Sample Problems for Third In-Class Exam Math 246, Spring 2008, Professor David Levermore

(1) Compute the Laplace transform of $f(t)=t e^{3 t}$ from its definition.

Solution. The definition of Laplace transform gives

$$
\mathcal{L}[f](s)=\lim _{T \rightarrow \infty} \int_{0}^{T} e^{-s t} t e^{3 t} \mathrm{~d} t=\lim _{T \rightarrow \infty} \int_{0}^{T} t e^{(3-s) t} \mathrm{~d} t
$$

This limit diverges to $+\infty$ for $s \leq 3$ because in that case

$$
\int_{0}^{T} t e^{(3-s) t} \mathrm{~d} t \geq \int_{0}^{T} t \mathrm{~d} t=\frac{T^{2}}{2}
$$

which clearly diverges to $+\infty$ as $T \rightarrow \infty$.
For $s>3$ an integration by parts shows that

$$
\begin{aligned}
\int_{0}^{T} t e^{(3-s) t} \mathrm{~d} t & =\left.t \frac{e^{(3-s) t}}{3-s}\right|_{0} ^{T}-\int_{0}^{T} \frac{e^{(3-s) t}}{3-s} \mathrm{~d} t \\
& =\left.\left(t \frac{e^{(3-s) t}}{3-s}-\frac{e^{(3-s) t}}{(3-s)^{2}}\right)\right|_{0} ^{T} \\
& =\left(T \frac{e^{(3-s) T}}{3-s}-\frac{e^{(3-s) T}}{(3-s)^{2}}\right)+\frac{1}{(3-s)^{2}}
\end{aligned}
$$

Hence, for $s>3$ one has that

$$
\begin{aligned}
\mathcal{L}[f](s) & =\lim _{T \rightarrow \infty}\left[\left(T \frac{e^{(3-s) T}}{3-s}-\frac{e^{(3-s) T}}{(3-s)^{2}}\right)+\frac{1}{(3-s)^{2}}\right] \\
& =\frac{1}{(3-s)^{2}}+\lim _{T \rightarrow \infty}\left(T \frac{e^{(3-s) T}}{3-s}-\frac{e^{(3-s) T}}{(3-s)^{2}}\right) \\
& =\frac{1}{(3-s)^{2}} .
\end{aligned}
$$

(2) Find the Laplace transform $Y(s)$ of the solution $y(t)$ of the initial-value problem

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} t}+13 y=f(t), \quad y(0)=4, \quad y^{\prime}(0)=1
$$

where

$$
f(t)= \begin{cases}\cos (t) & \text { for } 0 \leq t<2 \pi \\ t-2 \pi & \text { for } t \geq 2 \pi\end{cases}
$$

You may refer to the table on the last page. DO NOT take the inverse Laplace transform to find $y(t)$, just solve for $Y(s)$!
Solution. The Laplace transform of the initial-value problem is

$$
\mathcal{L}\left[y^{\prime \prime}\right](s)+4 \mathcal{L}\left[y^{\prime}\right](s)+13 \mathcal{L}[y](s)=\mathcal{L}[f](s)
$$

where

$$
\begin{aligned}
\mathcal{L}[y](s) & =Y(s) \\
\mathcal{L}\left[y^{\prime}\right](s) & =s Y(s)-y(0)=s Y(s)-4 \\
\mathcal{L}\left[y^{\prime \prime}\right](s) & =s^{2} Y(s)-s y(0)-y^{\prime}(0)=s^{2} Y(s)-4 s-1
\end{aligned}
$$

To compute $\mathcal{L}[f](s)$, first write f as

$$
\begin{aligned}
f(t) & =(1-u(t-2 \pi)) \cos (t)+u(t-2 \pi)(t-2 \pi) \\
& =\cos (t)-u(t-2 \pi) \cos (t)+u(t-2 \pi)(t-2 \pi) \\
& =\cos (t)-u(t-2 \pi) \cos (t-2 \pi)+u(t-2 \pi)(t-2 \pi) .
\end{aligned}
$$

Referring to the table on the last page, item 6 with $c=2 \pi$, item 2 with $b=1$, and item 1 with $n=1$ then show that

$$
\begin{aligned}
\mathcal{L}[f](s) & =\mathcal{L}[\cos (t)](s)-\mathcal{L}[u(t-2 \pi) \cos (t-2 \pi)](s)+\mathcal{L}[u(t-2 \pi)(t-2 \pi)](s) \\
& =\mathcal{L}[\cos (t)](s)-e^{-2 \pi s} \mathcal{L}[\cos (t)](s)+e^{-2 \pi s} \mathcal{L}[t](s) \\
& =\left(1-e^{-2 \pi s}\right) \frac{s}{s^{2}+1}+e^{-2 \pi s} \frac{1}{s^{2}}
\end{aligned}
$$

