LIMITS AND INTEGRABILITY:
BASIC CONCEPTS AND GENERAL RULES

by David Levermore
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This is a survey of some basic facts about integration that will be covered on our
third exam. It supplements the material covered in the book (Chapter 3 and Sections 7.5
and 7.6) and the class lectures. It covers the definite integral as a limit of Riemann sums,
its interpretations in terms of area and averages, the Fundamental Theorem of Calculus,
its interpretation in terms of total change, general properties of the definite integral, and

numerical integration.



1. THE DEFINITE INTEGRAL

1.1: Integrability. Let f be a function defined over an interval [a, b]. The definite integral
of f over [a, b] is defined to be the limit of Riemann sums. These sums are constructed by
first dividing [a, b] into n subintervals with points z that are ordered so that

a=20< 21 <+ < Tp_1<Tp=>.
The k" subinterval is then [zy_1, z%] and its length is given by
A.’Ek =T — Tk—1 - (1.1)

A so-called general Riemann sum associated with these subintervals has the form

n
Zf(pk) Az, where pg is some point in [zg_1, Tg]. (1.2)
k=1

If f is not too badly behaved, it is reasonable to expect that if one lets n get larger and
larger while choosing the points zj in such a way so as to make each Axy get smaller
and smaller, then no matter how the points pg are chosen, the Riemann sums will always
converge to the same number. When this is the case, one says f is integrable over the
interval [a, b] and the limiting number is called the definite integral of f over [a, b] and
is denoted by

b
/ () dz. (1.3)

An important fact that you should know, which was given without proof, is the following.

The Integrability Theorem. If either f is monotonic over [a,b], or f is bounded over
[a,b] and is continuous at all but a finite number of points in [a, b] then it is integrable
over [a,b]. In particular, if f is continuous over [a, b] then it is integrable over [a, b].

The notations ‘[’ and ‘dz’ that appear in (1.3) parallel the notations ‘" and ‘Az’
that appear in the approximating Riemann sums (1.2). The symbol ‘[’ is an old fashion
letter ‘s’ and reflects the fact the definite integral arises as the limit of sums. The symbol
‘dz’ is not just an ornament. As we will see later, it can be thought of as an infinitesimally
small Az. In applications where f and x each have units of measure, the units of each
Riemann sum will be the units of f(px) Azr — namely, the product of the units of f times
the units of . The limiting definite integral will therefore have these same units. By
assigning units of z to the dz in (1.3), the units of the definite integral are made clear.
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You should remember that the value of the definite integral (1.3) is a number that
depends only on f, which is called the integrand, and a and b, which are respectively
called the lower and upper endpoints or limits of integration . It does not depend «x,
which is called the variable of integration. Thereby, one has that

/abf(af)dx=/abf(2)dz:/abf(t)dt:'_"

The variable of integration is therefore sometimes referred to as a “dummy” variable.

1.2: Definite Integrals of Monotonic Functions. If [a,b] is divided into n uniform
subintervals, the length of each subinterval is then given by
b—a

Az = _— (1.4)

The k" subinterval is then [z}_1, zx] where the points z, are given by the formula
rx=a+ kAx, fork=0,1,---,n. (1.5)

The so-called right-hand sum corresponds to the choice py = xj in (1.2) because zy, is
the right-hand endpoint of [zg_1, zg]. It is denoted by RIGHT,,. The so-called left-hand
sum corresponds to the choice py = zx_1 in (1.2) because zj_1 is the left-hand endpoint
of [zg—_1,zk]- It is denoted by LEFT,,.

It should be clear from the graph of f that if f is increasing over [a, b] then

b
LEFT, < / f(z) dz < RIGHT,,

while if f is decreasing over [a, b] then

b
RIGHT,, < / f(z) dz < LEFT,.
However, one can show (can you?) that
RIGHT,, — LEFT,, = (f(b) — f(a)) Az.

From (1.4) one sees that Az goes to zero as n goes to infinity. Hence, both the right-hand
and left-hand sums must converge to the definite integral of f.



1.3: The Definite Integral and Area. When a function f is positive over an interval
[a, b] then the definite integral of f over [a, b] may be interpreted as giving the area of the
region enclosed by the vertical lines x = a and x = b, the z-axis y = 0, and the curve
y = f(z). Roughly speaking, one can say that

b
/ f(z) dz = the area of the region below f and over [a, b]. (1.6)

This interpretation can be used to evaluate the definite integral when the integrand de-
scribes a geometric region for which you know how to compute the area.

