Quiz 4 Solutions, Math 246, Professor David Levermore Tuesday, 7 October 2008

(1) [4] What is the interval of existence for the solution to each of the following initialvalue problems.
(a) $\left(3 t-t^{2}\right) \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\cos (t) \frac{\mathrm{d} x}{\mathrm{~d} t}+e^{t} x=e^{2 t}, \quad x(4)=0, \quad x^{\prime}(4)=7$.

Solution: The linear normal form is $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\frac{\cos (t)}{t(3-t)} \frac{\mathrm{d} x}{\mathrm{~d} t}+\frac{e^{t}}{t(3-t)} x=\frac{e^{2 t}}{t(3-t)}$. The coefficients and forcing are defined and continuous everywhere except $t=0$ and $t=3$. The initial time is $t=4$. The interval of existence is therefore $(3, \infty)$.
(b) $\frac{\mathrm{d}^{4} z}{\mathrm{~d} t^{4}}+z=\cot (t), \quad z(5)=z^{\prime}(5)=z^{\prime \prime}(5)=z^{\prime \prime \prime}(5)=0$.

Solution: The equation is already in linear normal form. The coefficients and forcing are defined and continuous everywhere except $t=k \pi$ for some integer k.
The initial time is $t=5$. The interval of existence is therefore $(\pi, 2 \pi)$.
(2) [3] Compute the Wronskian $W\left[Y_{1}, Y_{2}\right](t)$ of the functions $Y_{1}(t)=e^{-2 t}$ and $Y_{2}(t)=e^{3 t}$. (Evaluate the determinant and simplify.)

Solution: Because $Y_{1}^{\prime}(t)=-2 e^{-2 t}$ and $Y_{2}^{\prime}(t)=3 e^{3 t}$, the Wronskian is

$$
\begin{aligned}
W\left[Y_{1}, Y_{2}\right](t) & =\operatorname{det}\left(\begin{array}{cc}
Y_{1}(t) & Y_{2}(t) \\
Y_{1}^{\prime}(t) & Y_{2}^{\prime}(t)
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
e^{-2 t} & e^{3 t} \\
-2 e^{-2 t} & 3 e^{3 t}
\end{array}\right) \\
& =3 e^{-2 t} e^{3 t}-(-2) e^{-2 t} e^{3 t}=5 e^{t} .
\end{aligned}
$$

(3) [3] The functions $e^{-2 t}$ and $e^{2 t}$ are linearly independent solutions of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-4 y=0$. Find the solution $Y(t)$ that satisfies the initial conditions $Y(0)=8, Y^{\prime}(0)=4$.

Solution: Let $Y(t)=c_{1} e^{-2 t}+c_{2} e^{2 t}$. Then $Y^{\prime}(t)=-2 c_{1} e^{-2 t}+2 c_{2} e^{2 t}$. To satisfy the initial conditions one needs

$$
8=Y(0)=c_{1}+c_{2}, \quad 4=Y^{\prime}(0)=-2 c_{1}+2 c_{2} .
$$

Divide the second equation by 2 and add it to the first to obtain $10=2 c_{2}$, whereby $c_{2}=5$. It then follows from the first equation that $c_{1}=8-c_{2}=8-5=3$. The solution of the initial value problem is therefore

$$
Y(t)=3 e^{-2 t}+5 e^{2 t}
$$

