Sample Problems for Third In-Class Exam Math 246, Spring 2008, Professor David Levermore

(1) Compute the Laplace transform of $f(t) = t e^{3t}$ from its definition.

Solution. The definition of Laplace transform gives

$$\mathcal{L}[f](s) = \lim_{T \to \infty} \int_0^T e^{-st} t \, e^{3t} \, \mathrm{d}t = \lim_{T \to \infty} \int_0^T t \, e^{(3-s)t} \, \mathrm{d}t \,.$$

This limit diverges to $+\infty$ for $s \leq 3$ because in that case

$$\int_0^T t \, e^{(3-s)t} \, \mathrm{d}t \ge \int_0^T t \, \mathrm{d}t = \frac{T^2}{2} \,,$$

which clearly diverges to $+\infty$ as $T \to \infty$.

For s > 3 an integration by parts shows that

$$\int_0^T t \, e^{(3-s)t} \, \mathrm{d}t = t \, \frac{e^{(3-s)t}}{3-s} \Big|_0^T - \int_0^T \frac{e^{(3-s)t}}{3-s} \, \mathrm{d}t$$
$$= \left(t \, \frac{e^{(3-s)t}}{3-s} - \frac{e^{(3-s)t}}{(3-s)^2} \right) \Big|_0^T$$
$$= \left(T \, \frac{e^{(3-s)T}}{3-s} - \frac{e^{(3-s)T}}{(3-s)^2} \right) + \frac{1}{(3-s)^2} \, .$$

Hence, for s > 3 one has that

$$\mathcal{L}[f](s) = \lim_{T \to \infty} \left[\left(T \frac{e^{(3-s)T}}{3-s} - \frac{e^{(3-s)T}}{(3-s)^2} \right) + \frac{1}{(3-s)^2} \right]$$
$$= \frac{1}{(3-s)^2} + \lim_{T \to \infty} \left(T \frac{e^{(3-s)T}}{3-s} - \frac{e^{(3-s)T}}{(3-s)^2} \right)$$
$$= \frac{1}{(3-s)^2} \,.$$

(2) Find the Laplace transform Y(s) of the solution y(t) of the initial-value problem

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + 4\frac{\mathrm{d}y}{\mathrm{d}t} + 13y = f(t), \qquad y(0) = 4, \quad y'(0) = 1,$$

where

$$f(t) = \begin{cases} \cos(t) & \text{for } 0 \le t < 2\pi, \\ t - 2\pi & \text{for } t \ge 2\pi. \end{cases}$$

You may refer to the table on the last page. DO NOT take the inverse Laplace transform to find y(t), just solve for Y(s)!

Solution. The Laplace transform of the initial-value problem is

$$\mathcal{L}[y''](s) + 4\mathcal{L}[y'](s) + 13\mathcal{L}[y](s) = \mathcal{L}[f](s),$$

where

$$\mathcal{L}[y](s) = Y(s),$$

$$\mathcal{L}[y'](s) = sY(s) - y(0) = sY(s) - 4,$$

$$\mathcal{L}[y''](s) = s^2Y(s) - sy(0) - y'(0) = s^2Y(s) - 4s - 1.$$

To compute $\mathcal{L}[f](s)$, first write f as

$$f(t) = (1 - u(t - 2\pi))\cos(t) + u(t - 2\pi)(t - 2\pi)$$

= cos(t) - u(t - 2\pi) cos(t) + u(t - 2\pi)(t - 2\pi)
= cos(t) - u(t - 2\pi)\cos(t - 2\pi) + u(t - 2\pi)(t - 2\pi)

Referring to the table on the last page, item 6 with $c = 2\pi$, item 2 with b = 1, and item 1 with n = 1 then show that

$$\mathcal{L}[f](s) = \mathcal{L}[\cos(t)](s) - \mathcal{L}[u(t - 2\pi)\cos(t - 2\pi)](s) + \mathcal{L}[u(t - 2\pi)(t - 2\pi)](s)$$

= $\mathcal{L}[\cos(t)](s) - e^{-2\pi s} \mathcal{L}[\cos(t)](s) + e^{-2\pi s} \mathcal{L}[t](s)$
= $(1 - e^{-2\pi s})\frac{s}{s^2 + 1} + e^{-2\pi s}\frac{1}{s^2}$.

