... QuZm(Zy, ..., Z;) be a separated L*-sentence. We do the
following five steps (note that each step can be performed recursively):

Step 1 List all L-sentences oy, ..., 0nm_1 such that for some Z, o7 is a
sigma atom occurring in 7).

Step 2 Let +£o denote either o or —o. Using the list of ¢’s, form every
possible combination of +0g A +09 A ... A £0,,_1, giving us a

list of 2™ sentences 1, . .., Yom.
Step 3 Remove from our list any ,,’s that are inconsistent with T
and reindex, giving us a list {¢q, ..., ¥, 1} for some v < 2™,

Let k(vy) denote this v. Since T is decidable this step can be
performed recursively.

Note that by construction our ,’s have the following two
properties:
(a) For every n < k(7), ¥, is consistent with 7.
(b) For every N |= T, there is exactly one n < k(7y) such that

N E ¥,.

We also note that, for each i < m, o; is equivalent (modulo T')
to a disjunction \/, . A, ¥n, where n € A; if and only if o; occurs
positively in .

Step 4 Let n'(Z1,...,7;) be the formula obtained from 7 by replac-
ing each occurrence of o; by \/, . A, Yn. That s, aiZ 7 becomes
(\/neAi (¢TL>ZJ)

Step 5 Define h(7y) to be the L-sentence Q17 ...QZm" (Z1, ..., 7)),
where n* is obtained from 7’ by replacing each occurrence of
YZ by U,(Z;). Note that |h(y)| < k() by construction.

Now we prove (1). Let M :=[[{M; : i € I} be a X-ordinal sum of
models of T'. Let M™ be the canonical expansion of M and assume that
M* = v. We define a k()-colored linear order D such that D |= h(7y).
Let D := (D, <,{U, : n € w}) be defined by taking (D, <) to be (I, <)
and interpreting each color U, as follows:

o If n < k(v), then for every d € D, define D |= U, (d) if and only
if M* =42 (and, using our definition of ¥ and induction, this
holds if and only if My | v,).
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e If n > k(v), then for every d € D, define D | —U,(d) (or,
equivalently, UP = ().

Note that D = Ay, because the list of v,’s has property (b) men-
tioned in Step 3. It is readily checked that D = h(y).

Now we prove (2). Let D := (D,<,{U, : n € w}) be a k(vy)-
colored linear order such that D = h(y). Fix an assignment . We
will construct a Y-ordinal sum of models of T', M whose canonical
expansion M* = . Note that for each d € D, there is a unique
n(d) < k(vy) such that D |= Uy@)(d). As well, the sentence ),
is consistent with 7". So choose a set {M, : d € D} of disjoint L-
structures with My = T U {¢4}. Let M = [[{My : d € D} be the
universe of M. It is easily verified that there is a unique way of defining
the functions and relations on M so as to make M a Y-ordinal sum
of models of T'. Let M* be the canonical expansion of M as given in
Definition 2.5. Then M* = ~ and our proof is complete.

The proof of Theorem 3.1 is now immediate.

Proof of Theorem 3.1: Let T be a decidable theory in a finite
language without constant symbols and let ¥ be any assignment. Given
an L*-sentence o, let gs;(0) be the separated L*-sentence obtained from
Theorem 2.11. It is easily verified that o is true in some Y-ordinal sum
of models of T if and only if (k(gs(0)), "h(gs(0))™) € A. As the maps
h,gs, and the set A are all recursive, this implies that the theory of
expanded Y-ordinal sums of models of T is decidable.

As noted in Example 2.4 the class of Y-ordinal sums of models of T’
in the language L need not be an elementary class. Despite this, we
call the class decidable if the set of codes of L-sentences true in every
Y-ordinal sum of models of T is recursive.

Corollary 3.6. Let T be a decidable theory in a finite language L
without constant symbols. Then for any assignment X, the class of
Y-ordinal sums of models of T is decidable.

