Sample Problems for Second In-Class Exam Math 246, Fall 2008, Professor David Levermore

(1) Give the interval of existence for the solution of the initial-value problem

$$
\frac{\mathrm{d}^{3} x}{\mathrm{~d} t^{3}}+\frac{\cos (3 t)}{4-t} \frac{\mathrm{~d} x}{\mathrm{~d} t}=\frac{e^{-2 t}}{1+t}, \quad x(2)=x^{\prime}(2)=x^{\prime \prime}(2)=0
$$

(2) Let L be a linear ordinary differential operator with constant coefficients. Suppose that all the roots of its characteristic polynomial (listed with their multiplicities) are $-2+i 3,-2-i 3, i 7, i 7,-i 7,-i 7,5,5,5,-3,0,0$.
(a) Give the order of L.
(b) Give a general real solution of the homogeneous equation $\mathrm{L} y=0$.
(3) Let $\mathrm{D}=\frac{\mathrm{d}}{\mathrm{d} t}$. Solve each of the following initial-value problems.
(a) $\mathrm{D}^{2} y+4 \mathrm{D} y+4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0$.
(b) $\mathrm{D}^{2} y+9 y=20 e^{t}, \quad y(0)=0, \quad y^{\prime}(0)=0$.
(4) Let $\mathrm{D}=\frac{\mathrm{d}}{\mathrm{d} t}$. Give a general real solution for each of the following equations.
(a) $\mathrm{D}^{2} y+4 \mathrm{D} y+5 y=3 \cos (2 t)$.
(b) $\mathrm{D}^{2} y-y=t e^{t}$.
(c) $\mathrm{D}^{2} y-y=\frac{1}{1+e^{t}}$.
(5) Let $\mathrm{D}=\frac{\mathrm{d}}{\mathrm{d} t}$. Consider the equation

$$
\mathrm{L} y=\mathrm{D}^{2} y-6 \mathrm{D} y+25 y=e^{t^{2}}
$$

(a) Compute the Green function $g(t)$ associated with L .
(b) Use the Green function to express a particular solution $Y_{P}(t)$ in terms of definite integrals.
(6) The functions x and x^{2} are solutions of the homogeneous equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=0 \quad \text { over } x>0
$$

(You do not have to check that this is true!)
(a) Compute their Wronskian.
(b) Give a general solution of the equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=x^{3} e^{x} \quad \text { over } x>0
$$

You may express the solution in terms of definite integrals.
(7) What answer will be produced by the following MATLAB commands?

$$
\begin{aligned}
& \gg \text { ode } 1=\text { 'D } 2 \mathrm{y}+2^{*} \mathrm{Dy}+5^{*} \mathrm{y}=16^{*} \exp (\mathrm{t})^{\prime} ; \\
& \gg \text { dsolve(ode1, 't') } \\
& \text { ans }=
\end{aligned}
$$

(8) The vertical displacement of a mass on a spring is given by

$$
z(t)=\sqrt{3} \cos (2 t)+\sin (2 t)
$$

Express this in the form $z(t)=A \cos (\omega t-\delta)$, identifying the amplitude and phase of the oscillation.
(9) When a mass of 4 grams is hung vertically from a spring, at rest it stretches the spring 9.8 cm . (Gravitational acceleration is $g=980 \mathrm{~cm} / \mathrm{sec}^{2}$.) At $t=0$ the mass is displaced 3 cm above its equilibrium position and is released with no initial velocity. It moves in a medium that imparts a drag force of 2 dynes (1 dyne $=1 \mathrm{gram} \mathrm{cm} / \mathrm{sec}^{2}$) when the speed of the mass is $4 \mathrm{~cm} / \mathrm{sec}$. There are no other forces. (Assume that the spring force is proportional to displacement and that the drag force is proportional to velocity.)
(a) Formulate an initial-value problem that governs the motion of the mass for $t>0$. (DO NOT solve this initial-value problem, just write it down!)
(b) What is the natural frequency of the spring?
(c) Show that the system is under damped and find its quasifrequency.

