Third In-Class Exam Solutions
 Math 246, Fall 2008, Professor David Levermore

(1) [6] Consider the matrices

$$
\mathbf{A}=\left(\begin{array}{ll}
5 & 3 \\
7 & 2
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{cc}
2 & -3 \\
-3 & 4
\end{array}\right)
$$

Compute the matrices
(a) $\mathbf{A B} \quad$ Solution. $\mathbf{A B}=\left(\begin{array}{ll}5 & 3 \\ 7 & 2\end{array}\right)\left(\begin{array}{cc}2 & -3 \\ -3 & 4\end{array}\right)=\left(\begin{array}{cc}1 & -3 \\ 8 & -13\end{array}\right)$
(b) \mathbf{B}^{-1}

Solution. Because $\operatorname{det}(\mathbf{B})=2 \cdot 4-(-3)(-3)=8-9=-1$,

$$
\mathbf{B}^{-1}=\frac{1}{\operatorname{det}(\mathbf{B})}\left(\begin{array}{ll}
4 & 3 \\
3 & 2
\end{array}\right)=\left(\begin{array}{ll}
-4 & -3 \\
-3 & -2
\end{array}\right)
$$

(2) [11] Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
4 & 4 \\
4 & -2
\end{array}\right)
$$

(a) Find all the eigenvalues of \mathbf{A}.

Solution. The characteristic polynomial of \mathbf{A} is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-2 z-24=(z+4)(z-6)
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are -4 and 6 .
(b) For each eigenvalue of \mathbf{A} find an associated eigenvector.

Solution (using the Cayley-Hamilton method from notes). One has

$$
\mathbf{A}+4 \mathbf{I}=\left(\begin{array}{ll}
8 & 4 \\
4 & 2
\end{array}\right), \quad \mathbf{A}-6 \mathbf{I}=\left(\begin{array}{cc}
-2 & 4 \\
4 & -8
\end{array}\right)
$$

Every nonzero column of $\mathbf{A}-6 \mathbf{I}$ has the form

$$
\alpha_{1}\binom{1}{-2} \quad \text { for some } \alpha_{1} \neq 0
$$

any of which is an eigenvector associated with -4 . Similarly, every nonzero column of $\mathbf{A}+4 \mathbf{I}$ has the form

$$
\alpha_{2}\binom{2}{1} \quad \text { for some } \alpha_{2} \neq 0
$$

any of which is an eigenvector associated with 6 .
(c) Compute $e^{t \mathbf{A}}$.

Solution. Because $p(z)=(z-1)^{2}-25=(z-1)^{2}-5^{2}$,

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{t}\left[\mathbf{I} \cosh (5 t)+(\mathbf{A}-\mathbf{I}) \frac{\sinh (5 t)}{5}\right] \\
& =e^{t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cosh (5 t)+\left(\begin{array}{cc}
3 & 4 \\
4 & -3
\end{array}\right) \frac{\sinh (5 t)}{5}\right] \\
& =e^{t}\left(\begin{array}{cc}
\cosh (5 t)+\frac{3}{5} \sinh (5 t) & \frac{4}{5} \sinh (5 t) \\
\frac{4}{5} \sinh (5 t) & \cosh (5 t)-\frac{3}{5} \sinh (5 t)
\end{array}\right) .
\end{aligned}
$$

Alternative Solution. Because A has the eigenpairs

$$
\left(-4,\binom{1}{-2}\right), \quad\left(6,\binom{2}{1}\right)
$$

you know that \mathbf{A} is diagonalizable. Set

$$
\mathbf{V}=\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{cc}
-4 & 0 \\
0 & 6
\end{array}\right)
$$

Then

$$
\begin{aligned}
e^{t \mathbf{A}}=\mathbf{V} e^{t \mathbf{D}} \mathbf{V}^{-1} & =\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-4 t} & 0 \\
0 & e^{6 t}
\end{array}\right) \frac{1}{5}\left(\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{-4 t} & -2 e^{-4 t} \\
2 e^{6 t} & e^{6 t}
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
e^{-4 t}+4 e^{6 t} & -2 e^{-4 t}+2 e^{6 t} \\
-2 e^{-4 t}+2 e^{6 t} & 4 e^{-4 t}+e^{6 t}
\end{array}\right) .
\end{aligned}
$$