Proof: Let o be any L-sentence. Then ¢V, the relativization of o to
V(M*) is an L*-sentence and for any Y-ordinal sum M* of models of
T, we have M = o if and only if M* |= 0" where M* is the canonical
expansion of M. That is, the decidability of the Y-ordinal sums of
models of T" is reducible to the decidability of the expanded »-ordinal
sums, so we are done by Theorem 3.1.
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4. THE DECIDABILITY OF THE THEORY OF BL-CHAINS

B L-chains, otherwise known as linearly ordered BL-algebras, were
introduced by Héajek [Ha] to provide a general framework for proving
completeness theorems in fuzzy logics. Traditionally, BL-algebras are
presented in the language Lp;, = {*,<,=,U,N, 0,1}, but it turns out
that each of the symbols is definable in any BL-chain restricted to the
sublanguage L = {*, <}, so we work in this smaller language. Through-
out this section, with the only exception being the proof of Lemma 4.8,
the underlying language is taken to be L = {x, <}. In [LS]| we offer a
characterization of the class of BL.-chains which we proceed to summa-
rize.

Definition 4.1. An ordered abelian semigroup (S, *, <) is a linear order
< and a commutative and associative operation * which satisfies

r <y implies z*xz<yx*xz

for all z,y,z € S. An ordered abelian group (G, *,<) is an ordered
abelian semigroup with an identity element such that every element
has an inverse. In other words, (G, %) is a group.

The definition of a BL-chain given below is readily seen to be equiv-
alent to the definition in the language Lp; given by Héjek in [Hal.
Specifically, the other constants and operations of Lg; can be inter-
preted as follows: 1 denotes the top element of the chain and 0 denotes
the bottom; z Ny = min{z,y}; v Uy = max{z,y}; and x = y = 1
whenever x < y, while x = y = the largest z such that =z x z = y
whenever y < x.

Definition 4.2. A BL-chain is an L-structure (A, x, <) satisfying the
following axioms:

(1) The relation < is a linear order on A with a top and a bottom
element;

(2) (A,*,<) is an ordered abelian semigroup;

(3) The top element is the identity element of (A, *); and

(4) For all y < z there is a largest z such that z % z = y.

In [LS] we obtain an algebraic characterization of the class of BL-
chains that is easily stated in terms of ordinal sums. To enable us to
state it we require two more definitions.

Definition 4.3. Let (G, %, <) be any ordered abelian group.

(1) The negative cone of G is the substructure (N(G),*,<) of G
with universe {x € G : v < 0g}.
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(2) The extended negative cone (N_(G),*,<) is an extension of
N(G) with universe N(G) U {—oc}, where the definitions of *
and < are extended so as to satisfy Va(z % (—o0) = (—00) *xz =
(—o0)) and Va(—oo < x).

(3) Let d € N(G). The truncation of N(G) at d is the structure
T(G,d) with universe {x € N(G) : x > d}, where the operation
x7 is defined by:

J xxgy fxxgy>d
x*Ty’_{d if vxqgy<d

and the relation <7 is inherited from G.

Definition 4.4. A basic form is any ordered abelian semigroup (S, *, <)
that satisfies one of the following four conditions:
(1) S is a singleton;
(2) (S, *, <) is isomorphic to a negative cone of an ordered abelian
group;
(3) (S, *,<) is isomorphic to an extended negative cone of an or-
dered abelian group; or
(4) (S, *,<) is isomorphic to a truncation T'(G,d) of an ordered
abelian group.

In Lemma 4.6 below we will see below that the class of basic forms
is an elementary class. As notation, let T ; denote its theory. The
following theorem is the content of Theorem 3.5 of [LS].

Theorem 4.5. Let ¥ is the assignment that makes < a total order
on an ordinal sum of models of Ty and defines x * y = min{x,y}
whenever x and y are from different M;’s. Then the class of BL-chains
is precisely the class of X-ordinal sums of models (M; :i € I) of Ty, f.
such that (I, <) has a first element i(0), a last element i(x), M) has
a <-least element, and M, is a singleton.

In order to get our decidability result we need to show that the class
of basic forms is decidable. As a prelude to this, we show that the class
is elementary.

