AMSC 674 Final Exam, Spring 2009 Professor David Levermore Due 5pm Wednesday May 13

(1) Let $\Omega \subset \mathbb{R}^D$ be a smooth bounded domain. Consider the boundary-value problem

$$-\nabla_x \cdot (A(x)\nabla_x u) + c(x)u = f(x) \quad \text{in } \Omega,$$

$$n(x) \cdot (A(x)\nabla_x u) + b(x)u = g(x) \quad \text{on } \partial\Omega,$$

where A, c, and f are smooth over $\overline{\Omega}$, b and g are smooth over $\partial\Omega$, n is the outward unit normal on $\partial\Omega$, b and c are nonnegative, and the matrix-valued function A is symmetric and satisfies the uniformly ellipticity condition. Give a weak formulation of this problem and use the Lax-Milgram theorem to show the existence of a weak solution in $H^1(\Omega)$ when either b or c is nontrivial.

- (2) Let $p \in (0, \infty)$. Consider $u(x) = |x|^{-\frac{D}{p}}$ over \mathbb{R}^{D} . Show that $u \in L^{p}_{w}(\mathrm{d}m)$ where $\mathrm{d}m$ is the usual Lebesgue measure, and that it is in no other weak Lebesgue space. Compute $[u]_{L^{p}_{w}}$. Compute $||u||_{L^{p}_{w}}$ for $p \in (1, \infty)$.
- (3) Let u be a smooth solution of the initial-value problem over $\mathbb{R}^D \times [0, \infty)$ given by

$$\partial_t u = \Delta_x u - \sin(u), \qquad u\Big|_{t=0} = u_I$$

Prove that if u_I is nonegative then so is u.

- (4) Let $\Omega \subset \mathbb{R}^D$ be a smooth bounded domain. Let $p \in [1, \infty)$. Prove that there does not exist a bounded operator $T : L^p(\Omega) \to L^p(\partial\Omega)$ such that $Tu = u|_{\partial\Omega}$ whenever $u \in C(\overline{\Omega}) \cap L^p(\Omega)$.
- (5) Let X be a Banach space and S(t) be a strongly continuous semigroup on X with generator A. Let $Dom(A) \subset X$ be the domain of A. For every $k \in \mathbb{Z}_+$ inductively define

$$\operatorname{Dom}(A^{k+1}) = \left\{ u \in \operatorname{Dom}(A^k) : Au \in \operatorname{Dom}(A^k) \right\}.$$

Show that if $u \in \text{Dom}(A^k)$ for some $k \in \mathbb{Z}_+$ then $S(t)u \in \text{Dom}(A^k)$ for every t > 0.

(6) Consider the initial-value problem over $\mathbb{R}^D \times [0,\infty)$ formally given by

$$\partial_{tt}u + \Delta_x^2 u = 0, \qquad u\Big|_{t=0} = u_I, \quad \partial_t u\Big|_{t=0} = v_I.$$

Formulate and prove a well-posedness result when u_I and v_I lie in any suitable Sololev spaces $H^r(\mathbb{R}^D)$ and $H^s(\mathbb{R}^D)$ respectively. (You may choose r and s or relate them.)

(7) Let $A = \sqrt{-\Delta_x}$. For every $\tau > 0$, s > 0, and $r \ge 0$ define

$$\operatorname{Dom}\left(e^{\tau A^{\frac{1}{s}}}, H^{r}(\mathbb{T}^{D})\right) = \left\{w \in H^{r}(\mathbb{T}^{D}) : e^{\tau A^{\frac{1}{s}}} w \in H^{r}(\mathbb{T}^{D})\right\}.$$

Show that $\text{Dom}(e^{\tau A^{\frac{1}{s}}}, H^r(\mathbb{T}^D))$ is an algebra (a linear space that is closed under multiplication) when $s \ge 1$ and $r > \frac{D}{2}$.