Example; One sees that

" 1
/ V12 —z2de = —7r?,
0 4

because the region under the curve y = v/r2 — 22 over [0,r] is one quarter of the disk
centered at the origin of radius r.

Example; One sees that

(ma + k) + (mb+ k) b2 — a?

b
/{L(mx+k)dx: 5 (b—a)=m 5

+k(b—a),

because the region under the curve y = mx + k over [a, b] is a trapezoid with base (b — a)
and heights (ma + k) and (mb + k).

In the above examples the regions described by the integrals were simple geometric
shapes for which you know formulas for the area. The same approach can be used when
the region described by the integral can be decomposed into several such simple geometric
shapes.

Example: You can use this approach to show that

V3
2
/ 1/4—.’172d.’17:—ﬂ-+§,
0 3 2

by decomposing the region into a pie slice and a triangle. More generally, you can use a
similar decomposition to show for |b| < r that

b 2 b
/ Vr2 —z?dx = % sin™!(b/r) + 5\/7‘2 —b2.
0

It is clear that only very few definite integrals can be evaluated by this approach.
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When a function f takes both positive and negative values over an interval [a, b] then
the definite integral of f over [a,b] may be interpreted as giving the so-called signed area
of f over [a, b]. Specifically, if one considers the region enclosed by the vertical lines z = a
and z = b, the z-axis y = 0, and the curve y = f(z), then

b
/ f(x) dx = the area of the part of the region that lies above the z-axis (1.7)

— the area of the part of the region that lies below the z-axis.

This interpretation can also be used to evaluate the definite integral when the integrand
describes a geometric region that can be decomposed into simple geometric shapes for
which you know how to compute the area.

1.4: The Definite Integral and Average Value. The definite integral of a function f
over an interval [a, b] may also be interpreted in terms of the average value of f over that
interval. Specifically, one has that

b
the average value of f over [a,b] = 2 i - / f(z)dz. (1.8)

a
The motivation for this interpretation is as follows. Suppose that [a,b] is divided into n
uniform subintervals. The length of each subinterval is therefore Az = (b—a)/n. Suppose
that we select a point p; from the k** subinterval for each of the n subintervals. The n
points {p1,pa, -+ ,pn} are thereby uniformly distributed throughout [a, b]. Now it is clear

from our usual understanding of averages that

the average of the values {f(p1), f(p2), -, f(pn)} = %Zf(pk)
k=1

But because Az = (b — a)/n, this expression for the average value of f over the points pg
can be recast in terms of a Riemann sum as

1 1 <
;Zf(pk) = me(pk)Ax-
k=1 k=1

As n get larger and larger, then no matter how the points py are selected, these expressions
for average values of f will therefore converge to the right-hand side of (1.8).

Geometrically, (1.8) states that the average value of f over [a,b] is the height of the
rectangle whose base is [a, b] (which has a width of b — a) and whose signed area equals
the signed area of the region enclosed by the vertical lines x = a and x = b, the z-axis
y = 0, and the curve y = f(x). You should understand this interpretation well enough to
recognize when to apply it in a word problem.



2. THE FUNDAMENTAL THEOREM OF CALCULUS

The most important theorem in calculus relates the concept of the derivative to that
of the definite integral. It is the following.

The Fundamental Theorem of Calculus. If F' is any differentiable function whose
derivative F’ is integrable over [a, b] then

b b
F(b) — F(a) = F(x) :/ F'(z)dz. (2.1)

a

In particular, (2.1) holds whenever F' is continuously differentiable over [a, b] (which means
that F' is differentiable and F' is continuous (hence, integrable) over [a, b].)

Remark: The requirement that F’ be integrable is necessary. Consider F' defined by

1

x2cos<—2> for z # 0,
T

0 forx =0.

F(x) =

This function is differentiable everywhere with F’ given by

2 ! +2 1 f #0

—sin| — rcos| — or T
Fl(z)=X% =z 2 2 ’

0 forx =0.

Because F' is unbounded near z = 0, its definite integral on the right-hand side of (2.1)
does not exist (in the sense defined in Section 1.1) over any interval containing x = 0.