The Laplace transform of the initial-value problem then becomes

$$
\left(s^{2} Y(s)-4 s-1\right)+4(s Y(s)-4)+13 Y(s)=\left(1-e^{-2 \pi s}\right) \frac{s}{s^{2}+1}+e^{-2 \pi s} \frac{1}{s^{2}}
$$

which becomes

$$
\left(s^{2}+4 s+13\right) Y(s)-4 s-1-16=\left(1-e^{-2 \pi s}\right) \frac{s}{s^{2}+1}+e^{-2 \pi s} \frac{1}{s^{2}}
$$

Hence, $Y(s)$ is given by

$$
Y(s)=\frac{1}{s^{2}+4 s+13}\left(4 s+17+\left(1-e^{-2 \pi s}\right) \frac{s}{s^{2}+1}+e^{-2 \pi s} \frac{1}{s^{2}}\right) .
$$

(3) Find the inverse Laplace transforms of the following functions. You may refer to the table on the last page.
(a) $F(s)=\frac{2}{(s+5)^{2}}$,

Solution. Referring to the table on the last page, item 1 with $n=1$ gives $\mathcal{L}[t](s)=1 / s^{2}$. Item 4 with $a=-5$ and $f(t)=t$ then gives

$$
\mathcal{L}\left[e^{-5 t} t\right](s)=\frac{1}{(s+5)^{2}}
$$

Multiplying this by 2 yields

$$
\mathcal{L}\left[2 e^{-5 t} t\right](s)=\frac{2}{(s+5)^{2}}
$$

You therefore conclude that

$$
\mathcal{L}^{-1}\left[\frac{2}{(s+5)^{2}}\right](t)=2 e^{-5 t} t
$$

(b) $F(s)=\frac{3 s}{s^{2}-s-6}$,

Solution. The denominator factors as $(s-3)(s+2)$, so the partial fraction decomposition is

$$
\frac{3 s}{s^{2}-s-6}=\frac{3 s}{(s-3)(s+2)}=\frac{\frac{9}{5}}{s-3}+\frac{\frac{6}{5}}{s+2} .
$$

Referring to the table on the last page, item 1 with $n=0$ gives $\mathcal{L}[1](s)=1 / s$. Item 5 with $a=3$ and $f(t)=1$, and with $a=-2$ and $f(t)=1$, then gives

$$
\mathcal{L}\left[e^{3 t}\right](s)=\frac{1}{s-3}, \quad \mathcal{L}\left[e^{-2 t}\right](s)=\frac{1}{s+2}
$$

whereby

$$
\frac{3 s}{s^{2}-s-6}=\frac{9}{5} \mathcal{L}\left[e^{3 t}\right](s)+\frac{6}{5} \mathcal{L}\left[e^{-2 t}\right](s)=\mathcal{L}\left[\frac{9}{5} e^{3 t}+\frac{6}{5} e^{-2 t}\right](s)
$$

You therefore conclude that

$$
\mathcal{L}^{-1}\left[\frac{3 s}{s^{2}-s-6}\right](t)=\frac{9}{5} e^{3 t}+\frac{6}{5} e^{-2 t} .
$$

(c) $F(s)=\frac{(s-2) e^{-3 s}}{s^{2}-4 s+5}$.

Solution. Complete the square in the denominator to get $(s-2)^{2}+1$. Referring to the table on the last page, item 2 with $b=1$ gives

$$
\mathcal{L}[\cos (t)](s)=\frac{s}{s^{2}+1} .
$$

Item 5 with $a=2$ and $f(t)=\cos (t)$ then gives

$$
\mathcal{L}\left[e^{2 t} \cos (t)\right](s)=\frac{s-2}{(s-2)^{2}+1} .
$$

Item 6 with $c=3$ and $f(t)=e^{2 t} \cos (t)$ then gives

$$
\mathcal{L}\left[u(t-3) e^{2(t-3)} \cos (t-3)\right](s)=e^{-3 s} \frac{s-2}{(s-2)^{2}+1} .
$$

You therefore conclude that

$$
\mathcal{L}^{-1}\left[e^{-3 s} \frac{s-2}{s^{2}-4 s+5}\right](t)=u(t-3) e^{2(t-3)} \cos (t-3) .
$$

(4) Consider the matrices

$$
\mathbf{A}=\left(\begin{array}{cc}
-i 2 & 1+i \\
2+i & -4
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ll}
7 & 6 \\
8 & 7
\end{array}\right) .
$$

Compute the matrices
(a) \mathbf{A}^{T},

Solution. The transpose of \mathbf{A} is

$$
\mathbf{A}^{T}=\left(\begin{array}{cc}
-i 2 & 2+i \\
1+i & -4
\end{array}\right)
$$

