
Matrix Exponentials
Math 246, Fall 2008, Professor David Levermore

We now consider the homogeneous constant coefficient, vector-valued initial-value problem

(1)
dx

dt
= Ax , x(tI) = xI ,

where A is a constant n×n real matrix. A special fundamental matrix associated with this
problem is the solution Φ(t) of the matrix-valued initial-value problem

(2)
dΦ

dt
= AΦ , Φ(0) = I ,

where I is the n×n identity matrix. We can show that Φ(t) satisfies

(i) Φ(t + s) = Φ(t)Φ(s) for every t and s in R ,

(ii) Φ(t)Φ(−t) = I for every t in R .

Assertion (i) follows because both sides satisfy the matrix-valued initial-value problem

dΨ

dt
= AΨ , Ψ(0) = Φ(s) ,

and are therefore equal. Assertion (ii) follows by setting s = −t in assertion (i) and using
the fact Φ(0) = I. The fundamental matrix Φ(t) is therefore called the exponential of A
and is commonly denoted as either etA or exp(tA). It is easy to check that the solution of
the initial-value problem (1) is given by x(t) = e(t−tI )AxI .

The Taylor expansion of etA about t = 0 is

(3) etA =

∞
∑

k=0

1

k!
tkAk = I + tA +

1

2
t2A2 +

1

6
t3A3 +

1

24
t4A4 + · · · ,

where we define A0 = I. Recall that the Taylor expansion of eat is

eat =

∞
∑

k=0

1

k!
aktk = 1 + at +

1

2
a2t2 +

1

6
a3t3 +

1

24
a4t4 + · · · .

Motivated by this fact, the book defines etA by the infinite series (3).

Matrix KEY Identity. Given any polynomial p(z) = π0z
m + π1z

m−1 + · · · + πm−1z + πm

and any n×n matrix A we define the n×n matrix p(A) by

p(A) = π0A
m + π1A

m−1 + · · · + πm−1A + πmI .

Because for every nonnegative integer k one has

dk

dtk
etA = AketA ,

it follows from the definition of p(A) that

(4) p

(

d

dt

)

etA = p(A)etA .

This is the matrix version of the KEY identity. Just as the scalar KEY identity allowed
us to construct explicit solutions to higher-order linear differential equations with constant
coefficients, the matrix KEY identity allows us to construct explicit solutions to first-order
linear differential systems with a constant coefficient matrix.
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Computing the Matrix Exponential. Given any n×n matrix A, there are many ways to
compute eAt that are easier than evaluating the infinite series (3). The book gives a method
that is based on computing the eigenvectors and (sometimes) the generalized eigenvectors
of the matrix A. This method requires a different approach depending on whether the
eigenvalues of the real matrix A are real, complex conjugate, or have multiplicity greater
than one. These approaches are covered in Sections 7.5, 7.6, and 7.8, but these sections do
not cover all the possible cases that can arise. Here we will give a different method that
covers all possible cases with a single approach. Moreover, this method is generally much
faster to carry out than the book’s method when n is not too large.

This method begins by identifying a polynomial p(z) such that p(A) = 0. Such a polyno-
mial is said to annihilate A. The Cayley-Hamiltion Theorem states that one such polynomial
is the characteristic polynomial of A, which we define by

(5) pA(z) = det(Iz − A) .

This polyinomial has degree n. Because det(zI−A) = (−1)n det(A− zI), this definition of
pA(z) coincides with the book’s definition when n is even, and is its negative when n is odd.
Both conventions are common. We have chosen the convention that makes pA(z) monic.
What matters most about pA(z) is its roots and their multiplicity, which are the same for
both conventions. These roots are called the eigenvalues of A.

The Cayley-Hamiltion Theorem states that

(6) pA(A) = 0 .

We will not prove this for general n×n matrices. However, it is easy to verify for 2×2
matrices by a direct calculation. Consider the general 2×2 matrix

A =

(

a11 a12

a21 a22

)

.