2.1: The Definite Integral Gives Total Change. The Fundamental Theorem of
Calculus may be interpreted as stating that the total change of a quantity F'(z) between
x = a and z = b is given by the definite integral from a to b of F'(z), its rate of change
with respect to x. For example, if s(t) gives the position of an object as a continuously
differentiable function of time ¢ over [a, b] then its velocity is given by v(t) = s'(t), and the
total distance traveled between t = a and ¢t = b is given by

b
s(b) — s(a) = / o(t) dt .

More generally, if F' is any continuously differentiable function of time ¢ over [a,b] then
the instantaneous rate of change of F'(t) at time ¢ is given by F'(¢), and the total change
of F(t) between t = a and t = b is given by

F(b) — F(a) = /b Fl(t) dt.
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You should understand this interpretation of the Fundamental Theorem well enough to
recognize when to apply it in a word problem.

2.2: The Evaluation of Definite Integrals. The Fundamental Theorem of Calculus
yields the most powerful tool with which to evaluate definite integrals. It implies that if f
is integrable over [a, b] and IF you know a function F' such that F' = f then

b

b
/ f(x)dx = F(z)| = F(b)— F(a). (2.2)

a

The ‘big IF’ in the application of this theorem for a given integrand f is in finding a
function F' such that F’ = f. Such a function F is called a primitive or antiderivative
of f. Correspondingly, finding such a function for a given f is called integration or
antidifferentiation of f.

Given a simple enough analytic expression defining a function, you should be able to
find a primitive of the function by inspection using your knowledge of derivatives. For
example, the functions

g(t) =1 +2t, w(z) = (z —1)2, f(x) = sin(3z),

respectively have primitives

Gt) = %t“ 2, W) = %(z _1E, F(a) = _% cos(3z) .

Therefore any definite integral with the above g, w, or f as integrands may be easily eval-
uated using the Fundamental Theorem. Examples that make use of the above primitives

2 1
/ 3+ 2 dt = (—t4 +t2)
o 4

? 2 1 3
/_2(2'—1) dz:g(z—l)

are
2

=(4+4)—(0+0)=8,

S 27\ _ 28
. 3 3) 37

/ sin(3z) dx = ! cos(3z)
0 3

ol
olx

1 1 1 1
= —— U — 0)=0 - = —,
) 3cos(2)—i-3cos() t3=3

Notice that there are plenty of chances to make sign errors in such calculations. However,
if you take a moment to visualize the integrand, the correct sign of the definite integral
might be obvious. For example, do you see that in each of the examples above the sign of
the integrand is positive over the interval of integration?



3. OTHER PROPERTIES OF THE DEFINITE INTEGRAL

The definite integral has many general properties with which you should become
familiar, some of which we will review in this section. You should try to understand each
of these properties at least three ways: graphically through areas, analytically through the
Fundamental Theorem of Calculus, and numerically through approximating sums.

3.1: Endpoints of Integration. Let f be any function that is integrable over the
intervals indicated. Then

/abf(x)d:c:—/baf(x)d:c
/acf(x)d:c:/abf(a:)da:-{-/bcf(x)dm

These are expressed in words as “exchanging the endpoints of integration changes the sign
of the integral” and “the integral over an interval that is divided into subintervals is the
sum of the integrals over those subintervals” respectively. They hold no matter how a, b
and c are ordered.

3.2: Linear Combinations of Integrands. Given any two functions f and g that are
integrable over an interval [a,b], and a constant k, the functions kf and f + g are also
integrable over an interval [a, b], and their definite integrals are given by

/kf a:—k/f )dx,
/f(a:-l—g da:—/f dx—l—/ g(z)dx.

These are expressed in words as “the integral of a multiple is the multiple of the integral”
and “the integral of a sum is the sum of the integrals” respectively.

Recall that the linear combinations of n given functions {f1, fo, -, fn} are all those
functions of the form ki f1+ks fo+- - -+ky, fr, for some choice of n constants {k1, ko, -+, kn }-
In other words, the linear combinations are all those function that can be built up from
the given functions {fi, fa,-- -, fn} by repeated multiplication by constants and addition.
If each of the given functions {f1, f2, - -, fn} is integrable over an interval [a,b] then
repeated applications of the multiplication and sum rules (3.2) show that each such linear
combination is also integrable over an interval [a,b] and its definite integral over [a,b] is



given by .
| i@+ kaa(o) 4+ b ()
a 5 X (3.3)
= kl/ fl(x)da:—l-kz/ fg(a:)dx—i-----l-kn/ fn(z)dz.