(b) $\overline{\mathbf{A}}$,

Solution. The conjugate of \mathbf{A} is

$$
\overline{\mathbf{A}}=\left(\begin{array}{cc}
i 2 & 1-i \\
2-i & -4
\end{array}\right)
$$

(c) \mathbf{A}^{*},

Solution. The adjoint of \mathbf{A} is

$$
\mathbf{A}^{*}=\left(\begin{array}{cc}
i 2 & 2-i \\
1-i & -4
\end{array}\right)
$$

(d) $5 \mathbf{A}-\mathbf{B}$,

Solution. The difference of $5 \mathbf{A}$ and \mathbf{B} is given by

$$
5 \mathbf{A}-\mathbf{B}=\left(\begin{array}{cc}
-i 10 & 5+i 5 \\
10+i 5 & -20
\end{array}\right)-\left(\begin{array}{cc}
7 & 6 \\
8 & 7
\end{array}\right)=\left(\begin{array}{cc}
-7-i 10 & -1+i 5 \\
2+i 5 & -27
\end{array}\right)
$$

(e) $\mathbf{A B}$,

Solution. The product of \mathbf{A} and \mathbf{B} is given by

$$
\begin{aligned}
\mathbf{A B} & =\left(\begin{array}{cc}
-i 2 & 1+i \\
2+i & -4
\end{array}\right)\left(\begin{array}{ll}
7 & 6 \\
8 & 7
\end{array}\right) \\
& =\left(\begin{array}{cc}
-i 2 \cdot 7+(1+i) \cdot 8 & -i 2 \cdot 6+(1+i) \cdot 7 \\
(2+i) \cdot 7-4 \cdot 8 & (2+i) \cdot 6-4 \cdot 7
\end{array}\right) \\
& =\left(\begin{array}{cc}
8-i 6 & 7-i 5 \\
-18+i 7 & -16+i 6
\end{array}\right) .
\end{aligned}
$$

(f) \mathbf{B}^{-1}

Solution. Observe that it is clear that \mathbf{B} has an inverse because

$$
\operatorname{det}(\mathbf{B})=\operatorname{det}\left(\begin{array}{ll}
7 & 6 \\
8 & 7
\end{array}\right)=7 \cdot 7-6 \cdot 8=49-48=1
$$

The inverse of \mathbf{B} is given by

$$
\mathbf{B}^{-1}=\frac{1}{\operatorname{det}(\mathbf{B})}\left(\begin{array}{cc}
7 & -6 \\
-8 & 7
\end{array}\right)=\left(\begin{array}{cc}
7 & -6 \\
-8 & 7
\end{array}\right) .
$$

(5) Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
3 & 3 \\
4 & -1
\end{array}\right)
$$

(a) Find all the eigenvalues of \mathbf{A}.

Solution. The characteristic polynomial of \mathbf{A} is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-2 z-15=(z-1)^{2}-16 .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are 1 ± 4, or simply -3 and 5 .
(b) For each eigenvalue of \mathbf{A} find all of its eigenvectors.

Solution (using the Cayley-Hamilton method from notes). One has

$$
\mathbf{A}+3 \mathbf{I}=\left(\begin{array}{ll}
6 & 3 \\
4 & 2
\end{array}\right), \quad \mathbf{A}-5 \mathbf{I}=\left(\begin{array}{cc}
-2 & 3 \\
4 & -6
\end{array}\right)
$$

Every nonzero column of $\mathbf{A}-5 \mathbf{I}$ has the form

$$
\alpha_{1}\binom{1}{-2} \quad \text { for some } \alpha_{1} \neq 0
$$

These are all the eigenvectors associated with -3 . Similarly, every nonzero column of $\mathbf{A}+3 \mathbf{I}$ has the form

$$
\alpha_{2}\binom{3}{2} \text { for some } \alpha_{2} \neq 0 .
$$

These are all the eigenvectors associated with 5.
(c) Diagonalize \mathbf{A}.

Solution. If you use the eigenpairs

$$
\left(-3,\binom{1}{-2}\right), \quad\left(5,\binom{3}{2}\right)
$$

then set

$$
\mathbf{V}=\left(\begin{array}{cc}
1 & 3 \\
-2 & 2
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{cc}
-3 & 0 \\
0 & 5
\end{array}\right)
$$

Because $\operatorname{det}(\mathbf{V})=1 \cdot 2-(-2) \cdot 3=2+6=8$, you see that

$$
\mathbf{V}^{-1}=\frac{1}{8}\left(\begin{array}{cc}
2 & -3 \\
2 & 1
\end{array}\right)
$$