The Laplace transform of the initial-value problem then becomes

$$\left(s^{2}Y(s) - 4s - 1\right) + 4\left(sY(s) - 4\right) + 13Y(s) = \left(1 - e^{-2\pi s}\right)\frac{s}{s^{2} + 1} + e^{-2\pi s}\frac{1}{s^{2}},$$

which becomes

$$(s^{2} + 4s + 13)Y(s) - 4s - 1 - 16 = (1 - e^{-2\pi s})\frac{s}{s^{2} + 1} + e^{-2\pi s}\frac{1}{s^{2}}.$$

Hence, Y(s) is given by

$$Y(s) = \frac{1}{s^2 + 4s + 13} \left(4s + 17 + \left(1 - e^{-2\pi s}\right) \frac{s}{s^2 + 1} + e^{-2\pi s} \frac{1}{s^2} \right).$$

- (3) Find the inverse Laplace transforms of the following functions. You may refer to the table on the last page.
 - (a) $F(s) = \frac{2}{(s+5)^2}$,

Solution. Referring to the table on the last page, item 1 with n = 1 gives $\mathcal{L}[t](s) = 1/s^2$. Item 4 with a = -5 and f(t) = t then gives

$$\mathcal{L}[e^{-5t}t](s) = \frac{1}{(s+5)^2}.$$

Multiplying this by 2 yields

$$\mathcal{L}[2e^{-5t}t](s) = \frac{2}{(s+5)^2}.$$

You therefore conclude that

$$\mathcal{L}^{-1}\left[\frac{2}{(s+5)^2}\right](t) = 2e^{-5t}t.$$

(b) $F(s) = \frac{3s}{s^2 - s - 6}$,

Solution. The denominator factors as (s-3)(s+2), so the partial fraction decomposition is

.

$$\frac{3s}{s^2 - s - 6} = \frac{3s}{(s - 3)(s + 2)} = \frac{\frac{9}{5}}{s - 3} + \frac{\frac{6}{5}}{s + 2}$$

Referring to the table on the last page, item 1 with n = 0 gives $\mathcal{L}[1](s) = 1/s$. Item 5 with a = 3 and f(t) = 1, and with a = -2 and f(t) = 1, then gives

$$\mathcal{L}[e^{3t}](s) = \frac{1}{s-3}, \qquad \mathcal{L}[e^{-2t}](s) = \frac{1}{s+2},$$

whereby

$$\frac{3s}{s^2 - s - 6} = \frac{9}{5}\mathcal{L}[e^{3t}](s) + \frac{6}{5}\mathcal{L}[e^{-2t}](s) = \mathcal{L}\left[\frac{9}{5}e^{3t} + \frac{6}{5}e^{-2t}\right](s).$$

You therefore conclude that

$$\mathcal{L}^{-1}\left[\frac{3s}{s^2 - s - 6}\right](t) = \frac{9}{5}e^{3t} + \frac{6}{5}e^{-2t}.$$

(c) $F(s) = \frac{(s-2)e^{-3s}}{s^2 - 4s + 5}$.

Solution. Complete the square in the denominator to get $(s-2)^2+1$. Referring to the table on the last page, item 2 with b = 1 gives

$$\mathcal{L}[\cos(t)](s) = \frac{s}{s^2 + 1}.$$

Item 5 with a = 2 and $f(t) = \cos(t)$ then gives

$$\mathcal{L}[e^{2t}\cos(t)](s) = \frac{s-2}{(s-2)^2 + 1}$$

Item 6 with c = 3 and $f(t) = e^{2t} \cos(t)$ then gives

$$\mathcal{L}[u(t-3)e^{2(t-3)}\cos(t-3)](s) = e^{-3s}\frac{s-2}{(s-2)^2+1}.$$

You therefore conclude that

$$\mathcal{L}^{-1}\left[e^{-3s}\frac{s-2}{s^2-4s+5}\right](t) = u(t-3)e^{2(t-3)}\cos(t-3).$$

(4) Consider the matrices

$$\mathbf{A} = \begin{pmatrix} -i2 & 1+i\\ 2+i & -4 \end{pmatrix}, \qquad \mathbf{B} = \begin{pmatrix} 7 & 6\\ 8 & 7 \end{pmatrix}$$

Compute the matrices

- 4
- (a) \mathbf{A}^T ,

Solution. The transpose of ${\bf A}$ is

$$\mathbf{A}^T = \begin{pmatrix} -i2 & 2+i\\ 1+i & -4 \end{pmatrix} \,.$$

(b) $\overline{\mathbf{A}}$,

Solution. The conjugate of A is

$$\overline{\mathbf{A}} = \begin{pmatrix} i2 & 1-i \\ 2-i & -4 \end{pmatrix} \,.$$

(c) \mathbf{A}^{*} ,

Solution. The adjoint of A is

$$\mathbf{A}^* = \begin{pmatrix} i2 & 2-i\\ 1-i & -4 \end{pmatrix} \,.$$

(d) $5\mathbf{A} - \mathbf{B}$,

Solution. The difference of $5\mathbf{A}$ and \mathbf{B} is given by

$$5\mathbf{A} - \mathbf{B} = \begin{pmatrix} -i10 & 5+i5\\ 10+i5 & -20 \end{pmatrix} - \begin{pmatrix} 7 & 6\\ 8 & 7 \end{pmatrix} = \begin{pmatrix} -7-i10 & -1+i5\\ 2+i5 & -27 \end{pmatrix}$$