Its characteristic polynomial is

pA(z) = det(Iz −A) = det

(

z − a11 −a12

−a21 z − a22

)

= (z − a11)(z − a22) − a21a12

= z2 − (a11 + a22)z + (a11a22 − a21a12)

= z2 − tr(A)z + det(A) ,

where tr(A) = a11 + a22 is the trace of A. Then a direct calculation shows that

pA(A) = A2 − (a11 + a22)A + (a11a22 − a21a12)I

=

(

a11 a12

a21 a22

)2

− (a11 + a22)

(

a11 a12

a21 a22

)

+ (a11a22 − a21a12)

(

1 0
0 1

)

=

(

a 2
11 + a12a21 (a11 + a22)a12

(a11 + a22)a21 a21a12 + a 2
22

)

−
(

(a11 + a22)a11 (a11 + a22)a12

(a11 + a22)a21 (a11 + a22)a22

)

+

(

a11a22 − a21a12 0
0 a11a22 − a21a12

)

= 0 ,

which verifies (6) for 2×2 matrices.
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By the above paragraph, you can always find a polynomial p(z) of degree m ≤ n that
annihilates A. For this polynomial, we see from the matrix KEY identity (4) that

p

(

d

dt

)

etA = p(A)etA = 0 .

This means that each entry of etA is a solution of the mth-order scalar homogeneous linear
differential equation with constant coefficients

(7) p

(

d

dt

)

y = 0 .

If y1(t), y1(t), · · · , ym(t) is a fundamental set of solutions to this equation then a general
solution of it is

y =
m

∑

j=1

cjyj(t) ,

where c1, c2, · · · , cm are arbitrary constants. It follows that etA must have the form

(8) etA =
m

∑

j=1

Cjyj(t) ,

where C1, C2, · · · , Cm are arbitrary n×n constant matrices.
The constant matrices C1, C2, · · · , Cm may be determined by taking derivatives of (8)

with respect to t and evaluating them at t = 0. The kth derivative of (8) evaluated at t = 0
gives

(9) Ak =

m
∑

j=1

Cjy
(k)
j (0) .

Because y1(t), y1(t), · · · , ym(t) is a fundamental set of solutions to (7), the constant matrices
C1, C2, · · · , Cm are determined by (9) for k = 0, 1, · · · , m − 1.

For example, if p(z) has m simple roots λ1, λ2, · · · , λm, then one can choose the funda-
mental set of solutions to (7) given by

yj(t) = eλjt , for j = 1, 2, · · · , m .

Then (8) becomes the system of m linear equations

(10) Ak =
m

∑

j=1

Cjλ
k
j , for k = 0, 1, · · · , m − 1 .

This system may be solved for the constant matrices C1, C2, · · · , Cm, and the result placed
into (8) to obtain

etA =
m

∑

j=1

Cje
λjt .

Example. Compute etA for

A =

(

3 2
2 3

)

.

Solution. Because A is 2×2, its characteristic polynomial is

p(z) = det(Iz − A) = z2 − tr(A)z + det(A) = z2 − 6z + 5 = (z − 1)(z − 5) .
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Its roots are 1 and 5. System (10) then becomes

I = C1 + C2 , A = C1 + 5C2 .

This system can be easily solved to find

C1 = 1
4
(5I− A) = 1

4

(

2 −2
−2 2

)

= 1
2

(

1 −1
−1 1

)

,

C2 = 1
4
(A − I) = 1

4

(

2 2
2 2

)

= 1
2

(

1 1
1 1

)

.

Formula (8) then yields

etA = C1e
t + C2e

5t = 1
2

(

et + e5t e5t − et

e5t − et et + e5t

)

.

Exponentials of Two-by-Two Matrices. Using the above approach we can easily derive
formulas for exponentials of the general 2×2 real matrix

A =

(

a11 a12

a21 a22

)

.

Because A is 2×2, its characteristic polynomial is

p(z) = det(Iz − A) = z2 − tr(A)z + det(A) .

Upon completing the square we see that

p(z) = (z − µ)2 − δ ,

where the mean µ and discriminant δ are given by

µ =
tr(A)

2
, δ =

tr(A)2 − 4 det(A)

4
.

