Quiz 6 Solutions, Math 246, Professor David Levermore Tuesday, 21 October 2008

(1) [5] Find a general solution of $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+\frac{\mathrm{d} x}{\mathrm{~d} t}-2 x=e^{t}-4 t$.

Solution. The characteristic polynomial is $P(z)=z^{2}+z-2=(z-1)(z+2)$ and has roots 1 and -2 . The solution of the associated homogeneous problem is

$$
X_{H}(t)=c_{1} e^{t}+c_{2} e^{-2 t} .
$$

The forcing term e^{t} has degree 0 and characteristic 1 which is a root of $P(z)$ of multiplicity 1 . The forcing term $-4 t$ has degree 1 and characteristic 0 which is a root of $P(z)$ of multiplicity 0 . We therefore need the KEY identity and its first derivative with respect to z :

$$
\begin{aligned}
\mathrm{L}\left(e^{z t}\right) & =\left(z^{2}+z-2\right) e^{z t}, \\
\mathrm{~L}\left(t e^{z t}\right) & =\left(z^{2}+z-2\right) t e^{z t}+(2 z+1) e^{z t} .
\end{aligned}
$$

Evaluating these at $z=1$ gives $\mathrm{L}\left(e^{t}\right)=0$ and $\mathrm{L}\left(t e^{t}\right)=3 e^{t}$, whereby $\mathrm{L}\left(\frac{1}{3} t e^{t}\right)=e^{t}$. Evaluating these at $z=0$ gives $\mathrm{L}(1)=-2$ and $\mathrm{L}(t)=-2 t+1$, which implies $\mathrm{L}\left(t+\frac{1}{2}\right)=-2 t$. Hence, $X_{P}(t)=\frac{1}{3} t e^{t}+2 t+1$. A general solution is

$$
x=c_{1} e^{t}+c_{2} e^{-2 t}+\frac{1}{3} t e^{t}+2 t+1 .
$$

Alternatively, for the forcing term e^{t} you set $X_{P}(t)=A t e^{t}$, plug it into the equation, and solve for A; for the forcing term $-4 t$ you set $X_{P}(t)=A_{0} t+A_{1}$, plug it into the equation, and solve for A_{0} and A_{1}. You obtain the same general solution.
(2) [5] Find a general solution of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+4 \frac{\mathrm{~d} y}{\mathrm{~d} t}+8 y=4 \cos (2 t)$.

Solution. The characteristic polynomial is $P(z)=z^{2}+4 z+8=(z+2)^{2}+2^{2}$ and has roots $-2 \pm i 2$. The solution of the associated homogeneous problem is

$$
Y_{H}(t)=c_{1} e^{-2 t} \cos (2 t)+c_{2} e^{-2 t} \sin (2 t) .
$$

The forcing term $4 \cos (2 t)$ has degree 0 and characteristic $i 2$ which is a root of $P(z)$ of multiplicity 0 . We therefore only need the KEY identity:

$$
\mathrm{L}\left(e^{z t}\right)=\left(z^{2}+4 z+8\right) e^{z t} .
$$

Evaluating this at $z=i 2$ gives $\mathrm{L}\left(e^{i 2 t}\right)=(4+i 8) e^{i 2 t}$, whereby

$$
\mathrm{L}\left(\frac{e^{i 2 t}}{1+i 2}\right)=4 e^{i 2 t} .
$$

Because $4 \cos (2 t)=\operatorname{Re}\left(4 e^{i 2 t}\right)$, you see that

$$
Y_{P}(t)=\operatorname{Re}\left(\frac{e^{i 2 t}}{1+i 2}\right)=\frac{1}{5} \operatorname{Re}\left((1-i 2) e^{i 2 t}\right)=\frac{1}{5} \cos (2 t)+\frac{2}{5} \sin (2 t) .
$$

A general solution is

$$
y=c_{1} e^{-2 t} \cos (2 t)+c_{2} e^{-2 t} \sin (2 t)+\frac{1}{5} \cos (2 t)+\frac{2}{5} \sin (2 t) .
$$

Alternatively, you can set $Y_{P}(t)=A \cos (2 t)+B \sin (2 t)$, plug it into the equation, and solve for A and B. You obtain the same general solution.

