Quiz 5 Solutions, Math 246, Professor David Levermore Tuesday, 14 October 2008

(1) [6] Give a general solution to each of the following.
(a) $\frac{\mathrm{d}^{3} x}{\mathrm{~d} t^{3}}+6 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}+13 \frac{\mathrm{~d} x}{\mathrm{~d} t}=0$

Solution: The coefficients are constant. The characteristic polynomial is

$$
\begin{aligned}
p(z) & =z^{3}+6 z^{2}+13 z=z\left(z^{2}+6 z+13\right)=z\left((z+3)^{2}+4\right) \\
& =z\left((z+3)^{2}+2^{2}\right) .
\end{aligned}
$$

Its three roots are $z=0,-3+i 2,-3-i 2$. A general solution is therefore

$$
x=c_{1}+c_{2} e^{-3 t} \cos (2 t)+c_{3} e^{-3 t} \sin (2 t) .
$$

(b) $\frac{\mathrm{d}^{4} y}{\mathrm{~d} t^{4}}-16 y=0$

Solution: The coefficients are constant. The characteristic polynomial is

$$
\begin{aligned}
p(z) & =z^{4}-16=\left(z^{2}-4\right)\left(z^{2}+4\right)=(z-2)(z+2)\left(z^{2}+4\right) \\
& =(z-2)(z+2)\left(z^{2}+2^{2}\right) .
\end{aligned}
$$

Its four roots are $z=2,-2, i 2,-i 2$. A general solution is therefore

$$
y=c_{1} e^{2 t}+c_{2} e^{-2 t}+c_{3} \cos (2 t)+c_{4} \sin (2 t) .
$$

(2) [4] An eighth order linear differential operator L with constant coefficients has a characteristic polynomial $p(z)$ with roots $z=2+i 5,2+i 5,2-i 5,2-i 5,3,3,3,3$. Give a general solution to the equation $\mathrm{L} y=0$.
Solution: A general solution is

$$
\begin{aligned}
y= & c_{1} e^{2 t} \cos (5 t)+c_{2} e^{2 t} \sin (5 t)+c_{3} t e^{2 t} \cos (5 t)+c_{4} t e^{2 t} \sin (5 t) \\
& +c_{5} e^{3 t}+c_{6} t e^{3 t}+c_{7} t^{2} e^{3 t}+c_{8} t^{3} e^{3 t}
\end{aligned}
$$

The complex conjugate pair of roots $2 \pm i 5$ with multiplicity 2 contributes

$$
e^{2 t} \cos (5 t), \quad e^{2 t} \sin (5 t), \quad t e^{2 t} \cos (5 t), \quad t e^{2 t} \sin (5 t)
$$

The real root 3 with multiplicity 4 contributes

$$
e^{3 t}, \quad t e^{3 t}, \quad t^{2} e^{3 t}, \quad t^{3} e^{3 t}
$$