Lemma 4.6. The class of basic forms is an elementary class. In fact,
its theory Ty ¢ is finitely aziomatizable.

Proof: It follows from results in [LS] that each of the classes of
singletons, negative cones, extended negative cones, and truncations
can be axiomatized by a single sentence. For the class of singletons
this is clear. Lemma 2.3 of [LS] (which is similar to Proposition 1,
page 154 of [Fu]) states that an ordered abelian semigroup (5, *, <) is
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a negative cone of an ordered abelian group if and only if it satisfies
the following two elementary properties:

(1) For all z,y € S, x > x xy and
(2) For each z,y € S such that x > y, there is a unique z such that
T*z=y.

Similarly, an ordered abelian semigroup (S, x, <) is an extended neg-
ative cone of an ordered abelian group if and only if it has a least
element d and (S \ {d}, *, <) is a negative cone. Finally, Lemma 2.4
of [LS] states that an ordered abelian semigroup (S, *, <) with a least
element d is a truncation of an ordered abelian group if and only if the
following four elementary properties hold:

(1) For any z,y € S, v xy < z.

(2) For any z,y € S, if z xy = x, then x = d.

(3) There are z,y € S, x,y > d such that x xy = d.

(4) For each z,y € S such that x > y, there is a largest z such that
Tkz=1.

Thus, the class of basic forms is axiomatized by the sentence %% V
oNC Vv oPNC v o1 where the four sentences axiomatize the classes of
singletons, negative cones, extended negative cones, and truncations,
respectively.

The following theorem is due to Gurevich [Gur| and is at the heart
of the proof of Corollary 4.8.

Theorem 4.7. The theory of ordered abelian groups is decidable.
Corollary 4.8. The theory of basic forms is decidable.

Proof: It suffices to show that each of the four basic forms is decid-
able. Clearly, the theory of the singleton is decidable as there is only
one one-element ordered abelian semigroup up to isomorphism.

The theory of negative cones is decidable since the negative elements
of an ordered abelian group are definable.

The demonstration that the theory of extended negative cones is
decidable follows easily, since an extended negative cone is isomorphic
to a negative cone once its minimal element is removed.

To see that the theory of truncations is decidable requires some ma-
nipulations of languages. First, let Ly = {*r, <}, where %7 is a new
binary function symbol and let o™ be identical to 0", except that
every occurrence of x in 0" is replaced by *7 in o7". It clearly suffices
to show that the set of (codes of) Ly consequences of o1 " is recursive.
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Next, let Ly = {%,<,0,d}. Since the L-theory T,,, of ordered
abelian groups is decidable,

Ty = Tpay U{Va(z %0 =2)} U{d < 0}

is a decidable Li-theory. Let §(z) := d < = < 0 and let Ly, =
Ly U {xr}. Let I' be the sentence defining the operation *7 given in
Definition 4.3(3) for any truncation T'(G, d). More precisely, for all z, y
realizing 0, xxpy = = * y whenever x xy > d, and x*7y = d whenever
xxy < d. It follows that To = T3 U {I'} is a decidable Lo-theory.

But now, it follows from Lemma 2.4 of [LS] that for every truncation
(D, *7,<) |= 07" there is an Ly-structure (G, *, <,0,d, 1) = T with
D = 6(G). Conversely, if (G,*,<,0,d,*r) = Ts, then (§(G),*r, <
) |2 o7, Tt follows that for every Lp-sentence o, o is consistent with
the Ly-theory of truncations if and only if ¢, the relativization of o
to d(G), is consistent with 75. As the latter theory is decidable, the
decidability of the theory of truncations follows.

Theorem 4.9. The theory of BL-chains is decidable.

Proof: It follows immediately from Corollaries 3.6 and 4.8 that the
theory of ¥-ordinal sums of models of T3 is decidable, where ¥ is
the assignment given in Definition 4.2. But the theory of BL-chains is
clearly a finite extension of the theory of ¥-ordinal sums of models of
Ty s, so it is decidable as well.
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