You conclude that \mathbf{A} has the diagonalization

$$
\mathbf{A}=\mathbf{V D V}^{-1}=\left(\begin{array}{cc}
1 & 3 \\
-2 & 2
\end{array}\right)\left(\begin{array}{cc}
-3 & 0 \\
0 & 5
\end{array}\right) \frac{1}{8}\left(\begin{array}{cc}
2 & -3 \\
2 & 1
\end{array}\right)
$$

You do not have to multiply these matrices out. Had you started with different eigenpairs, the steps would be the same as above but you would obtain a different diagonalization.
(6) Given that 1 is an eigenvalue of the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & -1 & 1 \\
1 & 1 & -1 \\
0 & -1 & 3
\end{array}\right)
$$

find all the eigenvectors of \mathbf{A} associated with 1.
Solution. The eigenvectors of \mathbf{A} associated with 1 are all nonzero vectors \mathbf{v} that satisfy $\mathbf{A v}=\mathbf{v}$. Equivalently, they are all nonzero vectors \mathbf{v} that satisfy $(\mathbf{A}-\mathbf{I}) \mathbf{v}=0$, which is

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -1 \\
0 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=0 .
$$

The entries of \mathbf{v} thereby satisfy the homogeneous linear algebraic system

$$
\begin{aligned}
v_{1}-v_{2}+v_{3} & =0, \\
v_{1}-v_{3} & =0, \\
-v_{2}+2 v_{3} & =0 .
\end{aligned}
$$

You may solve this system either by elimination or by row reduction. By either method you find that its general solution is

$$
v_{1}=\alpha, \quad v_{2}=2 \alpha, \quad v_{3}=\alpha, \quad \text { for any constant } \alpha .
$$

The eigenvectors of \mathbf{A} associated with 1 therefore have the form

$$
\alpha\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \text { for any nonzero constant } \alpha \text {. }
$$

(7) Transform the equation $\frac{\mathrm{d}^{3} u}{\mathrm{~d} t^{3}}+t^{2} \frac{\mathrm{~d} u}{\mathrm{~d} t}-3 u=\sinh (2 t)$ into a first-order system of ordinary differential equations.
Solution: Because the equation is third order, the first order system must have dimension three. The simplest such first order system is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{2} \\
x_{3} \\
\sinh (2 t)+3 x_{1}-t^{2} x_{2}
\end{array}\right), \quad \text { where } \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
u \\
u^{\prime} \\
u^{\prime \prime}
\end{array}\right) .
$$

(8) Consider the vector-valued functions $\mathbf{x}_{1}(t)=\binom{t^{2}+3}{2 t}, \mathbf{x}_{2}(t)=\binom{t^{3}}{3 t^{2}}$.
(a) Compute the Wronskian $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.

Solution.

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\operatorname{det}\left(\begin{array}{cc}
t^{2}+3 & t^{3} \\
2 t & 3 t^{2}
\end{array}\right)=3 t^{4}+9 t^{2}-2 t^{4}=t^{4}+9 t^{2}
$$

(b) Find $\mathbf{A}(t)$ such that $\mathbf{x}_{1}, \mathbf{x}_{2}$ is a fundamental set of solutions to $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A}(t) \mathbf{x}$ wherever $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$.
Solution. Let $\boldsymbol{\Psi}(t)=\left(\begin{array}{cc}t^{2}+3 & t^{3} \\ 2 t & 3 t^{2}\end{array}\right)$. Because $\frac{\boldsymbol{\Psi}(t)}{\mathrm{d} t}=\mathbf{A}(t) \boldsymbol{\Psi}(t)$, one has

$$
\begin{aligned}
\mathbf{A}(t) & =\frac{\boldsymbol{\Psi}(t)}{\mathrm{d} t} \boldsymbol{\Psi}(t)^{-1}=\left(\begin{array}{cc}
2 t & 3 t^{2} \\
2 & 6 t
\end{array}\right)\left(\begin{array}{cc}
t^{2}+3 & t^{3} \\
2 t & 3 t^{2}
\end{array}\right)^{-1} \\
& =\frac{1}{t^{4}+9 t^{2}}\left(\begin{array}{cc}
2 t & 3 t^{2} \\
2 & 6 t
\end{array}\right)\left(\begin{array}{cc}
3 t^{2} & -t^{3} \\
-2 t & t^{2}+3
\end{array}\right)=\frac{1}{t^{4}+9 t^{2}}\left(\begin{array}{cc}
0 & t^{4}+9 t^{2} \\
-6 t^{2} & 4 t^{3}+18 t
\end{array}\right)
\end{aligned}
$$

(9) Consider two interconnected tanks filled with brine (salt water). The first tank contains 100 liters and the second contains 50 liters. Brine flows with a concentration of 2 grams of salt per liter flows into the first tank at a rate of 3 liters per hour. Well stirred brine flows from the first tank to the second at a rate of 5 liters per hour, from the second to the first at a rate of 2 liters per hour, and from the second into a drain at a rate of 3 liters per hour. At $t=0$ there are 5 grams of salt in the first tank and 20 grams in the second. Give an initial-value problem that governs the amount of salt in each tank as a function of time.

