
Third In-Class Exam Solutions
Math 246, Fall 2008, Professor David Levermore

(1) [6] Consider the matrices

A =

(

5 3
7 2

)

, B =

(

2 −3
−3 4

)

.

Compute the matrices

(a) AB Solution. AB =

(

5 3
7 2

) (

2 −3
−3 4

)

=

(

1 −3
8 −13

)

(b) B−1 Solution. Because det(B) = 2 · 4 − (−3)(−3) = 8 − 9 = −1,

B−1 =
1

det(B)

(

4 3
3 2

)

=

(

−4 −3
−3 −2

)

.

(2) [11] Consider the matrix

A =

(

4 4
4 −2

)

.

(a) Find all the eigenvalues of A.

Solution. The characteristic polynomial of A is given by

p(z) = z2 − tr(A)z + det(A) = z2 − 2z − 24 = (z + 4)(z − 6) .

The eigenvalues of A are the roots of this polynomial, which are −4 and 6.

(b) For each eigenvalue of A find an associated eigenvector.

Solution (using the Cayley-Hamilton method from notes). One has

A + 4I =

(

8 4
4 2

)

, A − 6I =

(

−2 4
4 −8

)

.

Every nonzero column of A − 6I has the form

α1

(

1
−2

)

for some α1 6= 0 ,

any of which is an eigenvector associated with −4. Similarly, every nonzero
column of A + 4I has the form

α2

(

2
1

)

for some α2 6= 0 ,

any of which is an eigenvector associated with 6.
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(c) Compute etA.

Solution. Because p(z) = (z − 1)2 − 25 = (z − 1)2 − 52,

etA = et

[

I cosh(5t) + (A − I)
sinh(5t)

5

]

= et

[(

1 0
0 1

)

cosh(5t) +

(

3 4
4 −3

)

sinh(5t)

5

]

= et

(

cosh(5t) + 3
5
sinh(5t) 4

5
sinh(5t)

4
5
sinh(5t) cosh(5t) − 3

5
sinh(5t)

)

.

Alternative Solution. Because A has the eigenpairs
(

−4 ,

(

1
−2

))

,

(

6 ,

(

2
1

))

,

you know that A is diagonalizable. Set

V =

(

1 2
−2 1

)

, D =

(

−4 0
0 6

)

.

Then

etA = VetDV−1 =

(

1 2
−2 1

) (

e−4t 0
0 e6t

)

1

5

(

1 −2
2 1

)

=
1

5

(

1 2
−2 1

) (

e−4t −2e−4t

2e6t e6t

)

=
1

5

(

e−4t + 4e6t −2e−4t + 2e6t

−2e−4t + 2e6t 4e−4t + e6t

)

.

(3) [6] Transform the equation
d4v

dt4
+ cos(t)

d3v

dt3
− 7v = sin(t) into a first-order system of

ordinary differential equations.

Solution: Because the equation is fourth order, the first order system must have
dimension four. The simplest such first order system is

d

dt









x1

x2

x3

x4









=









x2

x3

x4

sin(t) + 7x1 − cos(t)x4









, where









x1

x2

x3

x4









=









v

v′

v′′

v′′′









.

(4) [10] Consider the vector-valued functions x1(t) =

(

1
t2

)

, x2(t) =

(

t2

2 + t4

)

.

(a) Compute the Wronskian W [x1,x2](t).

Solution.

W [x1,x2](t) = det

(

1 t2

t2 2 + t4

)

= 2 + t4 − t4 = 2 .
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(b) Find A(t) such that x1, x2 is a fundamental set of solutions to the system
dx

dt
= A(t)x wherever W [x1,x2](t) 6= 0.

Solution. Let Ψ(t) =

(

1 t2

t2 2 + t4

)

. Because
Ψ(t)

dt
= A(t)Ψ(t), one has

A(t) =
Ψ(t)

dt
Ψ(t)−1 =

(

0 2t
2t 4t3

) (

1 t2

t2 2 + t4

)

−1

=

(

0 2t
2t 4t3

)

1

2

(

2 + t4 −t2

−t2 1

)

=
1

2

(

−2t3 2t
4 − 2t2 2t3

)

=

(

−t3 t

2 − t2 t3

)

.

(c) Give a general solution to the system you found in part (b).

Solution. Because W [x1,x2](t) = 2 6= 0, a general solution is

x = c1x1(t) + c2x2(t) = c1

(

1
t2

)

+ c2

(

t2

2 + t4

)

.

(5) [5] Given that etA =

(

cosh(4t) + 1
2
sinh(4t) 3

4
sinh(4t)

sinh(4t) cosh(4t) − 1
2
sinh(4t)

)

, solve the initial-

value problem

d

dt

(

x

y

)

= A

(

x

y

)

,

(

x(0)
y(0)

)

=

(

1
2

)

.