(3) [6] Transform the equation $\frac{\mathrm{d}^{4} v}{\mathrm{~d} t^{4}}+\cos (t) \frac{\mathrm{d}^{3} v}{\mathrm{~d} t^{3}}-7 v=\sin (t)$ into a first-order system of ordinary differential equations.
Solution: Because the equation is fourth order, the first order system must have dimension four. The simplest such first order system is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
\\
x_{4} \\
\sin (t)+7 x_{1}-\cos (t) x_{4}
\end{array}\right), \quad \text { where } \quad\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
v \\
v^{\prime} \\
v^{\prime \prime} \\
v^{\prime \prime \prime}
\end{array}\right) .
$$

(4) [10] Consider the vector-valued functions $\mathbf{x}_{1}(t)=\binom{1}{t^{2}}, \mathbf{x}_{2}(t)=\binom{t^{2}}{2+t^{4}}$.
(a) Compute the Wronskian $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.

Solution.

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\operatorname{det}\left(\begin{array}{cc}
1 & t^{2} \\
t^{2} & 2+t^{4}
\end{array}\right)=2+t^{4}-t^{4}=2
$$

(b) Find $\mathbf{A}(t)$ such that $\mathbf{x}_{1}, \mathbf{x}_{2}$ is a fundamental set of solutions to the system $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A}(t) \mathbf{x}$ wherever $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$.
Solution. Let $\boldsymbol{\Psi}(t)=\left(\begin{array}{cc}1 & t^{2} \\ t^{2} & 2+t^{4}\end{array}\right)$. Because $\frac{\boldsymbol{\Psi}(t)}{\mathrm{d} t}=\mathbf{A}(t) \boldsymbol{\Psi}(t)$, one has

$$
\begin{aligned}
\mathbf{A}(t) & =\frac{\boldsymbol{\Psi}(t)}{\mathrm{d} t} \boldsymbol{\Psi}(t)^{-1}=\left(\begin{array}{cc}
0 & 2 t \\
2 t & 4 t^{3}
\end{array}\right)\left(\begin{array}{cc}
1 & t^{2} \\
t^{2} & 2+t^{4}
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
0 & 2 t \\
2 t & 4 t^{3}
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
2+t^{4} & -t^{2} \\
-t^{2} & 1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
-2 t^{3} & 2 t \\
4-2 t^{2} & 2 t^{3}
\end{array}\right)=\left(\begin{array}{cc}
-t^{3} & t \\
2-t^{2} & t^{3}
\end{array}\right) .
\end{aligned}
$$

(c) Give a general solution to the system you found in part (b).

Solution. Because $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=2 \neq 0$, a general solution is

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=c_{1}\binom{1}{t^{2}}+c_{2}\binom{t^{2}}{2+t^{4}} .
$$

(5) [5] Given that $e^{t \mathbf{A}}=\left(\begin{array}{cc}\cosh (4 t)+\frac{1}{2} \sinh (4 t) & \frac{3}{4} \sinh (4 t) \\ \sinh (4 t) & \cosh (4 t)-\frac{1}{2} \sinh (4 t)\end{array}\right)$, solve the initialvalue problem

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\mathbf{A}\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{1}{2} .
$$

Solution. The solution is given by

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{x(0)}{y(0)}=\left(\begin{array}{cc}
\cosh (4 t)+\frac{1}{2} \sinh (4 t) & \frac{3}{4} \sinh (4 t) \\
\sinh (4 t) & \cosh (4 t)-\frac{1}{2} \sinh (4 t)
\end{array}\right)\binom{1}{2} \\
& =\binom{\cosh (4 t)+2 \sinh (4 t)}{2 \cosh (4 t)} .
\end{aligned}
$$

(6) [8] Consider two interconnected tanks filled with brine (salt water). The first tank contains 80 liters and the second contains 50 liters. Brine flows with a concentration of 2 grams of salt per liter flows into the first tank at a rate of 4 liters per hour. Well stirred brine flows from the first tank to the second at a rate of 7 liters per hour, from the second to the first at a rate of 3 liters per hour, and from the second into a drain at a rate of 4 liters per hour. At $t=0$ there are 45 grams of salt in the first tank and 5 grams in the second. Give an initial-value problem that governs the amount of salt in each tank as a function of time.
Solution. The rates work out so there will always be 80 liters of brine in the first tank and 50 liters in the second. Let $S_{1}(t)$ and $S_{2}(t)$ be the grams of salt in the first and second tanks respectively. These are governed by the initial-value problem

$$
\begin{aligned}
\frac{\mathrm{d} S_{1}}{\mathrm{~d} t} & =2 \cdot 4+\frac{S_{2}}{50} 3-\frac{S_{1}}{80} 7, & S_{1}(0)=45 \\
\frac{\mathrm{~d} S_{2}}{\mathrm{~d} t} & =\frac{S_{1}}{80} 7-\frac{S_{2}}{50} 3-\frac{S_{2}}{50} 4, & S_{2}(0)=5 .
\end{aligned}
$$

