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especially from the point of view of Kummer theory. In this section we sketch
the basic set-up, leaving the details to the reader. The proofs are very similar
to those in Chapter 10.

We start with a totally real field F. Let p be odd, let Ko = F({,), and let
K /Ky be the cyclotomic Z -extension. Let M, be the maximal abelian
p-extension of K, which is unramified outside p, and let

., = Gal(M_/K_).

Then &, is a A-module in the natural way (just as for X = Gal(L /K ).
Let M, be the maximal abelian p-extension of K, which is unramified outside
p. Clearly M, = K_ . We have S

where w, = 98" — 1 = (1 + T)*" — 1. The proof is essentially the same as
for Lemma 13.15, namely computing commutator subgroups, but in the
present case we do not have to consider inertia groups. From Corollary 13.6

we know that
Gal(M,/K ) =~ ZP"* 1% x (finite group),

wherer, = ry(K,) and §, is the defect in Leopoldt’s Conjecture (see Theorem
13.4). Therefore

F of0p & o, = TP x (finite group).
By Lemma 13.16, & _ is a finitely generated A-module, so

Z 5 ~ A" @ (A-torsion)
for some g > 0.

Lemma 13.30. 8, is bounded, independent of n.

Proor. Suppose 8, > 0 for some n. Let ¢,

.., & beabasisfor E; = E((K,).
We may assume g5, o, ..

.» & are independent and generate E, over Z,.Then

& = H 8_?“, with aij S Zp,

for 1 < i< 4,. Let aj; be the nth partial sum of the p-adic expansion of g;,.
Let '

;=& ] e e Ey, 1<i<$,

i
Then #; is a p"th power in E; < [, Uy s> and 5y,..., 5, generate a sub-
group (Z/p"Z)y of K HKX)*". Since ¢ » € Ko by assumption, {,. e K,.
Therefore the extension

K ({n}""})/K,

has Galois group (Z/p"Z)*. Clearly this extension is unramified outside p.
Since each#;isa p"th powerin U, sforeach 4|p, these primes split completely
hence do not ramify. Therefore the Galois group X, of the Hilbert p-class
field of K, has a quotient isomorphic to (Z/p"Z)*. In the decomposition of
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X, the terms of the form A/{p") cannot account for this for large n. The term
of the form P); AAg(T)) can only yield (Z/p"Z)*, where 2 =Y deg g.
Therefore d, < 4. This completes the proof. .

If{, ¢ K,,thelemma is still true. Simply adjoin {, and use the easily proveq
fact that if K < L then 8(K) < 3(L).

The above result perhaps could have been conjectured from Theorem
7.10 (although we already know &, = 0 in that situation). Intuitively, the
number &, should be approximately the number of occurrences of L(1, x) = ¢
for K, Since each series f (T, §) has only finitely many zeros,

L1, 00) = f((,(1 + qo) — 1,6) # 0

when s has large enough conductor, So the number of y with Ly(1, x) = 0is
bounded.
By the lemma,

Zrank & fw, %, = r,p" -+ O(1).

By the structure theorem for &', we see that the A-torsion contributes only
bounded Z rtank (at most A) and A%w, A" yields ap”. Therefore we have
proved the following.

Theorem 13.31. &', ~ A" @ (A-torsion). 0

One advantage of using &', rather than X is that it is easier to describe
how L, is generated. Since all p-power roots of unity are in K ,, M_/K_ is
a Kummer extension. There is a subgroup

VeK,®:Q,/7,
V={a®p "|varicusn>0and ac K}

(itis not hard to see that all elemeﬁts of K, ® Q,/7,are of theforma ® p~™)
such that

M_ = K ({a*"}).
There is a Kummer pairing
Z o X V — W, = p-power roots of unity,
just as in Chapter 10. In particular,
{ox, ov) = (x, )", oeGal(K /F).

Let I,, be the group of fractional ideals of K,, and let I, = { ] I,,. Since
a ® p~ " gives an extension unramified outside p, and since a € K, for some
m, it follows that

(a) = BY"-B;insome I,
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know that

Gal(M, /Ko) = Z5P" 0 ¢ (finite group),

where r, = r,(K,) and d, is the defect in Leopoldt’s Conjecture (see Theorem
13.4). Therefore

ool &y = Z7P"n x (finite group),
By Lemma 13.16, %,, is a finitely generated A-module, so
o ~ A® @ (A-torsion)

for some g > 0,

Lemma 13.30. §, is bounded, independent of n.

Proof. Suppose 8, > 0 for some n. Let 215 ..., & be a basis for E, = Ei(K,)

modulo roots of unity. We may assume g; .4, ..., &, are independent over Z,

and generate E, modulo torsion, Let P' = (E)ioral. Then there exist a; & z,
such that

e =] e forl<i< &,.

>y

Let m > t and let aj; € Z satisfy aj; = ay (mod p™). Let

m=glle  forl<ixs,
i

Then #f*is a2 p*'th power in E = [1U., o

Iy e K, is a pth power in K2, then K. (74
ated over K, by a root of unity,
inK,.

Since ¢, ..

& K. Since K, is gener-
1 must be a p-th power times a root of unity

+; &, are independent in E,, M1, -5 N5, generate a subgroup
isomorphic to (Z/p™Z)% in K /(KX)P™, hence in KZAKZP™ by the previous
paragraph. Since {, e K, by assumption, {,.€ K, for all n Therefore
K({nf"™})/K,, has Galois group (Z/p™*Z)*. Since each nf' is a pth power
locally at the primes dividing p, these primes split completely, hence do not
tamify. Therefore the Galois group X of the maximal abelian unramified
p-extension of K, has a quotient isomorphic to (Z/p™ ™ Z)’. In the decompo-
sition of X, the terms of the form A/(p¥) cannot account for this for large m.

The term of the form @ A/(g;(T)) can only yield (Z/p™'Z)*, where 1 =
Y degg;. Therefore &, < 4. This completes the proof. |

If {, ¢ Ky, the lemma is still true, Simply adjoin {, and use the easily
proved fact that if K < L then 6(K) < &(L).

The above result perhaps could have been conjectured from Theorem 7,10
(although we already know d, = 0 in that situation). Intuitively, the number
d, should be approximately the number of occurrences of L,(1,x) = Ofor K
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