Solution. The solution is given by
(

x(t)
y(t)

)

= etA

(

x(0)
y(0)

)

=

(

cosh(4t) + 1
2
sinh(4t) 3

4
sinh(4t)

sinh(4t) cosh(4t) − 1
2
sinh(4t)

) (

1
2

)

=

(

cosh(4t) + 2 sinh(4t)
2 cosh(4t)

)

.

(6) [8] Consider two interconnected tanks filled with brine (salt water). The first tank
contains 80 liters and the second contains 50 liters. Brine flows with a concentration
of 2 grams of salt per liter flows into the first tank at a rate of 4 liters per hour. Well
stirred brine flows from the first tank to the second at a rate of 7 liters per hour, from
the second to the first at a rate of 3 liters per hour, and from the second into a drain
at a rate of 4 liters per hour. At t = 0 there are 45 grams of salt in the first tank
and 5 grams in the second. Give an initial-value problem that governs the amount
of salt in each tank as a function of time.

Solution. The rates work out so there will always be 80 liters of brine in the first
tank and 50 liters in the second. Let S1(t) and S2(t) be the grams of salt in the first
and second tanks respectively. These are governed by the initial-value problem

dS1

dt
= 2·4 +

S2

50
3 −

S1

80
7 , S1(0) = 45 ,

dS2

dt
=

S1

80
7 −

S2

50
3 −

S2

50
4 , S2(0) = 5 .
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(7) [12] Find a general solution for each of the following systems.

(a)
d

dt

(

x

y

)

=

(

2 4
−5 −2

) (

x

y

)

Solution. Let A =

(

2 4
−5 −2

)

. The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A) = z2 + 16 = z2 + 42 ,

which has roots ±i4. Then, because µ = 1
2
tr(A) = 0 and ν = 4,

etA = I cos(4t) + A
sin(4t)

4
=

(

1 0
0 1

)

cos(4t) +

(

2 4
−5 −2

)

sin(4t)

4

=

(

cos(4t) + 1
2
sin(4t) sin(4t)

−5
4
sin(4t) cos(4t) − 1

2
sin(4t)

)

.

A general solution is therefore
(

x

y

)

= c1

(

cos(4t) + 1
2
sin(4t)

−5
4
sin(4t)

)

+ c2

(

sin(4t)
cos(4t) − 1

2
sin(4t)

)

.

(b)
d

dt

(

x

y

)

=

(

0 3
−3 −6

) (

x

y

)

Solution. Let A =

(

0 3
−3 −6

)

. The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A) = z2 − (−6)z + 9 = (z + 3)2 ,

which has the double root −3. Then, because µ = −3 and ν = 0,

etA = e−3t
[

I +
(

A + 3I
)

t
]

= e−3t

[(

1 0
0 1

)

+

(

3 3
−3 −3

)

t

]

= e−3t

(

1 + 3t 3t
−3t 1 − 3t

)

.

A general solution is therefore
(

x

y

)

= c1

(

1 + 3t
−3t

)

+ c2

(

3t
1 − 3t

)

.

(8) [8] Sketch the phase portrait for each of the systems in the previous problem. Identify
the type and stability of the origin.

Solution (a). The coefficient matrix A has the eigenvalues ±i4. The origin is
therefore a center and is thereby stable. Because a21 = −5 < 0, the phase portrait is
a clockwise center.

Solution (b). The coefficient matrix A has the eigenvalue −3. Because

A + 3I =

(

3 3
−3 −3

)

,
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it has the eigenpair
(

−3 ,

(

1
−1

))

.

Because A 6= −3I, the origin is a twist sink (improper nodal sink) and is thereby
attracting (asymptotically stable). Because a21 = −5 < 0, the phase portrait is a
clockwise twist sink. There is one trajectory that moves towards the origin along
each half of the line y = −x. Trajectories above the line y = −x will approach the
origin from below tangent to the line y = −x. Trajectories below the line y = −x

will approach the origin from above tangent to the line y = −x.

(9) [9] Consider the system

d

dt

(

x

y

)

=

(

y

−9x + x3

)

.

(a) Find all of its stationary points.

Solution. The stationary points satisfy

0 = y , 0 = −9x + x3 = x(x + 3)(x − 3) .

The second equation is satisfied if x = 0, x = −3, or x = 3. The stationary
points of the system are therefore

(−3, 0) , (0, 0) , (3, 0) .

(b) Find a nonconstant function H(x, y) such that every trajectory of the system
satisfies H(x, y) = c for some constant c.

Solution. Seek a solution of the first-order equation

dy

dx
=

−9x + x3

y
.

This equation is separable. Integrate its separated form as
∫

y dy =

∫

−9x + x3 dx ,

which leads to 1
2
y2 = −9

2
x2 + 1

4
x4 + c. This has the form H(x, y) = c with

H(x, y) = 1
2
y2 + 9

2
x2 − 1

4
x4 .

(10) [8] Compute the Laplace transform of f(t) = u(t − 5) e−2t from its definition. (Here
u is the unit step function.)

Solution. The definition of Laplace transform gives

L[f ](s) = lim
T→∞

∫

T

0

e−stu(t − 5) e−2t dt = lim
T→∞

∫

T

5

e−(s+2)t dt .

