SOME APPLICATIONS OF DERIVATIVES

by David Levermore

20 October 1999

This is a review of some of the material we have covered pertaining to the application
of derivatives and which will be covered on the third exam. It supplements the material
covered in the book (Chapter 5 and Appendices A and E) and in the class lectures. It
includes minima and maxima, monotonicity and concavity, inflections, general optimization
problems, economic optimization problems, tangent line approximations, root finding, and
the Newton-Raphson method.



1. FINDING MINIMA AND MAXIMA

1.1: Minima and Maxima. Consider a function f that is defined over an interval I,
where I is either (a,b), [a,b), (a,b] or [a,b] for some a < b. Here we allow a = —oc or
b = oo as possible open endpoints. We say that f has a minimum over I if there exists a
point p in I such that

f(p) < f(x) forevery zin I.

While there can be more than one such p, it is clear that the value f(p) must be unique.
Given such a p, we say

e f has a minimum over I at p,
e f(p) is the minimum value of f over I.

Similarly, we say that f has a maximum over [ if there exists a p in I such that
f(x) < f(p) forevery zin I.

While there can be more than one such p, it is again clear that the value f(p) must be
unique. Given such a p, we say

e f has a maximum over [ at p,
e f(p) is the maximum value of f over I.

Points that are either a minimum or a maximum of f over I are called extreme points
or extrema of f over I and their corresponding values are called extreme values of f
over I.

A general function f defined over an interval I may have neither a minimum nor a
maximum. For example, consider

f(x) = tanh(x) over (—o0,00),
f(x) = tan(z) over (—%,%),
f(z) =2* over (—00,00).

Some may have one but not the other. For example, consider

f(x) = sech(x) over (—oo, 00),
f(x) = sec(x) over (—%,%),

f(z) = 22 over (—o00,00).
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And some may have both. For example, consider

f(z) = sin(x) over (—oo,00),
f(z) = : f$2 over (—oo, 00),
f(z)=2ze" over [0, 00) .

There is one general theorem that you should know.

Min-Max Theorem: If f is a continuous function defined over a closed interval [a, b]
then there exists points ppin and pmee in [a, b] such that

F(Pmin) < f(x) < f(Pmaz) for every z in [a, b].

In other words, f has both a minimum and a maximum over [a, b].

This fact we will take as a given; its proof is beyond the scope of this course. It is not true
in general if [a, b] is replaced by either (a,b], [a,b) or (a,b), or if f is not continuous over
[a, b]. Can you illustrate this with examples?

1.2: Local Minima and Maxima. Let f be defined over an interval I, where I is
either (a,b), [a,b), (a,b] or [a,b] for some a < b. If we are going to hunt for a minimum
or maximum of f over I, it is helpful to narrow our search. We say that f has a local

minimum at a point p in [ if

f(p) < f(x) over the intersection of I with some small open interval containing p.
Similarly, we say that f has a local maximum at a point p in I if

f(xz) < f(p) over the intersection of I with some small open interval containing p.

It is clear that a minimum or a maximum of f over I, if it exists, must be one of the
local minima or local maxima respectively. In this context, a minimum or a maximum of
f over I is referred to as a global minimum or a global maximum respectively. Points
that are either a local minimum or a local maximum of f over I are called local extreme
points or local extrema and their corresponding values are called local extreme values.
One similarly defines global extreme points, global extrema, and global extreme
values. Sometimes the terms relative and absolute are used in place of local and global
respectively; they mean the same thing.



Local Extrema may be found with the help of the following very important fact.

Zero-Slope Theorem: Let f be defined over an interval (a,b). If
e p is a local extreme point of f over (a,b),
e f is differentiable at p,
then f'(p) = 0.
Reason: Because p is a local extreme point of f over (a,b), f(p) is either a local minimum

or a local maximum value of f over (a,b). Suppose f(p) is a local minimum value. Then
we have

>0 forh>0, <0 forh<0.

flo+h) - f(p) flo+h) - fp)
h h

Because f is differentiable at p, this implies that

f(p+h})L—f(p) >0, f)= lm f(p+h})l—f(p)

‘(p) = li <0
fip) = lim, <

I

whereby f’(p) = 0. The argument when f(p) is a local maximum value goes similarly. //

Notice that the Zero-Slope Theorem is false if we replace the open interval (a, b) by either
(a,b], [a,b) or [a,b]. For example, consider the function

flz) =z over [—1,1].