Solution: The rates work out so there will always be 100 liters of brine in the first tank and 50 liters in the second. Let $S_{1}(t)$ be the grams of salt in the first tank and $S_{2}(t)$ be the grams of salt in the second tank. These are governed by the initial-value problem

$$
\begin{array}{ll}
\frac{\mathrm{d} S_{1}}{\mathrm{~d} t}=2 \cdot 3+\frac{S_{2}}{50} 2-\frac{S_{1}}{100} 5, & S_{1}(0)=2 \\
\frac{\mathrm{~d} S_{2}}{\mathrm{~d} t}=\frac{S_{1}}{100} 5-\frac{S_{2}}{50} 2-\frac{S_{2}}{50} 3, & S_{2}(0)=20
\end{array}
$$

You could leave the answer in the above form. It can however be simplified to

$$
\begin{array}{ll}
\frac{\mathrm{d} S_{1}}{\mathrm{~d} t}=6+\frac{S_{2}}{25}-\frac{S_{1}}{20}, & S_{1}(0)=2 \\
\frac{\mathrm{~d} S_{2}}{\mathrm{~d} t}=\frac{S_{1}}{20}-\frac{S_{2}}{10}, & S_{2}(0)=20
\end{array}
$$

(10) Solve each of the following initial-value problems.
(a) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}2 & 2 \\ 5 & -1\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{1}{-1}$.

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{cc}2 & 2 \\ 5 & -1\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-z-12=(z+3)(z-4)
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are -3 and 4. These have the form $\frac{1}{2} \pm \frac{7}{2}$. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{\frac{1}{2} t}\left[\mathbf{I} \cosh \left(\frac{7}{2} t\right)+\left(\mathbf{A}-\frac{1}{2} \mathbf{I}\right) \frac{\sinh \left(\frac{7}{2} t\right)}{\frac{7}{2}}\right] \\
& =e^{\frac{1}{2} t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cosh \left(\frac{7}{2} t\right)+\left(\begin{array}{cc}
\frac{3}{2} & 2 \\
5 & -\frac{3}{2}
\end{array}\right) \frac{\sinh \left(\frac{7}{2} t\right)}{\frac{7}{2}}\right] \\
& =e^{\frac{1}{2} t}\left(\begin{array}{cc}
\cosh \left(\frac{7}{2} t\right)+\frac{3}{7} \sinh \left(\frac{7}{2} t\right) & \cosh \left(\frac{7}{2} t\right)-\frac{3}{7} \sinh \left(\frac{7}{2} t\right) \\
\frac{10}{7} \sinh \left(\frac{7}{2} t\right)
\end{array}\right) .
\end{aligned}
$$

The solution of the initial-value problem is therefore

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{x(0)}{y(0)}=e^{t \mathbf{A}}\binom{1}{-1} \\
& =e^{\frac{1}{2} t}\left(\begin{array}{cc}
\cosh \left(\frac{7}{2} t\right)+\frac{3}{7} \sinh \left(\frac{7}{2} t\right) & \frac{4}{7} \sinh \left(\frac{7}{2} t\right) \\
\frac{10}{7} \sinh \left(\frac{7}{2} t\right) & \cosh \left(\frac{7}{2} t\right)-\frac{3}{7} \sinh \left(\frac{7}{2} t\right)
\end{array}\right)\binom{1}{-1} \\
& =e^{\frac{1}{2} t}\binom{\cosh \left(\frac{7}{2} t\right)-\frac{1}{7} \sinh \left(\frac{7}{2} t\right)}{-\cosh \left(\frac{7}{2} t\right)+\frac{13}{7} \sinh \left(\frac{7}{2} t\right)} .
\end{aligned}
$$

(b) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{1}{1}$.