(e) **AB**,

Solution. The product of ${\bf A}$ and ${\bf B}$ is given by

$$\mathbf{AB} = \begin{pmatrix} -i2 & 1+i \\ 2+i & -4 \end{pmatrix} \begin{pmatrix} 7 & 6 \\ 8 & 7 \end{pmatrix}$$
$$= \begin{pmatrix} -i2 \cdot 7 + (1+i) \cdot 8 & -i2 \cdot 6 + (1+i) \cdot 7 \\ (2+i) \cdot 7 - 4 \cdot 8 & (2+i) \cdot 6 - 4 \cdot 7 \end{pmatrix}$$
$$= \begin{pmatrix} 8 - i6 & 7 - i5 \\ -18 + i7 & -16 + i6 \end{pmatrix}.$$

(f) \mathbf{B}^{-1} .

Solution. Observe that it is clear that \mathbf{B} has an inverse because

$$\det(\mathbf{B}) = \det\begin{pmatrix} 7 & 6\\ 8 & 7 \end{pmatrix} = 7 \cdot 7 - 6 \cdot 8 = 49 - 48 = 1$$

The inverse of \mathbf{B} is given by

$$\mathbf{B}^{-1} = \frac{1}{\det(\mathbf{B})} \begin{pmatrix} 7 & -6 \\ -8 & 7 \end{pmatrix} = \begin{pmatrix} 7 & -6 \\ -8 & 7 \end{pmatrix}.$$

(5) Consider the matrix

$$\mathbf{A} = \begin{pmatrix} 3 & 3\\ 4 & -1 \end{pmatrix} \,.$$

(a) Find all the eigenvalues of **A**.

Solution. The characteristic polynomial of A is given by

$$p(z) = z^2 - \operatorname{tr}(\mathbf{A})z + \det(\mathbf{A}) = z^2 - 2z - 15 = (z - 1)^2 - 16.$$

The eigenvalues of **A** are the roots of this polynomial, which are 1 ± 4 , or simply -3 and 5.

(b) For each eigenvalue of **A** find all of its eigenvectors.

Solution (using the Cayley-Hamilton method from notes). One has

$$\mathbf{A} + 3\mathbf{I} = \begin{pmatrix} 6 & 3\\ 4 & 2 \end{pmatrix}, \qquad \mathbf{A} - 5\mathbf{I} = \begin{pmatrix} -2 & 3\\ 4 & -6 \end{pmatrix}.$$

Every nonzero column of $\mathbf{A} - 5\mathbf{I}$ has the form

$$\alpha_1 \begin{pmatrix} 1 \\ -2 \end{pmatrix} \quad \text{for some } \alpha_1 \neq 0.$$

These are all the eigenvectors associated with -3. Similarly, every nonzero column of $\mathbf{A} + 3\mathbf{I}$ has the form

$$\alpha_2 \begin{pmatrix} 3\\ 2 \end{pmatrix}$$
 for some $\alpha_2 \neq 0$.

These are all the eigenvectors associated with 5.

(c) Diagonalize **A**.

Solution. If you use the eigenpairs

$$\begin{pmatrix} -3, \begin{pmatrix} 1\\ -2 \end{pmatrix} \end{pmatrix}, \quad \begin{pmatrix} 5, \begin{pmatrix} 3\\ 2 \end{pmatrix} \end{pmatrix},$$

then set

$$\mathbf{V} = \begin{pmatrix} 1 & 3 \\ -2 & 2 \end{pmatrix}, \qquad \mathbf{D} = \begin{pmatrix} -3 & 0 \\ 0 & 5 \end{pmatrix}$$

Because $det(\mathbf{V}) = 1 \cdot 2 - (-2) \cdot 3 = 2 + 6 = 8$, you see that

$$\mathbf{V}^{-1} = \frac{1}{8} \begin{pmatrix} 2 & -3\\ 2 & 1 \end{pmatrix}$$

You conclude that **A** has the diagonalization

$$\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1} = \begin{pmatrix} 1 & 3 \\ -2 & 2 \end{pmatrix} \begin{pmatrix} -3 & 0 \\ 0 & 5 \end{pmatrix} \frac{1}{8} \begin{pmatrix} 2 & -3 \\ 2 & 1 \end{pmatrix}.$$

You do not have to multiply these matrices out. Had you started with different eigenpairs, the steps would be the same as above but you would obtain a different diagonalization. (6) Given that 1 is an eigenvalue of the matrix

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 1 & -1 \\ 0 & -1 & 3 \end{pmatrix} \,,$$

find all the eigenvectors of **A** associated with 1.