It has a local minimum at —1 and a local maximum at —1, yet has f'(z) = 1 everywhere.
The argument given above that f'(p) = 0 breaks down at endpoints because it uses both
left and right sided limits.

To hunt for the extrema of a function f defined over an interval I, the Zero-Slope
Theorem suggests that we can restrict our search to a study of the behavior of f at the
endpoints of I and to those points p in (a, b) where either f'(p) =0 or f’ is undefined. If
p is a point in I where either f’(p) = 0 or f’ is undefined then

e p is called a critical point of f over I;
e f(p) is called a critical value of f over I.

Sometimes the point (p, f(p)) on the graph of f is also called a critical point. The in-
tended meaning should be drawn from the context. We will often work with differentiable
functions, in which case our critical points will be of the f'(p) = 0 type.



1.3: Finding Extrema by Comparing Values. If f is a continuous function defined
over a closed interval [a,b] then the Min-Max Theorem states that f has both a global
minimum and a global maximum over [a,b]. If f is differentiable over (a,b) then we can
find these as follows:

e find the critical points of f by solving for f’(p) = 0;

e evaluate the corresponding critical values f(p);

e evaluate the endpoint values, f(a) and f(b);

e the lowest of the critical and endpoint values is the global minimum value;

e the highest of the critical and endpoint values is the global maximum value.
Fortunately, this is a case that often arises in applications.

On the other hand, consider f to be a continuous function defined over an interval
that is either (a,b), [a,b), or (a,b]. Recall that we allow a = —oc or b = oo as possible
open endpoints. The Min-Max Theorem no longer applies, so great care must be taken. If
f is differentiable over I and either a global minimum or global maximum exists then we
can find it as follows:

e find the critical points of f by solving for f'(p) = 0;

e evaluate the corresponding critical values f(p);

e evaluate any closed endpoint values, f(a) or f(b);

e determine the limiting behavior at any open endpoint;

e the lowest of the critical and endpoint values is the global minimum value,
if no lower values are attained by the limiting behavior at an open endpoint;

e the highest of the critical and endpoint values is the global maximum value,
if no higher values are attained by the limiting behavior at an open endpoint;

The existence of the global minimum and global maximum values depends crucially on the
behavior of f near the open endpoints of I.

In either case these techniques also allow you to identify local extrema by applying
them to f restricted to appropriate subintervals of I.

Example: Consider f(z) = z* — 423 — 222 + 122 over (—00,00). One has
fl(z) =42 —122° — 4o+ 12=4(z — 1)(z+1)(z —3) =0.

The critical points are therefore —1, 1, and 3. The corresponding critical values are then
-9, 7, and —9. The limiting behavior as x — +o0 is f(z) — +o0o. Hence, there are global
minima at x = —1 and x = 3, a local maximum at x = 1, but there is no global maximum.



2. MONOTONICITY, CONCAVITY, EXTREMA AND INFLECTIONS

2.1: Monotonicity, Critical Points and Extrema. Let I be either (a,b), [a,b), (a, b]
or [a,b] for some a < b. Recall that if a function f is defined over I then we say f is
increasing over [ if for every z and y in [

x <y implies f(z)< f(y), (2.1)

and we say f is decreasing over [ if for every z and y in [

x <y implies f(z)> f(y). (2.2)

If f is either increasing or decreasing over I, it is said to be monotonic over I. Accordingly,
we say the monotonicity of f over I is either increasing or decreasing. Of course, most
functions are not monotonic over their whole domain. To “determine the monotonicity
of a function” means to identify the intervals over which the function is increasing or
decreasing. You should be able to do this for a function given by a formula by studying
the sign of its first derivative. For example, we have the following theorem.

