Quiz 8 Solutions, Math 246, Professor David Levermore Tuesday, 11 November 2008

Short Table: $\quad \mathcal{L}[\sin (b t)](s)=\frac{b}{s^{2}+b^{2}} \quad$ for $s>0, \quad \mathcal{L}\left[e^{a t}\right](s)=\frac{1}{s-a} \quad$ for $s>a$.
(1) [3] Use the definition of the Laplace transform to compute $\mathcal{L}[f](s)$ for $f(t)=u(t-5)$, where u is the unit step function.
Solution: By the definitions of the Laplace transform and the unit step function

$$
\mathcal{L}[f](s)=\lim _{T \rightarrow \infty} \int_{0}^{T} e^{-s t} f(t) \mathrm{d} t=\lim _{T \rightarrow \infty} \int_{5}^{T} e^{-s t} \mathrm{~d} t
$$

The above limit diverges for $s \leq 0$. For $s>0$

$$
\int_{5}^{T} e^{-s t} \mathrm{~d} t=-\left.\frac{e^{-s t}}{s}\right|_{5} ^{T}=\frac{e^{-s 5}}{s}-\frac{e^{-s T}}{s}
$$

whereby

$$
\mathcal{L}[f](s)=\lim _{T \rightarrow \infty}\left[\frac{e^{-s 5}}{s}-\frac{e^{-s T}}{s}\right]=\frac{e^{-5 s}}{s} \quad \text { for } s>0
$$

(2) [4] Find the Laplace transform $Y(s)$ of the solution $y(t)$ of the initial-value problem $y^{\prime \prime}+9 y=\sin (2 t), \quad y(0)=y^{\prime}(0)=0 . \quad$ DO NOT solve for $y(t)$, just $Y(s)!$

Solution: The Laplace transform of the initial-value problem and item 1 in the table at the top of the page with $b=2$ gives

$$
\mathcal{L}\left[y^{\prime \prime}\right](s)+9 \mathcal{L}[y](s)=\mathcal{L}[\sin (2 t)](s)=\frac{2}{s^{2}+2^{2}}=\frac{2}{s^{2}+4},
$$

where

$$
\begin{aligned}
\mathcal{L}[y](s) & =Y(s) \\
\mathcal{L}\left[y^{\prime \prime}\right](s) & =s^{2} Y(s)-s y(0)-y^{\prime}(0)=s^{2} Y(s) .
\end{aligned}
$$

Hence,

$$
\left(s^{2}+9\right) Y(s)=\frac{2}{s^{2}+4}, \quad \Longrightarrow \quad Y(s)=\frac{2}{\left(s^{2}+9\right)\left(s^{2}+4\right)} .
$$

(3) [3] Find the inverse Laplace transform $y(t)$ of the function $Y(s)=\frac{6 s}{s^{2}+2 s-8}$.

Solution: Partial fractions and item 2 in the table at the top of the page with $a=2$ and with $a=-4$ gives

$$
\begin{aligned}
Y(s) & =\frac{6 s}{s^{2}+2 s-8}=\frac{6 s}{(s-2)(s+4)}=\frac{2}{s-2}+\frac{4}{s+4} \\
& =2 \mathcal{L}\left[e^{2 t}\right](s)+4 \mathcal{L}\left[e^{-4 t}\right](s)=\mathcal{L}\left[2 e^{2 t}+4 e^{-4 t}\right](s)
\end{aligned}
$$

Therefore

$$
y(t)=\mathcal{L}^{-1}[Y](t)=2 e^{2 t}+4 e^{-4 t}
$$