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-2 z+5=(z-1)^{2}+4 .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are $1 \pm i 2$. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{t}\left[\mathbf{I} \cos (2 t)+(\mathbf{A}-\mathbf{I}) \frac{\sin (2 t)}{2}\right] \\
& =e^{t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos (2 t)+\left(\begin{array}{cc}
0 & 1 \\
-4 & 0
\end{array}\right) \frac{\sin (2 t)}{2}\right] \\
& =e^{t}\left(\begin{array}{cc}
\cos (2 t) & \frac{1}{2} \sin (2 t) \\
-2 \sin (2 t) & \cos (2 t)
\end{array}\right) .
\end{aligned}
$$

The solution of the initial-value problem is therefore

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{x(0)}{y(0)}=e^{t \mathbf{A}}\binom{1}{1} \\
& =e^{t}\left(\begin{array}{cc}
\cos (2 t) & \frac{1}{2} \sin (2 t) \\
-2 \sin (2 t) & \cos (2 t)
\end{array}\right)\binom{1}{1} \\
& =e^{t}\binom{\cos (2 t)+\frac{1}{2} \sin (2 t)}{-2 \sin (2 t)+\cos (2 t)} .
\end{aligned}
$$

(11) Find a general solution for each of the following systems.
(a) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)\binom{x}{y}$

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-2 z+1=(z-1)^{2}
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which is 1 , a double root. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{t}[\mathbf{I}+(\mathbf{A}-\mathbf{I}) t]=e^{t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right) t\right] \\
& =e^{t}\left(\begin{array}{cc}
1+2 t & -4 t \\
t & 1-2 t
\end{array}\right) .
\end{aligned}
$$

A general solution is therefore given by

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{c_{1}}{c_{2}}=e^{t}\left(\begin{array}{cc}
1+2 t & -4 t \\
t & 1-2 t
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1} e^{t}\binom{1+2 t}{t}+c_{2} e^{t}\binom{-4 t}{1-2 t} .
\end{aligned}
$$

(b) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{ll}2 & -5 \\ 4 & -2\end{array}\right)\binom{x}{y}$

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{ll}2 & -5 \\ 4 & -2\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}+16 .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are $\pm i 4$. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =\left[\mathbf{I} \cos (4 t)+\mathbf{A} \frac{\sin (4 t)}{4}\right]=\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos (4 t)+\left(\begin{array}{ll}
2 & -5 \\
4 & -2
\end{array}\right) \frac{\sin (4 t)}{4}\right] \\
& =\left(\begin{array}{cc}
\cos (4 t)+\frac{1}{2} \sin (4 t) \\
\sin (4 t) & -\frac{5}{4} \sin (4 t) \\
\cos (4 t)-\frac{1}{2} \sin (4 t)
\end{array}\right) .
\end{aligned}
$$

A general solution is therefore given by

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{c_{1}}{c_{2}}=\left(\begin{array}{cc}
\cos (4 t)+\frac{1}{2} \sin (4 t) & -\frac{5}{4} \sin (4 t) \\
\sin (4 t) & \cos (4 t)-\frac{1}{2} \sin (4 t)
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1}\binom{\cos (4 t)+\frac{1}{2} \sin (4 t)}{\sin (4 t)}+c_{2}\binom{-\frac{5}{4} \sin (4 t)}{\cos (4 t)-\frac{1}{2} \sin (4 t)} .
\end{aligned}
$$

(c) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}5 & 4 \\ -5 & 1\end{array}\right)\binom{x}{y}$

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{cc}5 & 4 \\ -5 & 1\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-6 z+25=(z-3)^{2}+16 .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are $3 \pm i 4$. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{3 t}\left[\mathbf{I} \cos (4 t)+(\mathbf{A}-3 \mathbf{I}) \frac{\sin (4 t)}{4}\right] \\
& =e^{3 t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos (4 t)+\left(\begin{array}{cc}
2 & 4 \\
-5 & -2
\end{array}\right) \frac{\sin (4 t)}{4}\right] \\
& =e^{3 t}\left(\begin{array}{cc}
\cos (4 t)+\frac{1}{2} \sin (4 t) & \sin (4 t) \\
-\frac{5}{4} \sin (4 t) & \cos (4 t)-\frac{1}{2} \sin (4 t)
\end{array}\right) .
\end{aligned}
$$

A general solution is therefore given by

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{c_{1}}{c_{2}}=e^{3 t}\left(\begin{array}{cc}
\cos (4 t)+\frac{1}{2} \sin (4 t) & \sin (4 t) \\
-\frac{5}{4} \sin (4 t) & \cos (4 t)-\frac{1}{2} \sin (4 t)
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =c_{1} e^{3 t}\binom{\cos (4 t)+\frac{1}{2} \sin (4 t)}{-\frac{5}{4} \sin (4 t)}+c_{2} e^{3 t}\binom{\sin (4 t)}{\cos (4 t)-\frac{1}{2} \sin (4 t)}
\end{aligned}
$$