Monotonicity Theorem: If f is continuous over I and differentiable over (a,b), you can
read off the following information about f from its first derivative:

e if f' > 0 over (a,b) then f is increasing over I;

e if f/ < 0 over (a,b) then f is decreasing over I;

e if f/ =0 over (a,b) then f is constant over I.

This theorem seems obvious, but its justification is not as easy as you might guess. We
will just assume it is true here.

The Monotonicity Theorem says nothing about points where f’ either vanishes or is
undefined. Recall that such points are the critical points of f over I. It is a fact that f
cannot change its monotonicity between successive critical points. Given a critical point p
in the domain of f, we shall say that f is either increasing or decreasing near p if it is so
over the intersection of the domain with some small open interval containing p.

A critical point p of a function f is called isolated if it is the only critical point of f
in some small open interval containing p. You should be able to give examples of critical
points that are isolated and of ones that are not isolated. For example, with the aid of
your calculator, consider the function

1

£U2COS(—) for x 40,
x

0 forx=0.

fz) =



This function is differentiable over (—oo, c0). It has many critical points p, each of which
satisfy f’(p) = 0. All of them are isolated except the one at 0. Do you see that f'(0) = 07

At an isolated critical point p exactly one of only four things can happen; that thing
is determined by the First Derivative Sign Test for Local Extrema:

e if f’ is negative on the left and positive on the right near p
then f has a local minimum at p;

e if f’ is positive on the left and negative on the right near p
then f has a local maximum at p;

e if f’ is positive on both the left and right near p
then f is increasing near p;

e if f’ is negative on both the left and right near p
then f is decreasing near p.

Examples that illustrate each of these possibilities are respectively
fla)=a*, fl@)=-2*, [f(@)=2", f[(z)=—a>.

In each of these examples the critical point is 0 where f'(0) = 0. Other good examples are
respectively

fl@)=af, fl@)=-a35, f@)=z3, f(x)=-a5.
In each of these examples f’ is undefined at the critical point 0. You should sketch each
example over the interval [—1,1]. Your calculator may have problems with the fractional
powers for negative values of x, so be careful. You may need to use the fact that 23 has
even symmetry while 23 has odd symmetry to figure out what those graphs look like for

negative values of z.

Example: To determine the monotonicity and extrema of f(z) = z2e~® over (—o0, c0),
first compute f’(z) = 2xe~® —x%e~%, then factor it as f'(z) = z(2—x)e~. A sign analysis
shows that f’ is negative over (—oo, 0), positive over (0, 2), and negative over (2, 00). From

this we can read off that
e f is increasing on [0, 2],
e f is decreasing on (—oo, 0] and [2, 00),
e f has a local minimum at 0,
e f has a local maximum at 2.

In addition, you should be able to see (do you?) that f(x) — 0 as x — oo and f(z) — oo
as £ — —oo. Sketch f with this information and compare it with a calculator graph.



A comparison of critical values is sometimes hard, especially when you are unable to
find all the critical points of f. A sign analysis of f’ is sometimes cumbersome, especially
when you are unable to factor f’. In the case when p is a critical point of f with f/(p) =
0, then an alternative route is provided by the Second Derivative Test for Local
Extrema:

e if f(p) > 0 then p is isolated and f has a local minimum at p;
e if f(p) < 0 then p is isolated and f has a local maximum at p;
o if f”(p) =0 or f” is undefined at p then there is no information.
When we say in the last bullet that there is no information, we mean that anything can

still happen. To see this, consider the examples

fa) =o', f@)=a', f)=a*, fla)= s f@o)=atsin(1),

where in the last one we define f(0) = 0. In each of these examples f'(0) = f”(0) = 0,
so that 0 is a critical point and the third bullet applies. They illustrate respectively cases
where f has a local minimum at 0, f has a local maximum at 0, f is increasing near 0,
f is decreasing near 0, and finally, where 0 is not isolated and f neither has a extrema at

nor is monotonic near 0. Other good examples are

ol
ol
oot

f@)=ot, J@)=-st, f@=at, f@)=-at, fa)=s"sin(}).

where in the last one we again define f(0) = 0. In each of these examples f/(0) = 0, while
f" is undefined at 0. Once again they illustrate respectively cases where f has a local
minimum at 0, f has a local maximum at 0, f is increasing near 0, f is decreasing near 0,
and finally, where 0 is not isolated and f neither has a extrema at nor is monotonic near
0.

