First In-Class Exam Solutions

Math 246, Spring 2009, Professor David Levermore
(1) [12] Suppose you have used a numerical method to approximate the solution of an initial-value problem over the time interval $[0,5]$ with 1000 uniform time steps. About how many uniform time steps do you need to reduce the global error of your approximation by a factor of 81 if the method you had used was each of the following?
(a) Runge-Kutta method

Solution: This method is fourth order, so its global error scales like h^{4}. To reduce the error by a factor of 81 , you must reduce h by a factor of $81^{\frac{1}{4}}=3$. You must therefore increase the number of time steps by a factor of 3 , which means you need 3000 uniform time steps.
(b) Heun-midpoint method

Solution: This method is second order, so its global error scales like h^{2}. To reduce the error by a factor of 81 , you must reduce h by a factor of $81^{\frac{1}{2}}=9$. You must therefore increase the number of time steps by a factor of 9 , which means you need 9000 uniform time steps.
(c) Heun-trapezoidal method

Solution: This method is second order, so its global error scales like h^{2}. To reduce the error by a factor of 81 , you must reduce h by a factor of $81^{\frac{1}{2}}=9$. You must therefore increase the number of time steps by a factor of 9 , which means you need 9000 uniform time steps.
(d) Euler method

Solution: This method is first order, so its global error scales like h. To reduce the error by a factor of 81 , you must reduce h by a factor of 81 . You must therefore increase the number of time steps by a factor of 81 , which means you need 81000 uniform time steps.
(2) [20] Find the explicit solution for each of the following initial-value problems and identify its interval of existence (interval of definition).
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{e^{x}}{1+y}, \quad y(0)=-2$.

Solution: This equation is separable. Its separated differential form is

$$
(y+1) \mathrm{d} y=e^{x} \mathrm{~d} x, \quad \Longrightarrow \quad \frac{1}{2}(y+1)^{2}=e^{x}+c
$$

The initial condition $y(0)=-2$ implies that $c=\frac{1}{2}(-2+1)^{2}-e^{0}=\frac{1}{2}-1=-\frac{1}{2}$. Therefore $(y+1)^{2}=2 e^{x}-1$, which can be solved as

$$
z=-1-\sqrt{2 e^{x}-1}, \quad \text { with interval of existence } x>\log \left(\frac{1}{2}\right)
$$

The negative square root is needed to satisfy the initial condition.
(b) $\frac{\mathrm{d} u}{\mathrm{~d} t}=\frac{t^{3}-u}{1+t}, \quad u(2)=3$.

Solution: This equation is linear. Its linear normal form is

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}+\frac{1}{1+t} u=\frac{t^{3}}{1+t}
$$

An integrating factor is $\exp \left(\int_{0}^{t} \frac{1}{1+s} d s\right)=\exp (\log (1+t))=1+t$, so that

$$
\frac{\mathrm{d}}{\mathrm{~d} t}((1+t) u)=(1+t) \cdot \frac{t^{3}}{1+t}=t^{3}, \quad \Longrightarrow \quad(1+t) u=\frac{1}{4} t^{4}+c
$$

The initial condition $u(2)=3$ implies that $c=(1+2) \cdot 3-\frac{1}{4} 2^{4}=9-4=5$. Therefore

$$
u=\frac{\frac{1}{4} t^{4}+5}{1+t}, \quad \text { with interval of existence } t>-1
$$

(3) [16] Consider the differential equation $\frac{\mathrm{d} x}{\mathrm{~d} t}=x(2-x)(4-x)^{2}$.
(a) Sketch its phase-line. Indicate all of the stationary (equilibrium) solutions and classify each as being either stable, unstable, or semistable.
(b) If $x(0)=6$, how does the solution $x(t)$ behave as $t \rightarrow \infty$?
(c) If $x(0)=3$, how does the solution $x(t)$ behave as $t \rightarrow \infty$?
(d) If $x(0)=1$, how does the solution $x(t)$ behave as $t \rightarrow \infty$?
(e) If $x(0)=-2$, how does the solution $x(t)$ behave as $t \rightarrow \infty$?

Solution (a): The stationary solutions are $x=0, x=2$, and $x=4$. A sign analysis of $x(2-x)(4-x)^{2}$ shows that the phase-line for this equation is therefore