(7) [12] Find a general solution for each of the following systems.
(a) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}2 & 4 \\ -5 & -2\end{array}\right)\binom{x}{y}$

Solution. Let $\mathbf{A}=\left(\begin{array}{cc}2 & 4 \\ -5 & -2\end{array}\right)$. The characteristic polynomial of \mathbf{A} is

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}+16=z^{2}+4^{2}
$$

which has roots $\pm i 4$. Then, because $\mu=\frac{1}{2} \operatorname{tr}(\mathbf{A})=0$ and $\nu=4$,

$$
\begin{aligned}
e^{t \mathbf{A}}=\mathbf{I} \cos (4 t)+\mathbf{A} \frac{\sin (4 t)}{4} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos (4 t)+\left(\begin{array}{cc}
2 & 4 \\
-5 & -2
\end{array}\right) \frac{\sin (4 t)}{4} \\
& =\left(\begin{array}{cc}
\cos (4 t)+\frac{1}{2} \sin (4 t) & \sin (4 t) \\
-\frac{5}{4} \sin (4 t) & \cos (4 t)-\frac{1}{2} \sin (4 t)
\end{array}\right) .
\end{aligned}
$$

A general solution is therefore

$$
\binom{x}{y}=c_{1}\binom{\cos (4 t)+\frac{1}{2} \sin (4 t)}{-\frac{5}{4} \sin (4 t)}+c_{2}\binom{\sin (4 t)}{\cos (4 t)-\frac{1}{2} \sin (4 t)} .
$$

(b) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}0 & 3 \\ -3 & -6\end{array}\right)\binom{x}{y}$

Solution. Let $\mathbf{A}=\left(\begin{array}{cc}0 & 3 \\ -3 & -6\end{array}\right)$. The characteristic polynomial of \mathbf{A} is

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-(-6) z+9=(z+3)^{2}
$$

which has the double root -3 . Then, because $\mu=-3$ and $\nu=0$,

$$
\begin{aligned}
e^{t \mathbf{A}}=e^{-3 t}[\mathbf{I}+(\mathbf{A}+3 \mathbf{I}) t] & =e^{-3 t}\left[\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
3 & 3 \\
-3 & -3
\end{array}\right) t\right] \\
& =e^{-3 t}\left(\begin{array}{cc}
1+3 t & 3 t \\
-3 t & 1-3 t
\end{array}\right)
\end{aligned}
$$

A general solution is therefore

$$
\binom{x}{y}=c_{1}\binom{1+3 t}{-3 t}+c_{2}\binom{3 t}{1-3 t} .
$$

(8) [8] Sketch the phase portrait for each of the systems in the previous problem. Identify the type and stability of the origin.
Solution (a). The coefficient matrix A has the eigenvalues $\pm i 4$. The origin is therefore a center and is thereby stable. Because $a_{21}=-5<0$, the phase portrait is a clockwise center.

Solution (b). The coefficient matrix \mathbf{A} has the eigenvalue -3 . Because

$$
\mathbf{A}+3 \mathbf{I}=\left(\begin{array}{cc}
3 & 3 \\
-3 & -3
\end{array}\right)
$$

it has the eigenpair

$$
\left(-3,\binom{1}{-1}\right)
$$

Because $\mathbf{A} \neq-3 \mathbf{I}$, the origin is a twist sink (improper nodal sink) and is thereby attracting (asymptotically stable). Because $a_{21}=-5<0$, the phase portrait is a clockwise twist sink. There is one trajectory that moves towards the origin along each half of the line $y=-x$. Trajectories above the line $y=-x$ will approach the origin from below tangent to the line $y=-x$. Trajectories below the line $y=-x$ will approach the origin from above tangent to the line $y=-x$.
(9) [9] Consider the system

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\binom{y}{-9 x+x^{3}}
$$

(a) Find all of its stationary points.