There are three cases which are distinguished by the sign of δ.

• If δ > 0 then p(z) has the simple real roots µ − ν and µ + ν where ν =
√

δ. In this
case

(11) etA = Ieµt cosh(νt) + (A − µI)eµt sinh(νt)

ν
.

• If δ < 0 then p(z) has the complex conjugate roots µ− iν and µ+ iν where ν =
√
−δ.

In this case

(12) etA = Ieµt cos(νt) + (A − µI)eµt sin(νt)

ν
.

• If δ = 0 then p(z) has the double real root µ. In this case

(13) etA = Ieµt + (A− µI)eµtt .

Notice that (13) is the limiting case of both (11) and (12) as ν → 0.

Example. Compute etA for

A =

(

3 2
2 3

)

.

Solution. Because A is 2×2, its characteristic polynomial is

p(z) = det(Iz − A) = z2 − tr(A)z + det(A) = z2 − 6z + 5 = (z − 3)2 − 4 .
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It has the real roots 3 ± 2. By (11) with µ = 3 and ν = 2 we see that

etA = Ie3t cosh(2t) + (A − 3I)e3t sinh(2t)

2

=

(

1 0
0 1

)

e3t cosh(2t) +

(

0 1
1 0

)

e3t sinh(2t)

= e3t

(

cosh(2t) sinh(2t)
sinh(2t) cosh(2t)

)

.

Example. Compute etA for

A =

(

6 −5
5 −2

)

.

Solution. Because A is 2×2, its characteristic polynomial is

p(z) = det(Iz − A) = z2 − tr(A)z + det(A)

= z2 − 4z + 13 = (z − 2)2 + 32 .

It has the conjugate roots 2 ± i3. By (12) with µ = 2 and ν = 3 we see that

etA = Ie2t cos(3t) + (A − 2I)e2t sin(3t)

3

=

(

1 0
0 1

)

e2t cos(3t) +

(

4 −5
5 −4

)

e2t sin(3t)

3

= e2t

(

cos(2t) + 4
3
sin(3t) −5

3
sin(3t)

5
3
sin(3t) cos(3t) − 4

3
sin(3t)

)

.

Use of Natural Fundamental Sets. The natural fundamental set of solutions to (7) are
the solutions y1(t), y1(t), · · · , ym(t) such that for each j = 1, 2, · · · , m the solution yj(t)
satifies the initial conditions

(14) y
(k−1)
j (0) = δjk for k = 1, 2, · · · , m.

where δjk is the Kronecker delta, which is defined by

δjk =

{

1 when j = k ,

0 when j 6= k .

If y1(t), y1(t), · · · , ym(t) is the natural fundamental set of solutions to (7) then (9) with k−1
replacing k becomes

Ak−1 =

m
∑

j=1

Cjy
(k−1)
j (0) =

m
∑

j=1

Cjδjk = Ck for k = 1, 2, · · · , m .

In that case (8) becomes

(15) etA =

m
∑

j=1

Aj−1yj(t) ,

If the natural fundamental set of solutions to (7) is either known or easily found then this is
the shortest route to computing etA when m is not too large.
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Example. Compute etA for

A =





0 2 −1
−2 0 2
1 −2 0



 .

Solution. The characteristic polynomial of A is

p(z) = det(Iz − A) = det





z −2 1
2 z −2
−1 2 z



 = z3 + 4 − 4 + 4z + 4z + z

= z3 + 9z = z(z2 + 9) .

Its roots are 0, ±i3. The associated higher-order equation is

d3y

dt3
+ 9

dy

dt
= 0 .

By (10) its natural fundamental set of solutions y1(t), y2(t), and y3(t) satisfy the initial
conditions

y1(0) = 1 ,

y2(0) = 0 ,

y3(0) = 0 ,

y′

1(0) = 0 ,

y′

2(0) = 1 ,

y′

3(0) = 0 ,

y′′

1(0) = 0 ,

y′′

2(0) = 0 ,

y′′

3(0) = 1 .