Solution. The eigenvectors of A associated with 1 are all nonzero vectors \mathbf{v} that satisfy $\mathbf{A}\mathbf{v} = \mathbf{v}$. Equivalently, they are all nonzero vectors \mathbf{v} that satisfy $(\mathbf{A}-\mathbf{I})\mathbf{v} = 0$, which is

$$\begin{pmatrix} 1 & -1 & 1 \\ 1 & 0 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = 0.$$

The entries of \mathbf{v} thereby satisfy the homogeneous linear algebraic system

$$v_1 - v_2 + v_3 = 0,$$

$$v_1 - v_3 = 0,$$

$$-v_2 + 2v_3 = 0.$$

You may solve this system either by elimination or by row reduction. By either method you find that its general solution is

 $v_1 = \alpha$, $v_2 = 2\alpha$, $v_3 = \alpha$, for any constant α .

The eigenvectors of \mathbf{A} associated with 1 therefore have the form

$$\alpha \begin{pmatrix} 1\\ 2\\ 1 \end{pmatrix}$$
 for any nonzero constant α .

(7) Transform the equation $\frac{d^3u}{dt^3} + t^2 \frac{du}{dt} - 3u = \sinh(2t)$ into a first-order system of ordinary differential equations.

Solution: Because the equation is third order, the first order system must have dimension three. The simplest such first order system is

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} x_2\\ x_3\\ \sinh(2t) + 3x_1 - t^2x_2 \end{pmatrix}, \quad \text{where} \quad \begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = \begin{pmatrix} u\\ u'\\ u'' \end{pmatrix}.$$

(8) Consider the vector-valued functions $\mathbf{x}_1(t) = \begin{pmatrix} t^2 + 3 \\ 2t \end{pmatrix}$, $\mathbf{x}_2(t) = \begin{pmatrix} t^3 \\ 3t^2 \end{pmatrix}$. (a) Compute the Wronskian $W[\mathbf{x}_1, \mathbf{x}_2](t)$.

Solution.

$$W[\mathbf{x}_1, \mathbf{x}_2](t) = \det \begin{pmatrix} t^2 + 3 & t^3 \\ 2t & 3t^2 \end{pmatrix} = 3t^4 + 9t^2 - 2t^4 = t^4 + 9t^2$$

(b) Find $\mathbf{A}(t)$ such that \mathbf{x}_1 , \mathbf{x}_2 is a fundamental set of solutions to $\frac{\mathrm{d}\mathbf{x}}{\mathrm{d}t} = \mathbf{A}(t)\mathbf{x}$ wherever $W[\mathbf{x}_1, \mathbf{x}_2](t) \neq 0$.

Solution. Let
$$\Psi(t) = \begin{pmatrix} t^2 + 3 & t^3 \\ 2t & 3t^2 \end{pmatrix}$$
. Because $\frac{\Psi(t)}{dt} = \mathbf{A}(t)\Psi(t)$, one has

$$\begin{aligned} \mathbf{A}(t) &= \frac{\mathbf{\Psi}(t)}{\mathrm{d}t} \mathbf{\Psi}(t)^{-1} = \begin{pmatrix} 2t & 3t^2\\ 2 & 6t \end{pmatrix} \begin{pmatrix} t^2 + 3 & t^3\\ 2t & 3t^2 \end{pmatrix}^{-1} \\ &= \frac{1}{t^4 + 9t^2} \begin{pmatrix} 2t & 3t^2\\ 2 & 6t \end{pmatrix} \begin{pmatrix} 3t^2 & -t^3\\ -2t & t^2 + 3 \end{pmatrix} = \frac{1}{t^4 + 9t^2} \begin{pmatrix} 0 & t^4 + 9t^2\\ -6t^2 & 4t^3 + 18t \end{pmatrix} . \end{aligned}$$

(9) Consider two interconnected tanks filled with brine (salt water). The first tank contains 100 liters and the second contains 50 liters. Brine flows with a concentration of 2 grams of salt per liter flows into the first tank at a rate of 3 liters per hour. Well stirred brine flows from the first tank to the second at a rate of 5 liters per hour, from the second to the first at a rate of 2 liters per hour, and from the second into a drain at a rate of 3 liters per hour. At t = 0 there are 5 grams of salt in the first tank and 20 grams in the second. Give an initial-value problem that governs the amount of salt in each tank as a function of time.

