Quiz 7 Solutions, Math 246, Professor David Levermore Tuesday, 28 October 2008

(1) [4] Given the fact that the associated Green function is $g(t)=\sin (t)$, use the Green function method to find a particular solution of

$$
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}+x=\frac{1}{\cos (t)}
$$

Solution: A particular solution $X_{P}(t)$ is given by

$$
\begin{aligned}
X_{P}(t) & =\int_{0}^{t} \sin (t-s) \frac{1}{\cos (s)} \mathrm{d} s \\
& =\int_{0}^{t}(\sin (t) \cos (s)-\cos (t) \sin (s)) \frac{1}{\cos (s)} \mathrm{d} s \\
& =\sin (t) \int_{0}^{t} \frac{\cos (s)}{\cos (s)} \mathrm{d} s-\cos (t) \int_{0}^{t} \frac{\sin (s)}{\cos (s)} \mathrm{d} s \\
& =\sin (t) t+\cos (t) \log (|\cos (t)|)
\end{aligned}
$$

(2) [6] The functions $t-1$ and e^{-t} are solutions of the equation

$$
t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+(t-1) \frac{\mathrm{d} y}{\mathrm{~d} t}-y=0
$$

(You do not have to check this fact.) Find a general solution of

$$
t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+(t-1) \frac{\mathrm{d} y}{\mathrm{~d} t}-y=-t^{2} e^{-t}
$$

Solution: Because this equation has variable coefficients, you must use the variation of parameters method. Divide the equation by t to bring it into its normal form

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\frac{t-1}{t} \frac{\mathrm{~d} y}{\mathrm{~d} t}-\frac{1}{t} y=-t e^{-t}
$$

Seek a solution in the form

$$
y=u_{1}(t)(t-1)+u_{2}(t) e^{-t}
$$

where

$$
\begin{aligned}
u_{1}^{\prime}(t)(t-1)+u_{2}^{\prime}(t) e^{-t} & =0 \\
u_{1}^{\prime}(t) 1-u_{2}^{\prime}(t) e^{-t} & =-t e^{-t}
\end{aligned}
$$

The solution of this system is

$$
u_{1}^{\prime}(t)=-e^{-t}, \quad u_{2}^{\prime}(t)=t-1
$$

which can be integrated to obtain

$$
u_{1}(t)=c_{1}+e^{-t}, \quad u_{2}(t)=c_{2}+\frac{1}{2}(t-1)^{2} .
$$

A general solution is therefore

$$
y=c_{1}(t-1)+c_{2} e^{-t}+(t-1) e^{-t}+\frac{1}{2}(t-1)^{2} e^{-t}
$$