(12) Sketch a phase portrait for each of the systems in Problem 5. Indicate some typical trajectories.
(a) Solution. Because the characteristic polynomial of \mathbf{A} is $p(z)=(z-1)^{2}$, one sees that $\mu=1$ and $\delta=0$. Because

$$
\mathbf{A}-\mathbf{I}=\left(\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right)
$$

we see that the eigenvectors associated with 1 have the form

$$
\alpha\binom{2}{1} \quad \text { for some } \alpha \neq 0 .
$$

Because $\mu=1>0, \delta=0$, and $a_{21}>0$ the phase portrait is a counterclockwise twist source. The origin is thereby unstable. The phase portrait should show there is one trajectory that emerges from the origin on each side of the line $y=x / 2$. Every other trajectory emerges from the origin with a clockwise twist.
(b) Solution. Because the characteristic polynomial of \mathbf{A} is $p(z)=z^{2}+16$, one sees that $\mu=0$ and $\delta=-16$. There are no real eigenpairs. Because $\mu=0$, $\delta=-16<0$, and $a_{21}>0$ the phase portrait is a counterclockwise center. The origin is thereby stable. The phase portrait should indicate a family of counterclockwise elliptical trajectories that go around the origin.
(c) Solution. Because the characteristic polynomial of \mathbf{A} is $p(z)=(z-3)^{2}+16$, one sees that $\mu=3$ and $\delta=-16$. There are no real eigenpairs. Because $\mu=3, \delta=-16<0$, and $a_{21}<0$ the phase portrait is a clockwise spiral source. The origin is thereby unstable. The phase portrait should indicate a family of clockwise spiral trajectories that emerge from the origin.
(13) Compute $e^{t \mathbf{A}}$ for $\mathbf{A}=\left(\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right)$.

Solution. The characteristic polynomial of \mathbf{A} is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-2 z-3=(z-1)^{2}-4 .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are 1 ± 2. One then has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{t}\left[\mathbf{I} \cosh (2 t)+(\mathbf{A}-\mathbf{I}) \frac{\sinh (2 t)}{2}\right] \\
& =e^{t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cosh (2 t)+\left(\begin{array}{ll}
0 & 4 \\
1 & 0
\end{array}\right) \frac{\sinh (2 t)}{2}\right] \\
& =e^{t}\left(\begin{array}{cc}
\cosh (2 t) & 2 \sinh (2 t) \\
\frac{1}{2} \sinh (2 t) & \cosh (2 t)
\end{array}\right) .
\end{aligned}
$$

(14) Consider the system

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\binom{y+1}{4 x-x^{2}} .
$$

(a) Find all of its stationary points.

Solution. Stationary points satisfy

$$
\begin{aligned}
& 0=y+1 \\
& 0=4 x-x^{2}=x(4-x)
\end{aligned}
$$

The top equation shows that $y=-1$ while the bottom equation shows that either $x=0$ or $x=4$. The stationary points of the system are therefore

$$
(0,-1), \quad(4,-1)
$$

(b) Find a nonconstant function $H(x, y)$ such that every trajectory of the system satisfies $H(x, y)=c$ for some constant c.
Solution. The associated first-order equation is

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4 x-x^{2}}{y+1}
$$

This equation is separable, so can be integrated as

$$
\int y+1 \mathrm{~d} y=\int 4 x-x^{2} \mathrm{~d} x
$$

whereby you find that

$$
\frac{1}{2}(y+1)^{2}=2 x^{2}-\frac{1}{3} x^{3}+c .
$$

You can thereby set

$$
H(x, y)=\frac{1}{2}(y+1)^{2}-2 x^{2}+\frac{1}{3} x^{3} .
$$

Alternative Solution. An alternative approach is to notice that

$$
\partial_{x} f(x, y)+\partial_{y} g(x, y)=\partial_{x}(y+1)+\partial_{y}\left(4 x-x^{2}\right)=0 .
$$

The system is therefore Hamiltonian with $H(x, y)$ such that

$$
\partial_{y} H(x, y)=y+1, \quad-\partial_{x} H(x, y)=4 x-x^{2}
$$

Integrating the first equation above yields $H(x, y)=\frac{1}{2}(y+1)^{2}+h(x)$. Substituting this into the second equation gives

$$
-h^{\prime}(x)=4 x-x^{2} .
$$

Integrating this equation yields $h(x)=-2 x^{2}+\frac{1}{3} x^{3}$, whereby

$$
H(x, y)=\frac{1}{2}(y+1)^{2}-2 x^{2}+\frac{1}{3} x^{3} .
$$

(c) Sketch a phase portrait of the system. Indicate its stationary points and some typical trajectories.
Solution. Solving $H(x, y)=c$ for y, you see that trajectories lie on the curves