Solution: The rates work out so there will always be 100 liters of brine in the first tank and 50 liters in the second. Let $S_1(t)$ be the grams of salt in the first tank and $S_2(t)$ be the grams of salt in the second tank. These are governed by the initial-value problem

$$\frac{\mathrm{d}S_1}{\mathrm{d}t} = 2 \cdot 3 + \frac{S_2}{50} 2 - \frac{S_1}{100} 5, \qquad S_1(0) = 2,$$

$$\frac{\mathrm{d}S_2}{\mathrm{d}t} = \frac{S_1}{100} 5 - \frac{S_2}{50} 2 - \frac{S_2}{50} 3, \qquad S_2(0) = 20$$

You could leave the answer in the above form. It can however be simplified to

$$\frac{\mathrm{d}S_1}{\mathrm{d}t} = 6 + \frac{S_2}{25} - \frac{S_1}{20}, \qquad S_1(0) = 2,$$

$$\frac{\mathrm{d}S_2}{\mathrm{d}t} = \frac{S_1}{20} - \frac{S_2}{10}, \qquad S_2(0) = 20.$$

(10) Solve each of the following initial-value problems.

(a)
$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & 2 \\ 5 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \qquad \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Solution. The characteristic polynomial of $\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 5 & -1 \end{pmatrix}$ is given by

$$p(z) = z^2 - \operatorname{tr}(\mathbf{A})z + \det(\mathbf{A}) = z^2 - z - 12 = (z+3)(z-4).$$

The eigenvalues of **A** are the roots of this polynomial, which are -3 and 4. These have the form $\frac{1}{2} \pm \frac{7}{2}$. One therefore has

$$e^{t\mathbf{A}} = e^{\frac{1}{2}t} \left[\mathbf{I} \cosh\left(\frac{7}{2}t\right) + \left(\mathbf{A} - \frac{1}{2}\mathbf{I}\right) \frac{\sinh\left(\frac{7}{2}t\right)}{\frac{7}{2}} \right]$$

= $e^{\frac{1}{2}t} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cosh\left(\frac{7}{2}t\right) + \begin{pmatrix} \frac{3}{2} & 2 \\ 5 & -\frac{3}{2} \end{pmatrix} \frac{\sinh\left(\frac{7}{2}t\right)}{\frac{7}{2}} \right]$
= $e^{\frac{1}{2}t} \begin{pmatrix} \cosh\left(\frac{7}{2}t\right) + \frac{3}{7}\sinh\left(\frac{7}{2}t\right) & \frac{4}{7}\sinh\left(\frac{7}{2}t\right) \\ \frac{10}{7}\sinh\left(\frac{7}{2}t\right) & \cosh\left(\frac{7}{2}t\right) - \frac{3}{7}\sinh\left(\frac{7}{2}t\right) \end{pmatrix}.$

The solution of the initial-value problem is therefore

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = e^{t\mathbf{A}} \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = e^{t\mathbf{A}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$= e^{\frac{1}{2}t} \begin{pmatrix} \cosh\left(\frac{7}{2}t\right) + \frac{3}{7}\sinh\left(\frac{7}{2}t\right) & \frac{4}{7}\sinh\left(\frac{7}{2}t\right) \\ \frac{10}{7}\sinh\left(\frac{7}{2}t\right) & \cosh\left(\frac{7}{2}t\right) - \frac{3}{7}\sinh\left(\frac{7}{2}t\right) \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$= e^{\frac{1}{2}t} \begin{pmatrix} \cosh\left(\frac{7}{2}t\right) - \frac{1}{7}\sinh\left(\frac{7}{2}t\right) \\ -\cosh\left(\frac{7}{2}t\right) + \frac{13}{7}\sinh\left(\frac{7}{2}t\right) \end{pmatrix} .$$

(b)
$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \qquad \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Solution. The characteristic polynomial of $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -4 & 1 \end{pmatrix}$ is given by $p(z) = z^2 - \operatorname{tr}(\mathbf{A})z + \det(\mathbf{A}) = z^2 - 2z + 5 = (z-1)^2 + 4$.

The eigenvalues of **A** are the roots of this polynomial, which are
$$1 \pm i2$$
. One therefore has

$$e^{t\mathbf{A}} = e^{t} \left[\mathbf{I} \cos(2t) + (\mathbf{A} - \mathbf{I}) \frac{\sin(2t)}{2} \right]$$
$$= e^{t} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cos(2t) + \begin{pmatrix} 0 & 1 \\ -4 & 0 \end{pmatrix} \frac{\sin(2t)}{2} \right]$$
$$= e^{t} \begin{pmatrix} \cos(2t) & \frac{1}{2}\sin(2t) \\ -2\sin(2t) & \cos(2t) \end{pmatrix}.$$

The solution of the initial-value problem is therefore

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = e^{t\mathbf{A}} \begin{pmatrix} x(0) \\ y(0) \end{pmatrix} = e^{t\mathbf{A}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= e^{t} \begin{pmatrix} \cos(2t) & \frac{1}{2}\sin(2t) \\ -2\sin(2t) & \cos(2t) \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= e^{t} \begin{pmatrix} \cos(2t) + \frac{1}{2}\sin(2t) \\ -2\sin(2t) + \cos(2t) \end{pmatrix} .$$

(11) Find a general solution for each of the following systems.