You can solve these three initial-value problems to find

(16) y1(t) = 1 , y2(t) =
sin(3t)

3
, y3(t) =

1 − cos(3t)

9
.

We will see a more efficient way to find these solutions a bit later, so we will not give any
details here. Given these solutions, formula (15) yields

etA = Iy1(t) + Ay2(t) + A2y3(t)

=





1 0 0
0 1 0
0 0 1



 +





0 2 −1
−2 0 2
1 −2 0





sin(3t)

3
+





0 2 −1
−2 0 2
1 −2 0





2

1 − cos(3t)

9

=





1 0 0
0 1 0
0 0 1



 +





0 2 −1
−2 0 2
1 −2 0





sin(3t)

3
+





−5 2 4
2 −8 2
4 2 −5





1 − cos(3t)

9

=





4
9

+ 5
9
cos(3t) 2

9
− 2

9
cos(3t) + 2

3
sin(3t) 4

9
− 4

9
cos(3t) − 1

3
sin(3t)

2
9
− 2

9
cos(3t) − 2

3
sin(3t) 1

9
+ 8

9
cos(3t) 2

9
− 2

9
cos(3t) + 2

3
sin(3t)

4
9
− 4

9
cos(3t) + 1

3
sin(3t) 2

9
− 2

9
cos(3t) + 2

3
sin(3t) 4

9
+ 5

9
cos(3t)



 .

Remark. The above example shows that, once the natural fundamental set of solutions is
found for the associated higher-order equation, employing formula (15) is straight forward.
It requires only computing Ak up to k = m− 1 and some addition. For m ≥ 2 this requires
(m− 2)n3 multiplications, which grows fast as m and n get large. (Often m = n.) However,
for small systems like the ones you will face in this course, it is generally the fastest method.
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Three Examples. Formulas (11), (12), and (13) for the exponential of 2×2 matrices can
be easily derived using the natural fundamental set of solutions to the equation

p

(

d

dt

)

y = 0 , where p(z) = (z − µ)2 − δ .

There are three cases which are distinguished by the sign of δ.

• If δ > 0 then p(z) has the simple real roots µ − ν and µ + ν where ν =
√

δ. In this
case the natural fundamental set of solutions is

(17) y1(t) = eµt cosh(νt) − µeµt sinh(νt)

ν
, y2(t) = eµt sinh(νt)

ν
.

• If δ < 0 then p(z) has the complex conjugate roots µ− iν and µ+ iν where ν =
√
−δ.

In this case the natural fundamental set of solutions is

(18) y1(t) = eµt cos(νt) − µeµt sin(νt)

ν
, y2(t) = eµt sin(νt)

ν
.

• If δ = 0 then p(z) has the double real root µ. In this case the natural fundamental
set of solutions is

(19) y1(t) = eµt − µeµtt , y2(t) = eµtt .

Then by (15), formulas (11), (12), and (13) are abtained by plugging the natural fundamental
sets of solutions (17), (18), and (19) respectively into

etA = Iy1(t) + Ay2(t) .

Notice that (19) is the limiting case of both (17) and (18) as ν → 0.

Generating Natural Fundamental Sets with Green Functions. In each of the natural
fundamental sets of solutions given by (17), (18), and (19), the solutions y1(t) and y2(t) are
related by

y1(t) = y′

2(t) − 2µy2(t) .

This is an instance of a more general fact. For the mth-order equation

(20) p

(

d

dt

)

y = 0 , where p(z) = zm + π1z
m−1 + · · ·+ πm−1z + πm ,

one can generate its entire natural fundamental set of solutions from the Green function g(t)
associated with (20). Recall that the Green function g(t) satisfies the initial-value problem

(21) p

(

d

dt

)

g = 0 , g(0) = g′(0) = · · · = g(m−2)(0) = 0 , g(m−1)(0) = 1 .