Solution. The stationary points satisfy

$$
0=y, \quad 0=-9 x+x^{3}=x(x+3)(x-3)
$$

The second equation is satisfied if $x=0, x=-3$, or $x=3$. The stationary points of the system are therefore

$$
\begin{equation*}
(-3,0), \quad(0,0), \tag{3,0}
\end{equation*}
$$

(b) Find a nonconstant function $H(x, y)$ such that every trajectory of the system satisfies $H(x, y)=c$ for some constant c.
Solution. Seek a solution of the first-order equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-9 x+x^{3}}{y}
$$

This equation is separable. Integrate its separated form as

$$
\int y \mathrm{~d} y=\int-9 x+x^{3} \mathrm{~d} x
$$

which leads to $\frac{1}{2} y^{2}=-\frac{9}{2} x^{2}+\frac{1}{4} x^{4}+c$. This has the form $H(x, y)=c$ with

$$
H(x, y)=\frac{1}{2} y^{2}+\frac{9}{2} x^{2}-\frac{1}{4} x^{4} .
$$

(10) [8] Compute the Laplace transform of $f(t)=u(t-5) e^{-2 t}$ from its definition. (Here u is the unit step function.)
Solution. The definition of Laplace transform gives

$$
\mathcal{L}[f](s)=\lim _{T \rightarrow \infty} \int_{0}^{T} e^{-s t} u(t-5) e^{-2 t} \mathrm{~d} t=\lim _{T \rightarrow \infty} \int_{5}^{T} e^{-(s+2) t} \mathrm{~d} t
$$

This limit diverges to $+\infty$ for $s \leq-2$ because in that case

$$
\int_{5}^{T} e^{-(s+2) t} \mathrm{~d} t \geq \int_{5}^{T} \mathrm{~d} t=T-5
$$

which clearly diverges to $+\infty$ as $T \rightarrow \infty$.

For $s>-2$ an integration shows that

$$
\int_{2}^{T} e^{-(s+2) t} \mathrm{~d} t=-\left.\frac{e^{-(s+2) t}}{s+2}\right|_{5} ^{T}=\frac{e^{-(s+2) 5}}{s+2}-\frac{e^{-(s+2) T}}{s+2}
$$

Hence, for $s>-2$ one has that
$\mathcal{L}[f](s)=\lim _{T \rightarrow \infty}\left(\frac{e^{-(s+2) 5}}{s+2}-\frac{e^{-(s+2) T}}{s+2}\right)=\frac{e^{-(s+2) 5}}{s+2}-\lim _{T \rightarrow \infty} \frac{e^{-(s+2) T}}{s+2}=\frac{e^{-5 s-10}}{s+2}$.
(11) [9] Find the Laplace transform $Y(s)$ of the solution $y(t)$ of the initial-value problem

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} t}+20 y=f(t), \quad y(0)=3, \quad y^{\prime}(0)=-6
$$

where

$$
f(t)= \begin{cases}\frac{1}{2} t & \text { for } 0 \leq t<2 \\ e^{2-t} & \text { for } t \geq 2\end{cases}
$$

You may refer to the table on the last page. DO NOT take the inverse Laplace transform to find $y(t)$, just solve for $Y(s)$!
Solution. The Laplace transform of the initial-value problem is

$$
\mathcal{L}\left[y^{\prime \prime}\right](s)+4 \mathcal{L}\left[y^{\prime}\right](s)+20 \mathcal{L}[y](s)=\mathcal{L}[f](s),
$$

where

$$
\begin{aligned}
\mathcal{L}[y](s) & =Y(s) \\
\mathcal{L}\left[y^{\prime}\right](s) & =s Y(s)-y(0)=s Y(s)-3 \\
\mathcal{L}\left[y^{\prime \prime}\right](s) & =s^{2} Y(s)-s y(0)-y^{\prime}(0)=s^{2} Y(s)-3 s+6
\end{aligned}
$$

The Laplace transform of the initial-value problem then becomes

$$
\left(s^{2} Y(s)-3 s+6\right)+4(s Y(s)-3)+20 Y(s)=\mathcal{L}[f](s)
$$

which becomes

$$
\left(s^{2}+4 s+20\right) Y(s)-3 s-6=\mathcal{L}[f](s)
$$

To compute $\mathcal{L}[f](s)$, first write f as

$$
\begin{aligned}
f(t) & =(u(t)-u(t-2)) \frac{1}{2} t+u(t-2) e^{2-t} \\
& =\frac{1}{2} t+u(t-2)\left(e^{2-t}-\frac{1}{2} t\right) \\
& =\frac{1}{2} t+u(t-2)\left(e^{-(t-2)}-\frac{1}{2}(t-2)-1\right) .
\end{aligned}
$$