$$
y=-1 \pm \sqrt{2\left(c+2 x^{2}-\frac{1}{3} x^{3}\right)}
$$

wherever $c+2 x^{2}-\frac{1}{3} x^{3} \geq 0$. Each cubic in the family $p_{c}(x)=c+2 x^{2}-\frac{1}{3} x^{3}$ has a local minimum at $x=0$ with value $p_{c}(0)=c$ and a local maximum at $x=4$ with value $p_{c}(4)=c+2 \cdot 4^{2}-\frac{1}{3} \cdot 4^{3}=c+\left(2-\frac{4}{3}\right) 4^{2}=c+\frac{2}{3} \cdot 16=c+\frac{32}{3}$. On the side, sketch five of these cubics for $c<-\frac{32}{3}, c=-\frac{32}{3},-\frac{32}{3}<c<0, c=0$, and $c>0$. You can see those points x for which each of these cubics $p_{c}(x)$ is nonnegative. A phase portrait is obtained by first sketching $y=-1 \pm \sqrt{2 p_{c}(x)}$ over those points x for which each $p_{c}(x)$ is nonnegative, and then adding arrows to indicate the direction of the trajectories. The arrows go to the "right" for $y>-1$ and to the "left" for $y<-1$. This will be illustrated during the review.
The curves $y=-1 \pm \sqrt{2 p_{c}(x)}$ will hit the stationary point $(0,-1)$ when $c=0$. This point will be a saddle, and therefore unstable. The stationary point $(4,-1)$ is a isolated point on $y=-1 \pm \sqrt{2 p_{c}(x)}$ with $c=-\frac{32}{3}$. This point will be a center point, and therefore stable.
Remark. You can sketch a phase portrait with MATLAB as follows. The values of $H(x, y)$ at the stationary points $(0,-1)$ and $(4,-1)$ are

$$
\begin{aligned}
& H(0,-1)=\frac{1}{2}(-1+1)^{2}-2 \cdot 0^{2}+\frac{1}{3} 0^{3}=0, \\
& H(4,-1)=\frac{1}{2}(-1+1)^{2}-2 \cdot 4^{2}+\frac{1}{3} 4^{3}=\left(-2+\frac{4}{3}\right) 4^{2}=\frac{2}{3} \cdot 16=-\frac{32}{3},
\end{aligned}
$$

You should then pick three values c_{1}, c_{3}, and c_{5} such that $c_{1}<-\frac{32}{3}<c_{3}<0<c_{5}$ and use "contour" to plot the five level sets

$$
\begin{gathered}
H(x, y)=-\frac{32}{3}, \quad H(x, y)=0 \\
H(x, y)=c_{1}, \quad H(x, y)=c_{3}, \quad H(x, y)=c_{5}
\end{gathered}
$$

(d) Identify each stationary point as being either stable or unstable.

Solution. As indicated above, a correct phase portrait will give you the answer to this part. However, you can also get the answer without the phase portait as follows. The Hessian matrix $\mathbf{H}(x, y)$ of second partial derivatives is

$$
\mathbf{H}(x, y)=\left(\begin{array}{ll}
\partial_{x x} H(x, y) & \partial_{x y} H(x, y) \\
\partial_{y x} H(x, y) & \partial_{y y} H(x, y)
\end{array}\right)=\left(\begin{array}{cc}
-4+2 x & 0 \\
0 & 1
\end{array}\right) .
$$

Evaluating this at the stationary points yields

$$
\mathbf{H}(0,-1)=\left(\begin{array}{cc}
-4 & 0 \\
0 & 1
\end{array}\right), \quad \mathbf{H}(4,-1)=\left(\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right) .
$$

Because the matrix $\mathbf{H}(0,-1)$ is diagonal, you can easily see that its eigenvalues are -4 and 1 . Because these have different signs, the stationary point $(0,-1)$ is a saddle and is therefore unstable. Similarly, because the matrix $\mathbf{H}(4,-1)$ is diagonal, you can easily see that its eigenvalues are 4 and 1. Because these have the same sign, the stationary point $(4,-1)$ is a center an is therefore stable.

A Short Table of Laplace Transforms

$$
\begin{array}{rlrl}
\mathcal{L}\left[t^{n}\right](s) & =\frac{n!}{s^{n+1}} & & \text { for } s>0 . \\
\mathcal{L}[\cos (b t)](s) & =\frac{s}{s^{2}+b^{2}} & & \text { for } s>0 . \\
\mathcal{L}[\sin (b t)](s) & =\frac{b}{s^{2}+b^{2}} & & \text { for } s>0 . \\
\mathcal{L}\left[t^{n} f(t)\right](s) & =(-1)^{n} F^{(n)}(s) & & \text { where } F(s)=\mathcal{L}[f(t)](s) . \\
\mathcal{L}\left[e^{a t} f(t)\right](s) & =F(s-a) & & \text { where } F(s)=\mathcal{L}[f(t)](s) . \\
\mathcal{L}[u(t-c) f(t-c)](s) & =e^{-c s} F(s) & & \text { where } F(s)=\mathcal{L}[f(t)](s) \\
& & \text { and } u \text { is the unit step function } .
\end{array}
$$