(a)
$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Solution. The characteristic polynomial of $\mathbf{A} = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$ is given by

$$p(z) = z^{2} - \operatorname{tr}(\mathbf{A})z + \det(\mathbf{A}) = z^{2} - 2z + 1 = (z - 1)^{2}$$

The eigenvalues of ${\bf A}$ are the roots of this polynomial, which is 1, a double root. One therefore has

$$e^{t\mathbf{A}} = e^{t} \begin{bmatrix} \mathbf{I} + (\mathbf{A} - \mathbf{I})t \end{bmatrix} = e^{t} \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 2 & -4 \\ 1 & -2 \end{pmatrix} t \end{bmatrix}$$
$$= e^{t} \begin{pmatrix} 1+2t & -4t \\ t & 1-2t \end{pmatrix}.$$

A general solution is therefore given by

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = e^{t\mathbf{A}} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = e^t \begin{pmatrix} 1+2t & -4t \\ t & 1-2t \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
$$= c_1 e^t \begin{pmatrix} 1+2t \\ t \end{pmatrix} + c_2 e^t \begin{pmatrix} -4t \\ 1-2t \end{pmatrix} .$$

(b)
$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 & -5 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Solution. The characteristic polynomial of $\mathbf{A} = \begin{pmatrix} 2 & -5 \\ 4 & -2 \end{pmatrix}$ is given by

$$p(z) = z^2 - \operatorname{tr}(\mathbf{A})z + \det(\mathbf{A}) = z^2 + 16$$

The eigenvalues of **A** are the roots of this polynomial, which are $\pm i4$. One therefore has

$$e^{t\mathbf{A}} = \begin{bmatrix} \mathbf{I}\cos(4t) + \mathbf{A}\frac{\sin(4t)}{4} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}\cos(4t) + \begin{pmatrix} 2 & -5\\ 4 & -2 \end{pmatrix}\frac{\sin(4t)}{4} \end{bmatrix}$$
$$= \begin{pmatrix} \cos(4t) + \frac{1}{2}\sin(4t) & -\frac{5}{4}\sin(4t)\\ \sin(4t) & \cos(4t) - \frac{1}{2}\sin(4t) \end{pmatrix}.$$

A general solution is therefore given by

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = e^{t\mathbf{A}} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} \cos(4t) + \frac{1}{2}\sin(4t) & -\frac{5}{4}\sin(4t) \\ \sin(4t) & \cos(4t) - \frac{1}{2}\sin(4t) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
$$= c_1 \begin{pmatrix} \cos(4t) + \frac{1}{2}\sin(4t) \\ \sin(4t) \end{pmatrix} + c_2 \begin{pmatrix} -\frac{5}{4}\sin(4t) \\ \cos(4t) - \frac{1}{2}\sin(4t) \end{pmatrix} .$$

(c)
$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Solution. The characteristic polynomial of $\mathbf{A} = \begin{pmatrix} 5 & 4 \\ -5 & 1 \end{pmatrix}$ is given by

 $p(z) = z^2 - \operatorname{tr}(\mathbf{A})z + \det(\mathbf{A}) = z^2 - 6z + 25 = (z - 3)^2 + 16.$

The eigenvalues of **A** are the roots of this polynomial, which are $3 \pm i4$. One therefore has

$$e^{t\mathbf{A}} = e^{3t} \left[\mathbf{I}\cos(4t) + (\mathbf{A} - 3\mathbf{I})\frac{\sin(4t)}{4} \right]$$

= $e^{3t} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cos(4t) + \begin{pmatrix} 2 & 4 \\ -5 & -2 \end{pmatrix} \frac{\sin(4t)}{4} \right]$
= $e^{3t} \begin{pmatrix} \cos(4t) + \frac{1}{2}\sin(4t) & \sin(4t) \\ -\frac{5}{4}\sin(4t) & \cos(4t) - \frac{1}{2}\sin(4t) \end{pmatrix}$.

A general solution is therefore given by

$$\begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = e^{t\mathbf{A}} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = e^{3t} \begin{pmatrix} \cos(4t) + \frac{1}{2}\sin(4t) & \sin(4t) \\ -\frac{5}{4}\sin(4t) & \cos(4t) - \frac{1}{2}\sin(4t) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$
$$= c_1 e^{3t} \begin{pmatrix} \cos(4t) + \frac{1}{2}\sin(4t) \\ -\frac{5}{4}\sin(4t) \end{pmatrix} + c_2 e^{3t} \begin{pmatrix} \sin(4t) \\ \cos(4t) - \frac{1}{2}\sin(4t) \end{pmatrix} .$$

- (12) Sketch a phase portrait for each of the systems in Problem 5. Indicate some typical trajectories.
 - (a) **Solution.** Because the characteristic polynomial of **A** is $p(z) = (z 1)^2$, one sees that $\mu = 1$ and $\delta = 0$. Because

$$\mathbf{A} - \mathbf{I} = \begin{pmatrix} 2 & -4 \\ 1 & -2 \end{pmatrix} \,,$$

we see that the eigenvectors associated with 1 have the form

$$\alpha \begin{pmatrix} 2\\ 1 \end{pmatrix}$$
 for some $\alpha \neq 0$.