This is expressed in words as “the integral of a linear combination is the linear combination
of the integrals”. It is important to understand that this rule need not be memorized
because all it does is embody repeated applications of (3.2). That is to say, if you have
truly mastered (3.2) then (3.3) will seem obvious to you and will not need to be memorized.

Given any two functions f and g that are integrable over an interval [a, b], a particular
instance of the linear combination rule (3.3) is

[ 16— gwyas= [ s [ gan (3.4)

This is expressed in words as “the integral of a difference is the difference of the integrals”.
As an instance of (3.3), this rule also should seem obvious based on a mastery of (3.2).

3.3: Even and Odd Symmetries. If f is an even function over a symmetric interval
[—b,b], and if f is integrable over [0, b], then f is integrable over [—b, 0] with

/_(;f(x) dz = /Obf(a:) dz | (3.5)

and f is integrable over [—b, b] with

/_bbf(a:) dr = 2/0bf(33) dz . (3.6)

Relations (3.5) and (3.6) should be evident to you from the symmetry of the graph of f
about the vertical axis.

If f is an odd function over a symmetric interval [—b, b, and if f is integrable over
[0, b], then f is integrable over [—b, 0] with

/_(;f(x)dm:—/obf(x)da:, (3.7)

and f is integrable over [—b, b] with
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Relations (3.7) and (3.8) should be evident to you from the symmetry of the graph of f
about the origin.

Relation (3.8) is particularly useful because it allows you to evaluate some definite
integrals that can not be evaluated any other way. For example, one sees that

1
/ tan(z°) dz =0,

-1
because the integrand is odd and the interval of integration is symmetric about the origin.

Even in cases that can be evaluated by another method, this approach is quicker if it
applies. For example,

/6 tan®(z)dr =0,

™

6

because the integrand is odd and the interval of integration is symmetric about the origin.

3.4: Periodic and Antiperiodic Symmetries. If f has period p, and if f is integrable
over [a, b], then f is integrable over [a + p, b + p] with

/a :}p F(w) dz = / " fa) de. (3.9)

If moreover f is integrable over any interval of length p, say [a, a + p], then it is integrable
over every interval of length p with

/b " @) do = / " @) de, (3.10)

for every b. Relations (3.9) and (3.10) should be evident to you from the periodic symmetry
of the graph of f.

If f has antiperiod p, and if f is integrable over [a,b], then f is integrable over
[a + p, b+ p] with

" f(z)dz = — ’ f(z)da. (3.11)
/ /

+p
If moreover f is integrable over [a, b+ p] where a < b then

/a " (@) do = /b @) o (3.12)

By setting b = a + p in (3.12), one finds that if f is integrable over any interval of length
p then it is integrable over every interval of length 2p with

a+2p
/ flx)dx=0. (3.13)
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In other words, if f has antiperiod p and it is integrated over any interval of length twice
p, the integral is zero. Relations (3.11), (3.12) and (3.13) should be evident to you from
the antiperiodic symmetry of the graph of f.

Relation (3.13) is particularly useful because it allows you to easily evaluate some
definite integrals that are hard to evaluate any other way. For example, one sees that

/047T sin(cos(z))dxr =0,

because the integrand has antiperiod 7w and the integration is over an interval whose length
is an even multiple of 7. Even in cases that can be evaluated by another method, this
approach is quicker if it applies. For example,

/ cos®(x)dr =0,

—T

because the integrand has antiperiod 7 and the integration is over an interval whose length
is an even multiple of .

3.5: Comparison. Let f and g be functions that are integrable over an interval [a, b]. If

f < g over [a,b] then
b b
/ f(zx) dmg/ g9(z)dz.

/abf(a:)da:</abg(x)da:.

The way that these are most often used is in instances where one can evaluate the integral

If f < g over (a,b) then

for one of the functions, where one obtains a bound on the other. For example, because
one sees that e* < e* over (0,2), one sees that

2 2
/ e’ dx</ et dr = 2¢*.
0 0

This upper bound is very crude. You will see that if you evaluate the integral on the left
numerically. Similarly, because one sees that 1 < e®” over (0,2), one sees that

2 2,
2:/1dm</e$ dz .
0 0

This lower bound is also very crude.
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4. NUMERICAL INTEGRATION

There are definite integrals for which no exact value is known. In such a case one must
resort to approximating the value of the integral by so-called numerical integration or
quadrature methods. Most calculators now have a routine that approximately evaluates

/abf(:c) dz

for any given an integrand f and endpoints of integration a and b. The methods they use
are advanced versions of the ones we study.

