Sample Problems for Third In-Class Exam Math 246, Spring 2008, Professor David Levermore

(1) Compute the Laplace transform of $f(t)=t e^{3 t}$ from its definition.
(2) Find the Laplace transform $Y(s)$ of the solution $y(t)$ of the initial-value problem

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} t}+13 y=f(t), \quad y(0)=4, \quad y^{\prime}(0)=1
$$

where

$$
f(t)= \begin{cases}\cos (t) & \text { for } 0 \leq t<2 \pi \\ t-2 \pi & \text { for } t \geq 2 \pi\end{cases}
$$

You may refer to the table on the last page. DO NOT take the inverse Laplace transform to find $y(t)$, just solve for $Y(s)$!
(3) Find the inverse Laplace transforms of the following functions. You may refer to the table on the last page.
(a) $F(s)=\frac{2}{(s+5)^{2}}$,
(b) $F(s)=\frac{3 s}{s^{2}-s-6}$,
(c) $F(s)=\frac{(s-2) e^{-3 s}}{s^{2}-4 s+5}$.
(4) Consider the matrices

$$
\mathbf{A}=\left(\begin{array}{cc}
-i 2 & 1+i \\
2+i & -4
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ll}
7 & 6 \\
8 & 7
\end{array}\right)
$$

Compute the matrices
(a) \mathbf{A}^{T},
(b) $\overline{\mathbf{A}}$,
(c) \mathbf{A}^{*},
(d) $5 \mathbf{A}-\mathbf{B}$,
(e) $\mathbf{A B}$,
(f) \mathbf{B}^{-1}.
(5) Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
3 & 3 \\
4 & -1
\end{array}\right)
$$

(a) Find all the eigenvalues of \mathbf{A}.
(b) For each eigenvalue of \mathbf{A} find all of its eigenvectors.
(c) Diagonalize A.
(6) Given that 1 is an eigenvalue of the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & -1 & 1 \\
1 & 1 & -1 \\
0 & -1 & 3
\end{array}\right)
$$

find all the eigenvectors of \mathbf{A} associated with 1.
(7) Transform the equation $\frac{\mathrm{d}^{3} u}{\mathrm{~d} t^{3}}+t^{2} \frac{\mathrm{~d} u}{\mathrm{~d} t}-3 u=\sinh (2 t)$ into a first-order system of ordinary differential equations.
(8) Consider the vector-valued functions $\mathbf{x}_{1}(t)=\binom{t^{2}+3}{2 t}, \mathbf{x}_{2}(t)=\binom{t^{3}}{3 t^{2}}$.
(a) Compute the Wronskian $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.
(b) Find $\mathbf{A}(t)$ such that $\mathbf{x}_{1}, \mathbf{x}_{2}$ is a fundamental set of solutions to $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A}(t) \mathbf{x}$ wherever $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$.
(9) Consider two interconnected tanks filled with brine (salt water). The first tank contains 100 liters and the second contains 50 liters. Brine flows with a concentration of 2 grams of salt per liter flows into the first tank at a rate of 3 liters per hour. Well stirred brine flows from the first tank to the second at a rate of 5 liters per hour, from the second to the first at a rate of 2 liters per hour, and from the second into a drain at a rate of 3 liters per hour. At $t=0$ there are 5 grams of salt in the first tank and 20 grams in the second. Give an initial-value problem that governs the amount of salt in each tank as a function of time.
(10) Solve each of the following initial-value problems.
(a) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}2 & 2 \\ 5 & -1\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{1}{-1}$.
(b) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{1}{1}$.
(11) Find a general solution for each of the following systems.
(a) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)\binom{x}{y}$
(b) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{ll}2 & -5 \\ 4 & -2\end{array}\right)\binom{x}{y}$
(c) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}5 & 4 \\ -5 & 1\end{array}\right)\binom{x}{y}$
(12) Sketch a phase portrait for each of the systems in Problem 5. Indicate some typical trajectories.
(13) Compute $e^{t \mathbf{A}}$ for $\mathbf{A}=\left(\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right)$.
(14) Consider the system

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\binom{y+1}{4 x-x^{2}} .
$$

(a) Find all of its stationary points.
(b) Find a nonconstant function $H(x, y)$ such that every trajectory of the system satisfies $H(x, y)=c$ for some constant c.
(c) Sketch a phase portrait of the system. Indicate its stationary points and some typical trajectories.
(d) Identify each stationary point as being either stable or unstable.

A Short Table of Laplace Transforms

$$
\begin{array}{rlrl}
\mathcal{L}\left[t^{n}\right](s) & =\frac{n!}{s^{n+1}} & & \text { for } s>0 . \\
\mathcal{L}[\cos (b t)](s) & =\frac{s}{s^{2}+b^{2}} & & \text { for } s>0 . \\
\mathcal{L}[\sin (b t)](s) & =\frac{b}{s^{2}+b^{2}} & & \text { for } s>0 . \\
\mathcal{L}\left[t^{n} f(t)\right](s) & =(-1)^{n} F^{(n)}(s) & & \text { where } F(s)=\mathcal{L}[f(t)](s) . \\
\mathcal{L}\left[e^{a t} f(t)\right](s) & =F(s-a) & & \text { where } F(s)=\mathcal{L}[f(t)](s) . \\
\mathcal{L}[u(t-c) f(t-c)](s) & =e^{-c s} F(s) & & \text { where } F(s)=\mathcal{L}[f(t)](s) \\
& & \text { and } u \text { is the unit step function } .
\end{array}
$$