Example: To use the Second Derivative Test for Local Extrema to determine the mono-

2

tonicity and extrema of f(z) = z2e™® over (—00, ), first compute f'(z) = 2ze~* —x2e™?

—x%e” ",
then factor it as f'(z) = (2 — z)e~". The critical points are 0 and 2. Now compute
f"(z) =2e™® —4ze~® + r%e~® and evaluate f”(0) =2 > 0 and f”(2) = —2e~2 < 0. From
this we can read off the same information given previously.

Because the Second Derivative Test for Local Extrema generally gives less information
than either comparing critical values or the First Derivative Sign Test, and because it incurs
the additional cost of taking the second derivative of the function in question, it should
only be used when you are unable to do the other two.



2.2: Concavity, Degenerate Points and Inflections. Let I be either (a,b), [a,b),
(a,b] or [a, b] for some a < b. Recall that if a function f is differentiable over I then we say
f is concave up over I if f' is increasing over I, and we say f is concave down over |
if f’ is decreasing over I. Accordingly, we say the concavity of f over I is either concave
up or concave down. Of course, most functions are neither concave up nor concave down
over their whole domain. To “determine the concavity of a function” means to identify the
intervals over which the function is concave up or concave down. You should be able to
do this by studying the sign of its second derivative. For example, we have the following.

Concavity Theorem: If f is continuously differentiable over I and twice differentiable
over (a,b), you can read off the following information about f from its second derivative:

e if f > 0 over (a,b) then f is concave up over I;
e if f < 0 over (a,b) then f is concave down over I;

e if f/ =0 over (a,b) then f is linear over I.

Reason: Suppose f” > 0 over (a,b). When the Monotonicity Theorem is applied to f’, it
follows that f’ is increasing over I, whereby f is concave up over I. The case where f” < 0
over (a,b) is argued similarly. Now suppose f’ = 0 over (a,b). When the Monotonicity
Theorem is applied to f', it follows that f’ is is constant over I. Let f’(x) = m for every
z in I. Then set g(xz) = f(x) — ma for every z in I. When the Monotonicity Theorem
is now applied to g, it follows that g is is constant over I. Let g(x) = ¢ for every z in 1.
Then f(z) = mz + g(x) = mzx + c for every x in I. Hence, f is linear over I. //

We shall say that f has an upward inflection at a point p in I if f’ has local
minimum at p in (a,b). Similarly, we say that f has a downward inflection at a point p
in I if f’ has local maximum at p in (a, b). Points that are either an upward inflection or a
downward inflection are called inflection points or inflections and their corresponding
values are called inflection values.

To find the inflections of a function f defined over an interval I, the Zero-Slope
Theorem applied to f’ suggests that we can restrict our search to the critical points of f’,
namely, to those points p in (a, b) where either f”(p) = 0 or f” is undefined. If p is a point
in I where either f”(p) = 0 or f” is undefined then

e p is called a degenerate point of f over I;
e f(p) is called a degenerate value of f over I.

Sometimes the point (p, f(p)) on the graph of f is also called a degenerate point. The
intended meaning should be drawn from the context. We will often work with twice
differentiable functions, in which case our degenerate points will be of the f”(p) = 0 type.
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The Concavity Theorem says nothing about degenerate points. It is clear that f
cannot change its concavity between successive degenerate points. Given a degenerate
point p in the domain of f, we shall say that f is either concave up or concave down near
p if it is so over the intersection of the domain with some small open interval containing p.

