
First In-Class Exam Solutions
Math 246, Fall 2008, Professor David Levermore

(1) [12] Suppose you are using numerical methods to approximate the solution of an
initial-value problem over the time interval [0, 10]. By what factor would you expect
the global error to decrease if you increase the number of time steps taken from 400
to 800 when you use the following explicit methods with a uniform time step h.

(a) Runge-Kutta method
Solution: This method is fourth order, so its error scales like h4. When h
decreases by a factor of 2 the error will therefore decrease by a factor of 24 = 16.

(b) Heun-trapezoidal method
Solution: This method is second order, so its error scales like h2. When h
decreases by a factor of 2 the error will therefore decrease by a factor of 22 = 4.

(c) Euler method
Solution: This method is first order, so its error scales like h. When h decreases
by a factor of 2 the error will therefore decrease by a factor of 2.

(d) Heun-midpoint method
Solution: This method is second order, so its error scales like h2. When h
decreases by a factor of 2 the error will therefore decrease by a factor of 22 = 4.

(2) [20] Find the explicit solution for each of the following initial-value problems and
identify its interval of existence (interval of definition).

(a) t
dw

dt
− 3w = t2 , w(1) = 3.

Solution: This equation is linear. Its linear normal form is

dw

dt
− 3

t
w = t .

An integrating factor is exp
(

−
∫ t

1
3
s
ds

)

= exp(−3 log(t)) = t−3, so that

d

dt

(

t−3w
)

= t−3 · t = t−2 , =⇒ t−3w = −t−1 + C .

The initial condition w(1) = 3 implies that C = 1−3 · 3 + 1−1 = 4. Therefore

w = −t2 + 4t3 , with interval of existence t > 0 .

(b)
dz

dx
=

6x2

3 + z
, z(0) = −1.

Solution: This equation is separable. Its separated differential form is

(z + 3) dz = 6x2 dx , =⇒ 1
2
(z + 3)2 = 2x3 + C .

The initial condition z(0) = −1 implies that C = 1
2
(−1 + 3)2 − 2 · 03 = 2.

Therefore (z + 3)2 = 2(2x2 + 2) = 4(x3 + 1), which can be solved as

z = −3 + 2
√

x3 + 1 , with interval of existence x > −1 .

The positive square root is needed to satisfy the initial condition.
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(3) [18] Consider the differential equation
dx

dt
= (x + 3)2x(4− x).

(a) Sketch its phase-line. Indicate all of the stationary (equilibrium) solutions and
classify each as being either stable, unstable, or semistable.

(b) If x(0) = 6, how does the solution x(t) behave as t→∞?
(c) If x(0) = 2, how does the solution x(t) behave as t→∞?
(d) If x(0) = −2, how does the solution x(t) behave as t→∞?
(e) If x(0) = −6, how does the solution x(t) behave as t→∞?
Solution (a): The stationary solutions are x = −3, x = 0, and x = 4. A sign
analysis of (x + 2)3x(4− x) shows that the phase-line for this equation is therefore

− − + −
←←←← • ←←←← • →→→→ • ←←←← y

−3 0 4
semistable unstable stable

(b): The phase-line shows that if x(0) = 6 then x(t)→ 4 as t→∞.
(c): The phase-line shows that if x(0) = 2 then x(t)→ 4 as t→∞.
(d): The phase-line shows that if x(0) = −2 then x(t)→ −3 as t→∞.
(e): The phase-line shows that if x(0) = −6 then x(t)→ −∞ as t→∞.

(4) [18] Consider the following MATLAB function M-file.

function [t,y] = solveit(ti, yi, tf, n)

h = (tf - ti)/n;
t = zeros(n + 1, 1);
y = zeros(n + 1, 1);
t(1) = ti;
y(1) = yi;
for k = 1:n
yhalf = y(k) + (h/2)*(3*y(k) + (y(k))̂ 2);
t(k + 1) = t(k) + h;
y(k + 1) = y(k) + h*(3*yhalf + (yhalf)̂ 2);
end

(a) What is the initial-value problem being approximated numerically?
(b) What is the numerical method being used?
(c) What are the output values of t(2) and y(2) that you would expect for input

values of ti = 0, yi = 1, tf = 5, n = 25?

Solution (a): The initial-value problem being solved is
dy

dt
= 3y + y2, y(ti)=yi.

