Quiz 10 Solutions, Math 246, Professor David Levermore

 Tuesday, 25 November 2008(1) [2] Given that $e^{t \mathbf{A}}=\left(\begin{array}{cc}\cos (3 t) & -\sin (3 t) \\ \sin (3 t) & \cos (3 t)\end{array}\right)$,
solve the initial-value problem $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A x}, \quad \mathbf{x}(0)=\binom{5}{2}$.

Solution.

$$
\mathbf{x}(t)=e^{t \mathbf{A}} \mathbf{x}(0)=\left(\begin{array}{cc}
\cos (3 t) & -\sin (3 t) \\
\sin (3 t) & \cos (3 t)
\end{array}\right)\binom{5}{2}=\binom{5 \cos (3 t)-2 \sin (3 t)}{5 \sin (3 t)+2 \cos (3 t)} .
$$

(2) [4] Let $\mathbf{A}=\left(\begin{array}{cc}8 & -5 \\ 4 & 0\end{array}\right)$. Compute $e^{t \mathbf{A}}$.

Solution. The characteristic polynomial is $p(z)=z^{2}-8 z+20=(z-4)^{2}+2^{2}$. Hence,

$$
\begin{aligned}
e^{t \mathbf{A}} & =\mathbf{I} e^{4 t} \cos (2 t)+(\mathbf{A}-4 \mathbf{I}) e^{4 t} \frac{\sin (2 t)}{2} \\
& =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) e^{4 t} \cos (2 t)+\left(\begin{array}{ll}
4 & -5 \\
4 & -4
\end{array}\right) e^{4 t} \frac{\sin (2 t)}{2} \\
& =e^{4 t}\left(\begin{array}{cc}
\cos (2 t)+2 \sin (2 t) & -\frac{5}{2} \sin (2 t) \\
2 \sin (2 t) & \cos (2 t)-2 \sin (2 t)
\end{array}\right) .
\end{aligned}
$$

(3) [4] Consider the vector-valued functions $\mathbf{x}_{1}(t)=\binom{t^{2}+1}{t}, \mathbf{x}_{2}(t)=\binom{t}{1}$.
(a) Compute the Wronskian $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.

Solution.

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\operatorname{det}\left(\begin{array}{cc}
t^{2}+1 & t \\
t & 1
\end{array}\right)=\left(t^{2}+1\right)-t^{2}=1
$$

(b) Find $\mathbf{A}(t)$ such that $\mathbf{x}_{1}, \mathbf{x}_{2}$ is a fundamental set of solutions to $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A}(t) \mathbf{x}$.

Solution. Let $\boldsymbol{\Psi}(t)=\left(\begin{array}{cc}t^{2}+1 & t \\ t & 1\end{array}\right)$. Because $\frac{\mathrm{d} \boldsymbol{\Psi}}{\mathrm{d} t}(t)=\mathbf{A}(t) \boldsymbol{\Psi}(t)$, one has

$$
\begin{aligned}
\mathbf{A}(t) & =\frac{\mathrm{d} \boldsymbol{\Psi}}{\mathrm{~d} t}(t) \boldsymbol{\Psi}(t)^{-1}=\left(\begin{array}{cc}
2 t & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
t^{2}+1 & t \\
t & 1
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
2 t & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -t \\
-t & t^{2}+1
\end{array}\right)=\left(\begin{array}{cc}
t & 1-t^{2} \\
1 & -t
\end{array}\right)
\end{aligned}
$$