All the methods we will study divide the interval [a,b] into n uniform subintervals.
The length Az of each subinterval is given by

b—a
Az = ) 4.1
r=" (1)

The k" subinterval is then [zy_1, zx] where
0= <T1 < - < Tp_1<x,=0>,

with xj given by the formula
T =a+ kAx. (4.2)

Most basic numerical integration methods associated with these subintervals are built-up

from one or more Riemann sums of the form
n
(Z f(pk)) Az, where pg is some point in [zg_1, Tg]. (4.3)
k=1

When f is positive such a sum approximates the area under the curve y = f(x) over the
k" subinterval by the area of a rectangle of height f(py). Given an interval [a,b] and
a number of subintervals n, you should be able to compute Az and the points xj using
(4.1) and (4.2). Given moreover an integrand f and a rule for choosing the points pg, you
should be able to set up a Riemann sum of the form (4.3).

1: The Left-Hand and Right-Hand Rules. The so-called left-hand rule is denoted
by LEFT,, and corresponds to the Riemann sum (4.3) with the choice py = zx_1, which is
the left-hand endpoint of the k** subinterval. The so-called right-hand rule is denoted
by RIGHT,, and corresponds to the Riemann sum (4.3) with the choice pr = zx, which is
the right-hand endpoint of the k** subinterval. These rules are related by the identity

RIGHT,, — LEFT,, = (f(b) — f(a)) Az. (4.4)
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Can you see this both graphically and analytically?

The left-hand and right-hand rules are clearly both exact for constant functions. It is
also clear that if f is increasing over [a, b] then the left-hand rule gives an underestimate
while the right-hand rule gives an overestimate:

b
LEFT,, < / f(z)dz < RIGHT,, .

Similarly, if f is decreasing over [a, b] then the right-hand rule gives an underestimate while
the left-hand rule gives an overestimate:

b
RIGHT,, < / f(z)dx < LEFT,,.

Hence, if f is either increasing over [a, b] or decreasing over [a, b] then the right-hand and
left-hand rules are each accurate to within |RIGHT,, — LEFT,,|. But by (4.4), we know
that

IRIGHT,, — LEFT,| = |f(b) — f(a)| Az.

Hence, if f is either increasing over [a, b] or decreasing over [a, b] then the error ERROR,,
made by either the left-hand or right-hand rule satisfies

[ERROR,,| < |£(b) - f(a)| Az (4.5)

This upper bound for the size of the error can be made as small as you wish by picking n
large enough. It decreases like 1/n as n increases.

Advanced methods show that if f is any differentiable function with f(a) # f(b) then
as n gets larger and larger the leading order errors of LEFT,, and RIGHT,, are given by

1

b
LEFT, - [ f()ds~~3 (f0) - f(@) Aw,
a 2 (4.6)

b
RIGHT,, —/ () dz ~ % (F(b) - f(a)) Aa.

Notice that these errors have opposite signs, about equal magnitude, and decrease like 1/n
as n increases. Moreover, they are consistent with (4.4) and (4.5).

2: The Midpoint and Trapezoidal Rules. The so-called midpoint rule is denoted
by MID,, and corresponds to the Riemann sum (4.3) with the choice py = % (zx—1 + z),
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which is the midpoint of the k** subinterval. The trapezoidal rule is denoted by TRAP,,
and is the average of the left-hand and right-hand Riemann sums given by

TRAP,, = ; (LEFT, + RIGHT,,) . (4.7)

For this combination the leading order errors of LEFT,, and RIGHT,, given by (4.6) cancel.

Both the midpoint and trapezoidal rules can be thought of as approximating the area
under the curve over each subinterval by that of a trapezoid. In the case of the midpoint
rule the top of the trapezoid is given by the tangent line at the midpoint of the subinterval,
while in the case of the trapezoidal rule the top of the trapezoid is given by the secant line
associated with the endpoints of the subinterval. The midpoint and trapezoidal rules are
therefore both exact for linear functions. This way of looking at them also shows that if f is
concave up over [a, b] then the midpoint rule gives an underestimate while the trapezoidal

rule gives an overestimate:
b
MID,, < / f(z)dx < TRAP, .
a

Similarly, if f is concave down over [a, b] then the trapezoidal rule gives an underestimate
while the midpoint rule gives an overestimate:

b
TRAP, < / f(z)dz < MID,, .