The natural fundamental set of solutions is then given by the recipe

(22)

ym(t) = g(t) ,

ym−1(t) = g′(t) + π1g(t) ,

ym−2(t) = g′′(t) + π1g
′(t) + π2g(t) ,

...

y2(t) = g(m−2)(t) + π1g
(m−3)(t) + · · ·+ πm−3g

′(t) + πm−2g(t) ,

y1(t) = g(m−1)(t) + π1g
(m−2)(t) + π2g

(m−3)(t) + · · ·+ πm−2g
′(t) + πm−1g(t) .

This entire set is thereby generated by the solution of the single initial-value problem (21).
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Example. Show that (16) is indeed the natural fundamental set of solutions to the equation

d3y

dt3
+ 9

dy

dt
= 0 .

Solution. By (21) the Green function g(t) satisfies the initial-value problem

d3g

dt3
+ 9

dg

dt
= 0 , g(0) = g′(0) = 0 , g′′(0) = 1 .

The characteristic polynomial of this equation is p(z) = z3 +9z, which has roots 0, ±i3. We
therefore seek a solution in the form

g(t) = c1 + c2 cos(3t) + c3 sin(3t) .

Because

g′(t) = −3c2 sin(3t) + 3c3 cos(3t) , g′′(t) = −9c2 cos(3t) − 9c3 sin(3t) ,

the inital conditions for g(t) then yield the algebraic system

g(0) = c1 + c2 = 0 , g′(0) = 3c3 = 0 , g′′(0) = −9c2 = 1 .

The solution of this system is c1 = 1
9
, c2 = −1

9
, and c3 = 0, whereby the Green function is

g(t) =
1 − cos(3t)

9
.

Because p(z) = z3 + 9z, we read off from (20) that π1 = 0, π2 = 9, and π3 = 0. Then by
recipe (22) the natural fundamental set of solutions is given by

y3(t) = g(t) =
1 − cos(3t)

9
,

y2(t) = g′(t) + 0 · g(t) =
sin(3t)

3
,

y1(t) = g′′(t) + 0 · g′(t) + 9 · g(t) = cos(3t) + 9 · 1 − cos(3t)

9
= 1 .

This is indeed the set given by (16).

Example. Compute etA for

A =









0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0









,

given the fact that p(z) = z3 − 4z annihilates A.

Solution. Because you are told that p(z) = z3 − 4z annihilates A, you do not have to
compute the characteristic polynomial of A. By (21) the Green function g(t) satisfies the
initial-value problem

d3g

dt3
− 4

dg

dt
= 0 , g(0) = g′(0) = 0 , g′′(0) = 1 .

The characteristic polynomial of this equation is p(z) = z3 − 4z, which has roots 0, ±2. We
therefore seek a solution in the form

g(t) = c1 + c2e
2t + c3e

−2t .
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Because

g′(t) = 2c2e
2t − 2c3e

−2t , g′′(t) = 4c2e
2t + 4c3e

−2t ,

the inital conditions for g(t) then yield the algebraic system

g(0) = c1 + c2 + c3 = 0 , g′(0) = 2c2 − 2c3 = 0 , g′′(0) = 4c2 + 4c3 = 1 .

The solution of this system is c1 = −1
4

and c2 = c3 = 1
8
, whereby the Green function is

g(t) = −1
4

+ 1
8
e2t + 1

8
e−2t = 1

4

(

cosh(2t) − 1
)

.

Because p(z) = z3 − 4z, we read off from (20) that π1 = 0, π2 = −4, and π3 = 0. Then by
recipe (22) the natural fundamental set of solutions is given by

y3(t) = g(t) =
cosh(2t) − 1

4
,

y2(t) = g′(t) + 0 · g(t) =
sinh(2t)

2
,

y1(t) = g′′(t) + 0 · g′(t) − 4 · g(t) = cosh(2t) − 4 · cosh(2t) − 1

4
= 1 .