A degenerate point p of a function f is called isolated if it is the only degenerate
point of f in some small open interval containing p. You should be able to give examples
of degenerate points that are isolated and of ones that are not isolated. At an isolated
degenerate point p exactly one of only four things can happen; that thing is determined
by the Second Derivative Sign Test for Inflections:

e if f” is negative on the left and positive on the right near p
then f has a upward inflection at p;

e if f” is positive on the left and negative on the right near p
then f has a downward inflection at p;

e if f” is positive on both the left and right near p
then f is concave up near p;

e if f” is negative on both the left and right near p
then f is concave down near p.

Examples that illustrate each of these possibilities are respectively
f(l'):l'—F.’E?), f(l'):$—.’l,'37 f($):.'1:+l'4, f(.’l:):l'—.’I,A

In each of these examples the degenerate point is 0 where f'(0) = 0. Other good examples
are respectively

f(x)::v+m%, f(x):x—x%, f(x):x+a:§, f(;,;):g;_x%_

In each of these examples f” is undefined at the degenerate point 0. You should sketch each
example over the interval [—1,1]. Your calculator may have problems with the fractional

powers for negative values of x, so be careful.
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2,—x

Example: To determine the concavity and inflections of f(z) = xz%e~% over (—oo,0),

first compute f”(x) = 2e™% — 4dze~% + x%e%, then factor it as
Fl@)=@-dv+2)e "= ((z—2)> - 2)e ™™ = (z -2+ V2) (z — 2+ V2)e ™.

A sign analysis shows that f”(z) is positive on (—oo, 2 —+/2), negative on (2 —v/2,24/2),
and positive on (2 4+ v/2,00). From this we read off that

e f is concave up on (—o0,2 — /2] and [2 + v/2, 00),

e f is concave down on [2 — /2,2 + /2],

e f has an upward inflection at 2 + v/2,

e f has a downward inflection at 2 — /2.
Combine this information with that on monotonicity and extrema that we obtained earlier

and use it to sketch f.

A sign analysis of f” is sometimes cumbersome, especially when you are unable to
factor f”. In the case when p is a degenerate point of f with f”(p) = 0, an alternative
route is provided by the Third Derivative Test for Inflection Points:

e if f”/(p) > 0 then p is isolated and f has an upward inflection at p;
o if f"”/(p) < 0 then p is isolated and f has a downward inflection at p;
o if f"'(p) =0 or f"” is undefined at p then there is no information.

When we say in the last bullet that there is no information, we mean that anything can
still happen. Can you think of examples to illustrate the different possibilities? This test
is not mentioned in the book and is seldom used. Indeed, we will not use it.

2.3: Parallels. A careful reading of Sections 2.1 and 2.2 brings out many parallels between
them. Below is a table that lists some of these parallels.

Section 2.1 Section 2.2
sign of f' sign of f”
increasing concave up
decreasing concave down
critical point degenerate point
local minimum upward inflection

local maximum downward inflection
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3. OPTIMIZATION PROBLEMS

3.1: Some General Guidelines. Optimization problems are problems (usually word
problems) whose solution requires you to minimize or maximize some quantity. There is
no set of magic steps by which you can solve every such problem. Rather, you should be
ready to consider many possible approaches when faced with one. To guide your efforts
however, it may be helpful to keep in mind the following three objectives.

1) Identify the quantity to be extremized and express it in terms of other variables in the
problem. An appropriately labeled picture is often very helpful in this regard. You
also should note any constraints on the variables you have introduced. You should be
prepared to rethink your choice of variables to help achieve the next objective.

2) Express the quantity to be extremized as a function of one variable and identify the
domain of that variable. One must use relations between the various variables to
eliminate all but one from the expression for the quantity to be extremized. These
relations may or may not be stated explicitly in the problem. Similarly, the domain is
determined from constraints that may or may not be stated in the problem (like that
lengths should be positive).

