## AMSC 674 Final Exam, Spring 2009 <br> Professor David Levermore <br> Due 5pm Wednesday May 13

(1) Let $\Omega \subset \mathbb{R}^{D}$ be a smooth bounded domain. Consider the boundary-value problem

$$
\begin{array}{ll}
-\nabla_{x} \cdot\left(A(x) \nabla_{x} u\right)+c(x) u=f(x) & \text { in } \Omega \\
n(x) \cdot\left(A(x) \nabla_{x} u\right)+b(x) u=g(x) & \text { on } \partial \Omega
\end{array}
$$

where $A, c$, and $f$ are smooth over $\bar{\Omega}, b$ and $g$ are smooth over $\partial \Omega, n$ is the outward unit normal on $\partial \Omega, b$ and $c$ are nonnegative, and the matrix-valued function $A$ is symmetric and satifies the uniformly ellipticity condition. Give a weak formulation of this problem and use the Lax-Milgram theorem to show the existence of a weak solution in $H^{1}(\Omega)$ when either $b$ or $c$ is nontrivial.
(2) Let $p \in(0, \infty)$. Consider $u(x)=|x|^{-\frac{D}{p}}$ over $\mathbb{R}^{D}$. Show that $u \in L_{w}^{p}(\mathrm{~d} m)$ where $\mathrm{d} m$ is the usual Lebesgue measure, and that it is in no other weak Lebesgue space. Compute $[u]_{L_{w}^{p}}$. Compute $\|u\|_{L_{w}^{p}}$ for $p \in(1, \infty)$.
(3) Let $u$ be a smooth solution of the initial-value problem over $\mathbb{R}^{D} \times[0, \infty)$ given by

$$
\partial_{t} u=\Delta_{x} u-\sin (u),\left.\quad u\right|_{t=0}=u_{I}
$$

Prove that if $u_{I}$ is nonegative then so is $u$.
(4) Let $\Omega \subset \mathbb{R}^{D}$ be a smooth bounded domain. Let $p \in[1, \infty)$. Prove that there does not exist a bounded operator $T: L^{p}(\Omega) \rightarrow L^{p}(\partial \Omega)$ such that $T u=\left.u\right|_{\partial \Omega}$ whenever $u \in C(\bar{\Omega}) \cap L^{p}(\Omega)$.
(5) Let $X$ be a Banach space and $S(t)$ be a strongly continuous semigroup on $X$ with generator $A$. Let $\operatorname{Dom}(A) \subset X$ be the domain of $A$. For every $k \in \mathbb{Z}_{+}$inductively define

$$
\operatorname{Dom}\left(A^{k+1}\right)=\left\{u \in \operatorname{Dom}\left(A^{k}\right): A u \in \operatorname{Dom}\left(A^{k}\right)\right\}
$$

Show that if $u \in \operatorname{Dom}\left(A^{k}\right)$ for some $k \in \mathbb{Z}_{+}$then $S(t) u \in \operatorname{Dom}\left(A^{k}\right)$ for every $t>0$.
(6) Consider the initial-value problem over $\mathbb{R}^{D} \times[0, \infty)$ formally given by

$$
\partial_{t t} u+\Delta_{x}^{2} u=0,\left.\quad u\right|_{t=0}=u_{I},\left.\quad \partial_{t} u\right|_{t=0}=v_{I}
$$

Formulate and prove a well-posedness result when $u_{I}$ and $v_{I}$ lie in any suitable Sololev spaces $H^{r}\left(\mathbb{R}^{D}\right)$ and $H^{s}\left(\mathbb{R}^{D}\right)$ respectively. (You may choose $r$ and $s$ or relate them.)
(7) Let $A=\sqrt{-\Delta_{x}}$. For every $\tau>0, s>0$, and $r \geq 0$ define

$$
\operatorname{Dom}\left(e^{\tau A^{\frac{1}{s}}}, H^{r}\left(\mathbb{T}^{D}\right)\right)=\left\{w \in H^{r}\left(\mathbb{T}^{D}\right): e^{\tau A^{\frac{1}{s}}} w \in H^{r}\left(\mathbb{T}^{D}\right)\right\}
$$

Show that $\operatorname{Dom}\left(e^{\tau A^{\frac{1}{s}}}, H^{r}\left(\mathbb{T}^{D}\right)\right)$ is an algebra (a linear space that is closed under multiplication) when $s \geq 1$ and $r>\frac{D}{2}$.