(b): It is being approximated by the Heun-midpoint method.
(c): When ti = 0, yi = 1, tf = 5, n = 25 one has h = (tf - ti)/n = (5 - 0)/25 = .2,
t(1) = ti = 0, and y(1) = yi = 1. Hence,
yhalf = y(1) + (h/2) (3 y(1) + y(1)2) = 1 + .1(3 · 1 + 1) = 1.4 ,
t(2) = t(1) + h = 0 + .2 = .2 ,
y(2) = y(1) + h (3 yhalf - yhalf2) = 1 + .2(3 · 1.4 + (1.4)2) .
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(5) [12] There are 240,000 mosquitoes in a certain area initially. In the absence of preda-
tors this population of mosquitoes would increase at a rate proportional to the cur-
rent population and would double every three weeks. However, predators eat 100,000
mosquitoes per week at a constant rate.

(a) Write down an initial-value problem that governs the population of mosquitoes
in the area at any positive time.

(b) Will this population increase or decrease over time?

Solution (a): Let P (t) be the population of mosquitoes at time t weeks. Dou-
bling every three weeks implies a growth rate of log(2)/3. The initial-value problem
satisfied by P is

dP

dt
=

log(2)

3
P − 100, 000 , P (0) = 240, 000 .

(b): Because

dP

dt
=

log(2)

3

(

P − 300, 000

log(2)

)

,

the only stationary solution is P = 300,000
log(2)

. A sign analysis of dP

dt
shows that the

phase-line for this equation is therefore

− +
←←←←←← • →→→→→→ P

300,000
log(2)

Because log(2) < 1 implies P (0) = 240, 000 < 300,000
log(2)

, you see from the phase-line

that the population P (t) will decrease over time.

(6) [20] Give an implicit general solution to each of the following differential equations.

(a) (xy4 + 3y) dx + (2x2y3 + 3x + ey) dy = 0 .

Solution: This differential form is exact because

∂y(xy4 + 3y) = 4xy3 + 3 = ∂x(2x
2y3 + 3x + ey) = 4xy3 + 3 .

We can therefore find H(x, y) such that

∂xH(x, y) = xy4 + 3y , ∂yH(x, y) = 2x2y3 + 3x + ey .

Integrating the first equation with respect to x yields

H(x, y) =

∫

(xy4 + 3y) dx = 1
2
x2y4 + 3xy + h(y) .

Plugging this expression for H(x, y) into the second equation gives

2x2y3 + 3x + h′(y) = ∂yH(x, y) = 2x2y3 + 3x + ey ,

which yields h′(y) = ey. Taking h(y) = ey, the general solution is
1
2
x2y4 + 3xy + ey = C .
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(b) (3x2y + 2xy + y3) dx + (x2 + y2) dy = 0 .

Solution: This differential form is not exact because

∂y(3x
2y + 2xy + y3) = 3x2 + 2x + 3y2 6= ∂x(x

2 + y2) = 2x .

You therefore seek an integrating factor µ such that

∂y[(3x
2y + 2xy + y3)µ] = ∂x[(x

2 + y2)µ] .

Expanding the derivatives yields

(3x2y + 2xy + y3)∂yµ + (3x2 + 2x + 3y2)µ = (x2 + y2)∂xµ + 2xµ .

If you set ∂yµ = 0 then this becomes

(3x2 + 2x + 3y2)µ = (x2 + y2)∂xµ + 2xµ ,

which reduces to

3(x2 + y2)µ = (x2 + y2)∂xµ .

This simplifies to 3µ = ∂xµ, whereby µ = e3x.

Because e3x is an integrating factor, the differential form

(3x2y + 2xy + y3)e3x dx + (x2 + y2)e3x dy = 0 is exact .

You can therefore find H(x, y) such that

∂xH(x, y) = (3x2y + 2xy + y3)e3x , ∂yH(x, y) = (x2 + y2)e3x .

Integrating the second equation with respect to y yields

H(x, y) =

∫

(x2 + y2)e3x dy =

∫

x2e3x + y2e3x dy

= yx2e3x + 1
3
y3e3x + h(x) .

Plugging this expression for H(x, y) into the first equation gives

2yxe3x + 3yx2e3x + y3e3x + h′(x)

= ∂xH(x, y) = (3x2y + 2xy + y3)e3x ,

which yields h′(x) = 0. Taking h(x) = 0, the general solution is

yx2e3x + 1
3
y3e3x = C .