3) Solve the resulting problem. This is usually done by the methods of Section 1.3 of
these notes. However, sometimes one needs to think of the problem graphically (such
as when extremizing a function of the form f(z)/xz where f is given by a graph and
not by a formula) or numerically (when exact methods prove too difficult).

These articulate what I call the IRS objectives, which can be applied to many types of
word problems: Identify the problem; Reduce the problem to one you can solve; Solve the
reduced problem.

3.2: Economics Problems. Economics optimization problems have a vocabulary all
their own. Once you have mastered it, the problems are no harder than others you will
face. There are four basic ideas to keep in mind.

First, in the simple economic models we consider, the cost (the outgoing money) to
produce a quantity g of goods is given as C(q) by a cost function C. This is an increasing
function of ¢ that typically has C(0) > 0 (to represent start-up costs), is concave down for
awhile (as production becomes more efficient), and then becomes concave up (as overtime,
expansion, and other costs make production less efficient).



13

Second, in these models it is assumed that the ¢ goods produced are priced so that
they all sell right away. Then the revenue (the incoming money) generated by selling
these g goods is given as R(q) by a revenue function R. If you sell all of these ¢ goods at
an identical price p then R is simply given by R(q) = pg. When p is given as a constant,
R is a linear function of q. A more realistic model would have p given as P(q) by a price
function P that sets the price so that all the ¢ goods produced will be sold right away.
In this case one has

R(q) = P(q)q. (3.1)
The law of supply and demand suggests that P should be a decreasing function of q.

Third, the profit (the money you keep) generated by these ¢ goods is given as II(q)
by a profit function II. This is clearly related to the cost and revenue functions by

(q) = R(q) — C(q) - (3.2)

This relationship is often unstated in economics problems, so you need to know it.

Fourth, the marginal cost, marginal revenue, and marginal profit are respec-
tively defined to be the incremental cost, revenue, and profit generated by an additional
good — namely,

Clq+1)-C(q), R(g+1)—R(q), I(g+1)—TI(q). (3.3)

When the quantities of goods involved is large, and C, R, and IT are well-behaved functions
of ¢, then ¢ can be considered as a continuous variable and C, R, and II can be considered
to be differentiable functions of ¢. In this case the marginal cost, marginal revenue, and
marginal profit are assumed to be respectively given by

C'(q), R'(q), IT'(q) . (3.4)

In this setting, ‘marginal’ is a code word for ‘derivative of’.

This vocabulary can be used to express the solution of a problem. For example, if
profit is maximized at a critical point of II, it is clear from (3.2) that at that point

C'(q) = R'(q), (3.5)

which states that the marginal cost equals the marginal revenue. If C' and R are given
graphically then (3.5) gives you a way to guess the location of a solution just by looking
at the graphs because it shows that at such a point the slope of C and R must be equal.
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4. TANGENT LINE APPROXIMATIONS

4.1: Tangent Line Approximations. If f is differentiable at a point ¢ then recall that
the tangent line to the curve y = f(x) at ¢ is given by

y=Ff(c)+ f(c)(z—c). (4.1)

It is the unique line through the point (¢, f(c)) with slope f/(c).

The idea of the tangent line approximation is that this line will be a good approxima-
tion to the curve y = f(z) so long as z is close to c¢. Viewed graphically, this idea should
seem obvious to you. Another way to understand the tangent line approximation starts
with the definition of the derivative at ¢ written in the form

fie) = lim ———"——. (4.2)
This can be re-expressed as
P CEFCEFICICET Ny w3

Because f(z)—f(c)— f'(c)(z—c) is the difference between the value of f(z) and the value of
its tangent line approximation at ¢, this shows that error of the tangent line approximation
goes to zero faster than x — ¢ as x approaches c.

