Quiz 1 Solutions, Math 246, Professor David Levermore Tuesday, 9 September 2008

(1) [4] Determine the order of the given differential equation; also state whether the equation is linear or nonlinear:
(a) $t^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+t \frac{\mathrm{~d} y}{\mathrm{~d} t}-4 y=t^{3}$

Solution: second-order, linear
(b) $\frac{\mathrm{d}^{3} v}{\mathrm{~d} t^{3}}+v \frac{\mathrm{~d} v}{\mathrm{~d} t}+4 v=\cos (t)$

Solution: third-order, nonlinear
(2) [6] Solve the given initial-value problems:
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{e^{x}}{2 y}, \quad y(0)=-2$

Solution: This problem is separable. Its separated form is

$$
2 y \mathrm{~d} y=e^{x} \mathrm{~d} x
$$

Integrating both sides yields

$$
y^{2}=e^{x}+c .
$$

Applying the initial condition gives

$$
(-2)^{2}=e^{0}+c,
$$

which implies $c=4-1=3$. The solution is therefore

$$
y=-\sqrt{e^{x}+3}, \quad \text { for every } x
$$

where the negative root is taken to satisfy the initial condition.
(b) $t \frac{\mathrm{~d} z}{\mathrm{~d} t}=5 t^{2}-3 z, \quad z(1)=5$

Solution: This problem is linear. Its normal form is

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}+\frac{3}{t} z=5 t
$$

An integrating factor is $e^{A(t)}$ where $A^{\prime}(t)=3 / t$. Setting $A(t)=3 \log (t)$, we find that $e^{A(t)}=t^{3}$. Hence, the problem has the intgrating factor form

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(t^{3} z\right)=t^{3} \cdot 5 t=5 t^{4}
$$

Integrating both sides yields

$$
t^{3} z=t^{5}+c
$$

Applying the initial condition gives

$$
1^{3} \cdot 5=1^{5}+c,
$$

which implies $c=5-1=4$. The solution is therefore

$$
z=t^{2}+\frac{4}{t^{3}}, \quad \text { for every } t>0
$$