Because $\mu = 1 > 0$, $\delta = 0$, and $a_{21} > 0$ the phase portrait is a *counterclockwise* twist source. The origin is thereby unstable. The phase portrait should show there is one trajectory that emerges from the origin on each side of the line y = x/2. Every other trajectory emerges from the origin with a clockwise twist.

(b) Solution. Because the characteristic polynomial of **A** is $p(z) = z^2 + 16$, one sees that $\mu = 0$ and $\delta = -16$. There are no real eigenpairs. Because $\mu = 0$, $\delta = -16 < 0$, and $a_{21} > 0$ the phase portrait is a *counterclockwise center*. The origin is thereby *stable*. The phase portrait should indicate a family of counterclockwise elliptical trajectories that go around the origin.

(c) **Solution.** Because the characteristic polynomial of **A** is $p(z) = (z - 3)^2 + 16$, one sees that $\mu = 3$ and $\delta = -16$. There are no real eigenpairs. Because $\mu = 3$, $\delta = -16 < 0$, and $a_{21} < 0$ the phase portrait is a *clockwise spiral source*. The origin is thereby *unstable*. The phase portrait should indicate a family of clockwise spiral trajectories that emerge from the origin.

(13) Compute
$$e^{t\mathbf{A}}$$
 for $\mathbf{A} = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix}$.

Solution. The characteristic polynomial of A is given by

$$p(z) = z^{2} - \operatorname{tr}(\mathbf{A})z + \det(\mathbf{A}) = z^{2} - 2z - 3 = (z - 1)^{2} - 4$$

The eigenvalues of **A** are the roots of this polynomial, which are 1 ± 2 . One then has

$$e^{t\mathbf{A}} = e^{t} \left[\mathbf{I} \cosh(2t) + (\mathbf{A} - \mathbf{I}) \frac{\sinh(2t)}{2} \right]$$
$$= e^{t} \left[\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cosh(2t) + \begin{pmatrix} 0 & 4 \\ 1 & 0 \end{pmatrix} \frac{\sinh(2t)}{2} \right]$$
$$= e^{t} \begin{pmatrix} \cosh(2t) & 2\sinh(2t) \\ \frac{1}{2}\sinh(2t) & \cosh(2t) \end{pmatrix}.$$

(14) Consider the system

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y+1 \\ 4x-x^2 \end{pmatrix} \,.$$

(a) Find all of its stationary points.

Solution. Stationary points satisfy

$$0 = y + 1, 0 = 4x - x^{2} = x(4 - x).$$

The top equation shows that y = -1 while the bottom equation shows that either x = 0 or x = 4. The stationary points of the system are therefore

$$(0,-1), (4,-1).$$

(b) Find a nonconstant function H(x, y) such that every trajectory of the system satisfies H(x, y) = c for some constant c.

Solution. The associated first-order equation is

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4x - x^2}{y + 1}$$

This equation is separable, so can be integrated as

$$\int y + 1 \,\mathrm{d}y = \int 4x - x^2 \,\mathrm{d}x \,,$$

whereby you find that

$$\frac{1}{2}(y+1)^2 = 2x^2 - \frac{1}{3}x^3 + c$$
.

You can thereby set

$$H(x,y) = \frac{1}{2}(y+1)^2 - 2x^2 + \frac{1}{3}x^3$$

Alternative Solution. An alternative approach is to notice that

$$\partial_x f(x,y) + \partial_y g(x,y) = \partial_x (y+1) + \partial_y (4x - x^2) = 0$$

The system is therefore Hamiltonian with H(x, y) such that

$$\partial_y H(x,y) = y+1$$
, $-\partial_x H(x,y) = 4x - x^2$.

Integrating the first equation above yields $H(x, y) = \frac{1}{2}(y+1)^2 + h(x)$. Substituting this into the second equation gives

$$-h'(x) = 4x - x^2.$$

Integrating this equation yields $h(x) = -2x^2 + \frac{1}{3}x^3$, whereby

$$H(x,y) = \frac{1}{2}(y+1)^2 - 2x^2 + \frac{1}{3}x^3.$$

(c) Sketch a phase portrait of the system. Indicate its stationary points and some typical trajectories.