Given these solutions, formula (15) yields

etA = Iy1(t) + Ay2(t) + A2y3(t)

=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









+









0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0









sinh(2t)

2
+









0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0









2

cosh(2t) − 1

4

=









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









+









0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0









sinh(2t)

2
+









2 0 2 0
0 2 0 2
2 0 2 0
0 2 0 2









cosh(2t) − 1

4

=









1
2

+ 1
2
cosh(2t) 1

2
sinh(2t) 1

2
cosh(2t) − 1

2
1
2
sinh(2t)

1
2
sinh(2t) 1

2
+ 1

2
cosh(2t) 1

2
sinh(2t) 1

2
cosh(2t) − 1

2
1
2
cosh(2t) − 1

2
1
2
sinh(2t) 1

2
+ 1

2
cosh(2t) 1

2
sinh(2t)

1
2
sinh(2t) 1

2
cosh(2t) − 1

2
1
2
sinh(2t) 1

2
+ 1

2
cosh(2t)









.

Remark. The polynomial p(z) = z3−4z used in the above example is not the characteristic
polynomial of A. With some effort you can check that pA(z) = z4−4z2. We saved quite a bit
of work in computing etA by using p(z) = z3 −4z as the annihilating polynomial rather than
pA(z) = z4 −4z2 because it has a lower degree. Given the characteristic polynomial pA(z) of
a matrix A, every annihilating polynomial p(z) will have the same roots as pA(z), but these
roots might have lower multiplicity. If p(z) has simple roots then it has the lowest degree
possible for an annihilating polynomial of A. If pA(z) has roots that are not simple then it
pays to find an annihilating polynomial of lower degree. If A is either symmetric (AT = A)
or skew-symmetric (AT = −A) then it has an annihilating polynomial with simple roots. In
the example above, because A is symmetric and pA(z) has roots −2, 0, 0, and 2, we know
that p(z) = (z + 2)z(z − 2) = z3 − 4z is an annihilating polynomial. Because each root of
p(z) is simple, it has the lowest degree possible for an annihilating polynomial of A.
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Justification of Recipe (22). The following justification of recipe (22) is included for
completeness. It was not covered in lecture and you do not need to know this argument.
However, you should find the recipe itself quite useful.

We see from (21) that g(t) is a solution of

(23) p

(

d

dt

)

y = y(m) + π1y
(m−1) + π2y

(m−2) + · · ·+ πm−1y
′ + πmy = 0 ,

so that all of its derivatives are too. Each yj(t) defined by (22) must also be a solution of (23)
because it is a linear combination of g(t) and its derivatives. The only thing that remains
to be checked is that the initial conditions (14) are satisfied.

Because ym(t) = g(t), we see from (21) that the initial conditions (14) hold for ym(t). The
key step is to show that if the initial conditions (14) hold for yj+1(t) for some j < m then
they hold for yj(t). Once this is done then we can argue that because the initial conditions
(14) hold for ym(t), they also hold for ym−1(t), which implies they also hold for ym−2(t),
which implies they also hold for ym−3(t), and so on down to y1(t).

We now prove the key step. We suppose that for some j < m the initial conditions (14)
hold for yj+1(t). This is the same as

(24) y
(k)
j+1(0) = δjk for k = 0, 1, · · · , m − 1 .

Because yj+1(t) satisfies (23), it follows from the above that

(25)

0 = p

(

d

dt

)

yj+1(t)

∣

∣

∣

∣

t=0

= y
(m)
j+1(0) +

m−1
∑

k=0

πm−ky
(k)
j+1(0)

= y
(m)
j+1(0) +

m−1
∑

k=0

πm−kδjk = y
(m)
j+1(0) + πm−j .

We see from recipe (22) that yj(t) is related to yj+1(t) by

yj(t) = y′

j+1(t) + πm−jg(t) .

We evaluate the (k − 1)st derivative of this relation at t = 0 to obtain

y
(k−1)
j (0) = y

(k)
j+1(0) + πm−jg

(k−1)(0) for k = 1, 2, · · · , m .

Because g(t) satisfies the initial condtions in (21), we see from (24) that this becomes

y
(k−1)
j (0) = δjk for k = 1, 2, · · · , m − 1 ,

while we see from (25) that for k = m it becomes

y
(m−1)
j (0) = y

(m)
j+1(0) + πm−j = 0 .

The initial conditions (14) thereby hold for yj(t). This completes the proof of the key step,
which completes the justification of recipe (22).