Hence, if f is either concave up over [a,b] or concave down over [a, b] then the midpoint
and trapezoidal rules are each accurate to within [TRAP,, — MID,,|.

In practice you will find that the midpoint rule is always better than the trapezoidal
rule when f is either concave up over [a,b] or concave down over [a,b]. This can be
understood analytically by noticing that the midpoint and trapezoidal rules are related by

TRAP;, = ;TRAP, + {MID,, . (4.8)
Hence, if f is concave up over [a, b] then
b
MID,, < / f(z) dz < TRAP,, = 1TRAP,, + 1MID,,,

whereby

b b
1
0< / f(2) dz —MID, < 7 (TRAP, — MID,) < TRAP, — / f(z) dz.
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Similarly, if f is concave down over [a, b] then

b b
1
0 < MID,, — / f(z)dz < 3 (MID,, — TRAP,,) < / f(x)dx — TRAP,,.
Hence, if f is either concave up over [a,b] or concave down over [a, b| then the midpoint
rule is better than the trapezoidal rule. Can you see this graphically?

Recall that when is either increasing over [a, b] or dereasing over [a, b] the size of the
error made by either the left-hand or right-hand rule satisfies the upper bound given by
(4.5). Similarly, there is an upper bound for the size of the error made by the midpoint
and trapezoidal rules when f is either concave up over [a,b] or concave down over [a, b].
Because we have already showed that the midpoint rule is better than the trapezoidal rule
in those cases, all that remains is to find an upper bound for the size of the error made
by the trapezoidal rule. If f is concave up over [a,b] then the trapezoidal rule gives an
overestimate for the integral. The integral can be underestimated over [a, b] by replacing
f with its tangent line approximation at xy over each subinterval [z} — %Aaz, T + %Am]
(A picture should make this clear.) When this approximation is integrated over [a,b] one
finds that

1 b
TRAP, — ¢ (7/(b) - /'(@) (Ax)” < / ) ds,
whereby
b 1
TRAP,, —/ f@)do < < (£/(0) - /(@) (A0)*.
Similarly, if f is concave down over [a, b] then

b
/ f(z)dx — TRAP, < —% (f'(b) _ f’(a)) (Az)?.

Hence, if f is either concave up over [a,b] or concave down over [a,b]| then the errors
MID-ERROR,, and TRAP-ERROR,, made by the midpoint and trapezoidal rules satisfy

IMID-ERROR,,| < [TRAP-ERROR,,| < é If'(b) — f'(a)| (Az)?. (4.9)

This upper bound for the size of the error can be made as small as you wish by picking
n large enough. It decreases like 1/n? as n increases. This is a much better rate of
convergence than that given by (4.5) for the left-hand and right-hand rules.
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Advanced methods show that if f is any twice differentiable function with f'(a) # f’(b)
then as n gets larger and larger the leading order errors of MID,, and TRAP,, are given by

MID, — [ gy~ L (70) ~ @) (0"
a 24 | (4.10)

b
TRAP,, — / f(z)dx ~ % (f’(b) — f’(a,)) (Am)Q .

Notice that the error for the midpoint rule is about half the size of that for the trape-
zoidal rule. Moreover, they have opposite signs, decrease like 1/n? as n increases, and are
consistent with (4.9).

3: Simpson’s Rule. The best numerical integration method we study is Simpson’s
rule. It is denoted by SIMP,, and is given by

SIMP,, = 2MID,, + 3 TRAP,, . (4.11)

For this combination the leading order errors of MID,, and TRAP,, given by (4.10) cancel.
If you recall that TRAP,, was defined by (4.7) as the average of the left-hand and right-

hand Riemann sums, Simpson’s rule can be expressed in terms of Riemann sums as
SIMP,, = LEFT,, + 2MID,, + {RIGHT,,.

It can be checked that Simpson’s rule is exact for cubic functions.

Advanced methods show that if f is any four times differentiable function with
f"(a) # f"(b) then as n gets larger and larger the leading order error of SIMP,, is
given by
1

~ m (f”l(b) . f”’(a)) (A$)4.

b
SIMP,, — / f(z)dz

Notice that the error of Simpson’s rule decreases like 1/n* as n increases.

Because it follows from (4.8) that
MID,, = 2TRAP,,, — TRAP,,,
another way to think of Simpson’s rule (4.11) is
SIMP,, = $TRAPy, — :TRAP,, .

This way to think of Simpson’s rule is related to the way one thinks of more advanced
numerical integration methods.