Referring to the table on the last page, item 1 with $n=1$, item 6 with $c=2$ and $f(t)=e^{-t}-\frac{1}{2} t-1$, item 5 with $a=-1$ and $f(t)=1$, item 1 with $n=0$ and $n=1$ then show that

$$
\begin{aligned}
\mathcal{L}[f](s) & =\mathcal{L}\left[\frac{1}{2} t\right](s)+\mathcal{L}\left[u(t-2)\left(e^{-(t-2)}-\frac{1}{2}(t-2)-1\right)\right](s) \\
& =\mathcal{L}\left[\frac{1}{2} t\right](s)+e^{-2 s} \mathcal{L}\left[e^{-t}-\frac{1}{2} t-1\right](s) \\
& =\frac{1}{2 s^{2}}+e^{-2 s}\left(\frac{1}{s+1}-\frac{1}{2 s^{2}}-\frac{1}{s}\right)=\frac{1-e^{-2 s}}{2 s^{2}}+\frac{e^{-2 s}}{s+1}-\frac{e^{-2 s}}{s} .
\end{aligned}
$$

Hence, $Y(s)$ is given by

$$
Y(s)=\frac{1}{s^{2}+4 s+20}\left(3 s+6+\frac{1-e^{-2 s}}{2 s^{2}}+\frac{e^{-2 s}}{s+1}-\frac{e^{-2 s}}{s}\right)
$$

(12) [8] Find the inverse Laplace transforms of the function

$$
F(s)=e^{-3 s} \frac{s+2}{s^{2}-5 s+4}
$$

You may refer to the table on the last page.
Solution. The denominator factors as $s^{2}-5 s+4=(s-1)(s-4)$. The partial fraction decomposition is

$$
\frac{s+2}{s^{2}-5 s+4}=\frac{s+2}{(s-4)(s-1)}=\frac{2}{s-4}+\frac{-1}{s-1} .
$$

The first item in the table with $n=0$ and the fifth item with $f(t)=1$ combine to show that

$$
\mathcal{L}\left[e^{a t}\right](s)=\frac{1}{s-a}
$$

In particular, setting $a=4$ and $a=1$ above we see that

$$
\mathcal{L}\left[e^{4 t}\right](s)=\frac{1}{s-4}, \quad \mathcal{L}\left[e^{t}\right](s)=\frac{1}{s-1}
$$

Hence,

$$
\frac{s+2}{s^{2}-5 s+4}=\frac{2}{s-4}-\frac{1}{s-1}=2 \mathcal{L}\left[e^{4 t}\right](s)-\mathcal{L}\left[e^{t}\right](s)=\mathcal{L}\left[2 e^{4 t}-e^{t}\right](s)
$$

By the sixth item in the table with $f(t)=2 e^{4 t}-e^{t}$, we see that

$$
\begin{aligned}
\mathcal{L}\left[u(t-3)\left(2 e^{4(t-3)}-e^{t-3}\right)\right](s) & =e^{-3 s} \mathcal{L}\left[2 e^{4 t}-e^{t}\right](s) \\
& =e^{-3 s} \frac{s+2}{s^{2}-5 s+4}=F(s)
\end{aligned}
$$

It follows that

$$
\mathcal{L}^{-1}[F(s)](t)=2 u(t-3) e^{4 t-12}-u(t-3) e^{t-3}
$$

A Short Table of Laplace Transforms

$$
\begin{aligned}
\mathcal{L}\left[t^{n}\right](s) & =\frac{n!}{s^{n+1}} & & \text { for } s>0 . \\
\mathcal{L}[\cos (b t)](s) & =\frac{s}{s^{2}+b^{2}} & & \text { for } s>0 . \\
\mathcal{L}[\sin (b t)](s) & =\frac{b}{s^{2}+b^{2}} & & \text { for } s>0 . \\
\mathcal{L}\left[t^{n} f(t)\right](s) & =(-1)^{n} F^{(n)}(s) & & \text { where } F(s)=\mathcal{L}[f(t)](s) . \\
\mathcal{L}\left[e^{a t} f(t)\right](s) & =F(s-a) & & \text { where } F(s)=\mathcal{L}[f(t)](s) . \\
\mathcal{L}[u(t-c) f(t-c)](s) & =e^{-c s} F(s) & & \text { where } F(s)=\mathcal{L}[f(t)](s)
\end{aligned}
$$ and u is the unit step function.

