Quiz 3 Solutions, Math 246, Professor David Levermore Tuesday, 23 September 2008

(1) [2] Suppose you are using the Runge-Kutta method to numerically approximate the solution of an initial-value problem over the time interval [0,5]. By what factor would you expect the global error to decrease when you increase the number of time steps taken from 200 to 600.
Solution: When you increase the number of time steps by a factor of 3 , the time step h is reduced by a factor of 3 . Because the Runge-Kutta method is fourth order, the error will therefore decrease by a factor of $3^{4}=81$.
(2) [4] Consider the following MATLAB function M-file.
function $[\mathrm{t}, \mathrm{y}]=\operatorname{solveit}(\mathrm{ti}, \mathrm{yi}, \mathrm{tf}, \mathrm{n})$
$\mathrm{h}=(\mathrm{tf}-\mathrm{ti}) / \mathrm{n}$;
$\mathrm{t}=\operatorname{zeros}(\mathrm{n}+1,1)$;
$\mathrm{y}=\operatorname{zeros}(\mathrm{n}+1,1)$;
$\mathrm{t}(1)=\mathrm{ti}$;
$y(1)=y i ;$
for $\mathrm{j}=1$: n
$\mathrm{z}=\mathrm{t}(\mathrm{j})^{\wedge} 2+\mathrm{y}(\mathrm{j})^{\wedge} 4 ;$
$\mathrm{t}(\mathrm{j}+1)=\mathrm{t}(\mathrm{j})+\mathrm{h}$;
$\mathrm{y}(\mathrm{j}+1)=\mathrm{y}(\mathrm{j})+(\mathrm{h} / 2)^{*}\left(\mathrm{z}+\mathrm{t}(\mathrm{j}+1)^{\wedge} 2+\left(\mathrm{y}(\mathrm{j})+\mathrm{h}^{*} \mathrm{z}\right)^{\wedge} 4\right) ;$
end
(a) What is the initial-value problem being approximated numerically?
(b) What is the numerical method being used?

Solution: The initial-value problem being approximated is

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=t^{2}+y^{4}, \quad y\left(t_{i}\right)=y_{i}
$$

The Heun-Trapezoidal (improved Euler) method is being used.
(3) [4] Consider the initial-value problem

$$
\frac{\mathrm{d} w}{\mathrm{~d} t}=w^{2}-2 w, \quad w(0)=3
$$

Use the forward Euler method with $h=.1$ to compute approximations of $w(.1)$ and $w(.2)$. Leave your answer for $z(.2)$ as an arithmetic expression.
Solution: Set $w_{0}=w(0)=3$. The Euler method then yields

$$
\begin{aligned}
& w(.1) \approx w_{1}=w_{0}+h\left(w_{0}^{2}-2 w_{0}\right)=3+.1\left(3^{2}-2 \cdot 3\right)=3+.1(9-6)=3.3 \\
& w(.2) \approx w_{2}=w_{1}+h\left(w_{1}^{2}-2 w_{1}\right)=3.3+.1\left((3.3)^{2}-2 \cdot 3.3\right)
\end{aligned}
$$

