Quiz 11 Solutions, Math 246, Professor David Levermore Tuesday, 2 December 2008

(1) $[4] \mathbf{A}=\left(\begin{array}{ll}4 & 3 \\ 4 & 0\end{array}\right)$ has eigenvalues -2 and 6 . Find an eigenvector for each eigenvalue.

Solution: One has $\mathbf{A}+2 \mathbf{I}=\left(\begin{array}{ll}6 & 3 \\ 4 & 2\end{array}\right)$ and $\mathbf{A}-6 \mathbf{I}=\left(\begin{array}{cc}-2 & 3 \\ 4 & -6\end{array}\right)$.
The eigenvectors \mathbf{v}_{1} associated with -2 satisfy $(\mathbf{A}+2 \mathbf{I}) \mathbf{v}_{1}=0$. You can either solve this system or simply read-off from a nonzero column of $\mathbf{A}-6 \mathbf{I}$ that these have the form

$$
\mathbf{v}_{1}=\alpha_{1}\binom{-1}{2} \quad \text { for some } \alpha_{1} \neq 0
$$

The eigenvectors \mathbf{v}_{2} associated with 6 satisfy $(\mathbf{A}-6 \mathbf{I}) \mathbf{v}_{2}=0$. You can either solve this system or simply read-off from a nonzero column of $\mathbf{A}+2 \mathbf{I}$ that these have the form

$$
\mathbf{v}_{2}=\alpha_{2}\binom{3}{2} \quad \text { for some } \alpha_{2} \neq 0
$$

(2) [3] The 2×2 matrix \mathbf{A} has the real eigenpairs $\left(-1,\binom{1}{-2}\right)$ and $\left(2,\binom{1}{2}\right)$.

Sketch a phase portrait for the system $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A x}$. Indicate typical trajectories.
Solution: Because the eigenvalues of \mathbf{A} are real and of opposite sign, the phase portrait is a saddle.
Trajectories on the line $c_{1}\binom{1}{-2}$ move towards the origin.
Trajectories on the line $c_{2}\binom{1}{2}$ move away from the origin.
(3) [3] Sketch a phase portrait for the system $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A} \mathbf{x}$, where $\mathbf{A}=\left(\begin{array}{cc}0 & -2 \\ 5 & 2\end{array}\right) \mathbf{x}$.

Solution: The characteristic polynomial of \mathbf{A} is

$$
p(z)=z^{2}-\operatorname{to}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-2 z+10=(z-1)^{2}+3^{3} .
$$

The eigenvalues of \mathbf{A} are therefore $1+i 3$ and $1-i 3$, whereby the phase portrait is a spiral source. Because $a_{21}=5>0$ the spiral will be counterclockwise.

Alternatively, you can read off the direction of the spiral by noticing that

$$
\text { for } \mathbf{x}=\binom{1}{0} \quad \text { one has } \frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\mathbf{A} \mathbf{x}=\left(\begin{array}{cc}
0 & -2 \\
5 & 2
\end{array}\right)\binom{1}{0}=\binom{0}{5}
$$

so the spiral will be counterclockwise. One can use any point \mathbf{x} to reach the same conclusion.