Solution. Solving H(x, y) = c for y, you see that trajectories lie on the curves

$$y = -1 \pm \sqrt{2(c + 2x^2 - \frac{1}{3}x^3)},$$

wherever $c + 2x^2 - \frac{1}{3}x^3 \ge 0$. Each cubic in the family $p_c(x) = c + 2x^2 - \frac{1}{3}x^3$ has a local minimum at x = 0 with value $p_c(0) = c$ and a local maximum at x = 4with value $p_c(4) = c + 2 \cdot 4^2 - \frac{1}{3} \cdot 4^3 = c + (2 - \frac{4}{3})4^2 = c + \frac{2}{3} \cdot 16 = c + \frac{32}{3}$. On the side, sketch five of these cubics for $c < -\frac{32}{3}$, $c = -\frac{32}{3}$, $-\frac{32}{3} < c < 0$, c = 0, and c > 0. You can see those points x for which each of these cubics $p_c(x)$ is nonnegative. A phase portrait is obtained by first sketching $y = -1 \pm \sqrt{2p_c(x)}$ over those points x for which each $p_c(x)$ is nonnegative, and then adding arrows to indicate the direction of the trajectories. The arrows go to the "right" for y > -1 and to the "left" for y < -1. This will be illustrated during the review. The curves $y = -1 \pm \sqrt{2p_c(x)}$ will hit the stationary point (0, -1) when c = 0. This point will be a saddle, and therefore unstable. The stationary point (4, -1)is a isolated point on $y = -1 \pm \sqrt{2p_c(x)}$ with $c = -\frac{32}{3}$. This point will be a center point, and therefore stable.

Remark. You can sketch a phase portrait with MATLAB as follows. The values of H(x, y) at the stationary points (0, -1) and (4, -1) are

$$H(0,-1) = \frac{1}{2}(-1+1)^2 - 2 \cdot 0^2 + \frac{1}{3}0^3 = 0,$$

$$H(4,-1) = \frac{1}{2}(-1+1)^2 - 2 \cdot 4^2 + \frac{1}{3}4^3 = (-2+\frac{4}{3})4^2 = \frac{2}{3} \cdot 16 = -\frac{32}{3},$$

You should then pick three values c_1 , c_3 , and c_5 such that $c_1 < -\frac{32}{3} < c_3 < 0 < c_5$ and use "contour" to plot the five level sets

$$\begin{split} H(x,y) &= -\frac{32}{3}, \qquad H(x,y) = 0, \\ H(x,y) &= c_1, \quad H(x,y) = c_3, \quad H(x,y) = c_5. \end{split}$$

(d) Identify each stationary point as being either stable or unstable.

Solution. As indicated above, a correct phase portrait will give you the answer to this part. However, you can also get the answer without the phase portait as follows. The Hessian matrix $\mathbf{H}(x, y)$ of second partial derivatives is

$$\mathbf{H}(x,y) = \begin{pmatrix} \partial_{xx}H(x,y) & \partial_{xy}H(x,y) \\ \partial_{yx}H(x,y) & \partial_{yy}H(x,y) \end{pmatrix} = \begin{pmatrix} -4+2x & 0 \\ 0 & 1 \end{pmatrix}.$$

Evaluating this at the stationary points yields

$$\mathbf{H}(0,-1) = \begin{pmatrix} -4 & 0 \\ 0 & 1 \end{pmatrix}, \qquad \mathbf{H}(4,-1) = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}.$$

Because the matrix $\mathbf{H}(0, -1)$ is diagonal, you can easily see that its eigenvalues are -4 and 1. Because these have different signs, the stationary point (0, -1)is a saddle and is therefore unstable. Similarly, because the matrix $\mathbf{H}(4, -1)$ is diagonal, you can easily see that its eigenvalues are 4 and 1. Because these have the same sign, the stationary point (4, -1) is a center an is therefore stable.

A Short Table of Laplace Transforms

$$\begin{split} \mathcal{L}[t^n](s) &= \frac{n!}{s^{n+1}} & \text{for } s > 0 \,. \\ \mathcal{L}[\cos(bt)](s) &= \frac{s}{s^2 + b^2} & \text{for } s > 0 \,. \\ \mathcal{L}[\sin(bt)](s) &= \frac{b}{s^2 + b^2} & \text{for } s > 0 \,. \\ \mathcal{L}[t^n f(t)](s) &= (-1)^n F^{(n)}(s) & \text{where } F(s) = \mathcal{L}[f(t)](s) \,. \\ \mathcal{L}[e^{at} f(t)](s) &= F(s-a) & \text{where } F(s) = \mathcal{L}[f(t)](s) \,. \\ \mathcal{L}[u(t-c)f(t-c)](s) &= e^{-cs}F(s) & \text{where } F(s) = \mathcal{L}[f(t)](s) \,. \\ \end{split}$$