This limit diverges to +∞ for s ≤ −2 because in that case
∫

T

5

e−(s+2)t dt ≥

∫

T

5

dt = T − 5 ,

which clearly diverges to +∞ as T → ∞.
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For s > −2 an integration shows that
∫

T

2

e−(s+2)t dt = −
e−(s+2)t

s + 2

∣

∣

∣

∣

T

5

=
e−(s+2)5

s + 2
−

e−(s+2)T

s + 2
.

Hence, for s > −2 one has that

L[f ](s) = lim
T→∞

(

e−(s+2)5

s + 2
−

e−(s+2)T

s + 2

)

=
e−(s+2)5

s + 2
− lim

T→∞

e−(s+2)T

s + 2
=

e−5s−10

s + 2
.

(11) [9] Find the Laplace transform Y (s) of the solution y(t) of the initial-value problem

d2y

dt2
+ 4

dy

dt
+ 20y = f(t) , y(0) = 3 , y′(0) = −6 ,

where

f(t) =

{

1
2
t for 0 ≤ t < 2 ,

e2−t for t ≥ 2 .

You may refer to the table on the last page. DO NOT take the inverse Laplace
transform to find y(t), just solve for Y (s)!

Solution. The Laplace transform of the initial-value problem is

L[y′′](s) + 4L[y′](s) + 20L[y](s) = L[f ](s) ,

where
L[y](s) = Y (s) ,

L[y′](s) = sY (s) − y(0) = sY (s) − 3 ,

L[y′′](s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − 3s + 6 .

The Laplace transform of the initial-value problem then becomes
(

s2Y (s) − 3s + 6
)

+ 4
(

sY (s) − 3
)

+ 20Y (s) = L[f ](s) ,

which becomes

(s2 + 4s + 20)Y (s) − 3s − 6 = L[f ](s) .

To compute L[f ](s), first write f as

f(t) =
(

u(t) − u(t − 2)
)

1
2
t + u(t − 2)e2−t

= 1
2
t + u(t− 2)

(

e2−t − 1
2
t
)

= 1
2
t + u(t− 2)

(

e−(t−2) − 1
2
(t − 2) − 1

)

.

Referring to the table on the last page, item 1 with n = 1, item 6 with c = 2 and
f(t) = e−t − 1

2
t − 1, item 5 with a = −1 and f(t) = 1, item 1 with n = 0 and n = 1

then show that

L[f ](s) = L
[

1
2
t
]

(s) + L
[

u(t − 2)
(

e−(t−2) − 1
2
(t − 2) − 1

)]

(s)

= L
[

1
2
t
]

(s) + e−2sL
[

e−t − 1
2
t − 1

]

(s)

=
1

2s2
+ e−2s

(

1

s + 1
−

1

2s2
−

1

s

)

=
1 − e−2s

2s2
+

e−2s

s + 1
−

e−2s

s
.
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Hence, Y (s) is given by

Y (s) =
1

s2 + 4s + 20

(

3s + 6 +
1 − e−2s

2s2
+

e−2s

s + 1
−

e−2s

s

)

.

(12) [8] Find the inverse Laplace transforms of the function

F (s) = e−3s
s + 2

s2 − 5s + 4
.

You may refer to the table on the last page.

Solution. The denominator factors as s2 − 5s + 4 = (s − 1)(s − 4). The partial
fraction decomposition is

s + 2

s2 − 5s + 4
=

s + 2

(s − 4)(s − 1)
=

2

s − 4
+

−1

s − 1
.

The first item in the table with n = 0 and the fifth item with f(t) = 1 combine to
show that

L[eat](s) =
1

s − a
.

In particular, setting a = 4 and a = 1 above we see that

L[e4t](s) =
1

s − 4
, L[et](s) =

1

s − 1
.

Hence,

s + 2

s2 − 5s + 4
=

2

s − 4
−

1

s − 1
= 2L

[

e4t
]

(s) − L
[

et
]

(s) = L
[

2e4t − et
]

(s) .

By the sixth item in the table with f(t) = 2e4t − et, we see that

L
[

u(t − 3)
(

2e4(t−3) − et−3
)]

(s) = e−3sL
[

2e4t − et
]

(s)

= e−3s
s + 2

s2 − 5s + 4
= F (s) .

It follows that

L−1[F (s)](t) = 2u(t − 3)e4t−12 − u(t − 3)et−3 .

A Short Table of Laplace Transforms

L[tn](s) =
n!

sn+1
for s > 0 .

L[cos(bt)](s) =
s

s2 + b2
for s > 0 .

L[sin(bt)](s) =
b

s2 + b2
for s > 0 .

L[tnf(t)](s) = (−1)nF (n)(s) where F (s) = L[f(t)](s) .

L[eatf(t)](s) = F (s − a) where F (s) = L[f(t)](s) .

L[u(t− c)f(t − c)](s) = e−csF (s) where F (s) = L[f(t)](s)

and u is the unit step function .