The sign of the error made by the tangent line approximation can be determined by
analyzing the concavity of f near the point c¢. Let f be differentiable over an interval [
that contains c. If f is concave up over I then

f(x)> fle)+ f'(c)(z—c) for every z in I . (4.4)

Said another way, if f is concave up over I, the tangent line lies below the graph of f over
I. On the other hand, if f is concave down over I then

f(z) < fle)+ f(e)(z —c) for every z in I . (4.5)

Said another way, if f is concave down over I, the tangent line lies above the graph of f

over 1.
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5. ROOT FINDING

5.1: Roots. The roots of a function f are the solutions of the equation f(z) = 0. The
problem of solving an algebraic equation can always be cast as finding the roots of some
function f. For example, if g and h are functions then the solutions of the equation
g(z) = h(x) are the roots of the function f given by f(z) = g(z) — h(z).

In seeking the roots of a function you should try to gain an accurate picture of f
through a combination of algebraic and graphical analysis. For example, graph f and look
for roots. Remember that a graph will only indicate roots that lie within the part of the
domain that you have plotted; there may be others. Be sure that you understand the
behavior of f outside the part of the domain that you have plotted. Once you have found
a root graphically, read off its approximate value, possibly with the help of a zoom feature.
If you are trying to solve an equation of the form g(z) = h(x) then it might be easier to
graph both g and h and to look for intersections.

Roots may also be approximately located numerically. Consider a function f that is
defined over an interval [a, b] for some a < b. One may numerically locate a root of f in
[a, b] with the following.

Sign Test for Roots: If f is continuous over [a,b] and f(a)f(b) < 0 then there exists a
point p in [a, b] such that f(p) = 0.

If f(a)f(b) = 0 then either a or b is a root — and maybe both. If f(a)f(b) < 0 then f
must change its sign somewhere over [a,b]. The only way a continuous function can do
this is by having a root somewhere in (a,b). This fact seems obvious, but its justification
is not as easy as you might guess. We will assume it is true.

To apply the Sign Test for Roots to a function f, first determine the domain of f then
break the domain up into intervals over which f is continuous. Finally, seek sign changes
of f evaluated at the endpoints of these intervals.

Once you have located a root approximately either by graphical or numerical means,
it is best to turn to numerical methods to obtain an accurate value for it. For example, if
you have located a root of f in an interval I = [a,b] over which f is continuous, you can
refine your knowledge of at least one root by the so-called Bisection Method:

e Evaluate f at some point p within I, say the midpoint.
e Use the Sign Test for Roots to determine in which of [a, p| or [p, b] a root lies.
e Replace I with whichever of [a, p] or [p,b] a root lies.

e Repeat until the length of I is within your desired accuracy.
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The bisection method will always converge, although we will not prove that here. The
endpoints of the interval I provide a lower and upper bound for a root. However, the
convergence is quite slow.

5.2: The Newton-Raphson Method. One of the fastest methods to compute roots
of a function f is the Newton-Raphson method. Given a guess z,,, we let our next guess
ZTn+1 be the z-intercept of the tangent line approximation to f at z,. In other words, we
let x,,+1 be the solution of

f(@n) + f(zn)(x—2,) =0. (5.1)
Provided f'(z,) # 0 this can be solved to obtain

f(zn)

$n+1 = '/Lln - fl(,’L' ) .
n

(5.2)

The points {z,} so obtained are called the Newton-Raphson iterates. If they converge,
they will do so very fast, eventually doubling the number of correct digits with each new
iterate.

The Newton-Raphson method works best if a root has been isolated in an interval
without critical points. Bounds on the error made by the Newton-Raphson iterates can
then be obtained by analyzing the concavity of f near the root. For example, if we denoted
the root by z, then one can see the following.

o If f is increasing and concave up near z.,
or is decreasing and concave down near z,,
then the sequence {x,} will approach z, from above.
o If f is increasing and concave down near .,
or is decreasing and concave up near x,,
then the sequence {z,} will approach z, from below.
These observations can also be expressed as follows.
o If f'(x.)f"(z«) > 0 then the sequence {z,} will approach z, from above.
o If f'(x4)f"(z+) < 0 then the sequence {z,} will approach z, from below.

Hence, the sequence {z,} will always approach z, from the side on which f(z)f"(z) > 0.
Do you see why? It is advantageous to make your initial guess on this side.