(b): The phase-line shows that if $x(0)=6$ then $x(t) \rightarrow 4$ as $t \rightarrow \infty$.
(c): The phase-line shows that if $x(0)=3$ then $x(t) \rightarrow 2$ as $t \rightarrow \infty$.
(d): The phase-line shows that if $x(0)=1$ then $x(t) \rightarrow 2$ as $t \rightarrow \infty$.
(e): The phase-line shows that if $x(0)=-2$ then $x(t) \rightarrow-\infty$ as $t \rightarrow \infty$.
(4) [16] Consider the following MATLAB function M-file.
function $[\mathrm{t}, \mathrm{y}]=$ solveit $(\mathrm{ti}, \mathrm{yi}, \mathrm{tf}, \mathrm{n})$
$\mathrm{h}=(\mathrm{tf}-\mathrm{ti}) / \mathrm{n}$;
$\mathrm{t}=\operatorname{zeros}(\mathrm{n}+1,1)$;
$\mathrm{y}=\operatorname{zeros}(\mathrm{n}+1,1)$;
$\mathrm{t}(1)=\mathrm{ti}$;
$y(1)=y i ;$
for $\mathrm{k}=1$: n
yhalf $=\mathrm{y}(\mathrm{k})+(\mathrm{h} / 2)^{*}\left(2^{*} \mathrm{y}(\mathrm{k})-(\mathrm{y}(\mathrm{k}))^{\wedge} 2\right)$;
$\mathrm{t}(\mathrm{k}+1)=\mathrm{t}(\mathrm{k})+\mathrm{h} ;$
$\mathrm{y}(\mathrm{k}+1)=\mathrm{y}(\mathrm{k})+\mathrm{h}^{*}\left(2^{*}\right.$ yhalf $\left.-(\text { yhalf })^{\wedge} 2\right) ;$
end
(a) What is the initial-value problem being approximated numerically?
(b) What is the numerical method being used?
(c) What are the output values of $t(2)$ and $y(2)$ that you would expect for input values of $\mathrm{ti}=1$, $\mathrm{yi}=1, \mathrm{tf}=5, \mathrm{n}=20$?
Solution (a): The initial-value problem being approximated numerically is

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=2 y-y^{2}, \quad y(\mathrm{ti})=\mathrm{yi}
$$

(b): It is being approximated by the Heun-midpoint method.
(c): When $\mathrm{ti}=1$, yi $=1$, $\mathrm{tf}=5, \mathrm{n}=20$ one has $\mathrm{h}=(\mathrm{tf}-\mathrm{ti}) / \mathrm{n}=(5-1) / 20=.2$, $\mathrm{t}(1)=\mathrm{ti}=1$, and $\mathrm{y}(1)=\mathrm{yi}=1$.
Setting $\mathrm{k}=1$ inside the "for" loop then yields

$$
\begin{aligned}
& \text { yhalf }=\mathrm{y}(1)+(\mathrm{h} / 2)\left(2 \mathrm{y}(1)-\mathrm{y}(1)^{2}\right)=1+.1(2 \cdot 1-1)=1.1, \\
& \mathrm{t}(2)=\mathrm{t}(1)+\mathrm{h}=1+.2=1.2, \\
& \mathrm{y}(2)=\mathrm{y}(1)+\mathrm{h}\left(2 \text { yhalf }- \text { yhalf }^{2}\right)=1+.2\left(2 \cdot 1.1-(1.1)^{2}\right) .
\end{aligned}
$$

The above answer got full credit, but $y(2)=1.198$ if you worked out the arithmetic.
(5) [16] A student borrows $\$ 6000$ at an interest rate of 10% per year compounded continuously. Assume that the student makes payments continuously at a constant rate of k dollars per year. Let $B(t)$ denote the balance of the loan at t years.
(a) Write down an initial-value problem that governs $B(t)$ at any positive time for which the balance is still positive.
(b) Determine the value of k required to pay off the loan in five years.

Solution (a): The balance $B(t)$ satisfies the initial-value problem

$$
\frac{\mathrm{d} B}{\mathrm{~d} t}=.1 B-k, \quad B(0)=6000
$$

(b): The equation is linear and can be put into the integrating factor form

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{-.1 t} B\right)=-k e^{-.1 t}, & \Longrightarrow \quad e^{-.1 t} B(t)=10 k e^{-.1 t}+c, \\
& \Longrightarrow B(t)=10 k+c e^{.1 t}
\end{aligned}
$$

The initial condition $B(0)=6000$ implies that $c=6000-10 k$. Hence,

$$
B(t)=10 k\left(1-e^{.1 t}\right)+6000 e^{.1 t} .
$$

Paying off the loan in five years means that $B(5)=0$. Therefore k must satisfy

$$
0=6000 e^{.5}-10 k\left(e^{.5}-1\right), \quad \Longrightarrow \quad k=\frac{600 e^{.5}}{e^{.5}-1} .
$$

(6) [20] Give an implicit general solution to each of the following differential equations.
(a) $2 x y \mathrm{~d} x+\left(2 x^{2}+e^{y}\right) \mathrm{d} y=0$.

Solution: This differential form is not exact because

$$
\partial_{y}(2 x y)=2 x \quad \neq \quad \partial_{x}\left(2 x^{2}+e^{y}\right)=4 x .
$$

You therefore seek an integrating factor μ such that

$$
\partial_{y}[2 x y \mu]=\partial_{x}\left[\left(2 x^{2}+e^{y}\right) \mu\right] .
$$

Expanding the partial derivatives yields

$$
2 x y \partial_{y} \mu+2 x \mu=\left(2 x^{2}+e^{y}\right) \partial_{x} \mu+4 x \mu
$$

If you set $\partial_{x} \mu=0$ then this becomes

$$
2 x y \partial_{y} \mu+2 x \mu=4 x \mu,
$$

which reduces to $y \partial_{y} \mu=\mu$. This has the normal form

$$
\partial_{y} \mu-\frac{1}{y} \mu, \quad \Longrightarrow \quad \partial_{y}\left(\frac{\mu}{y}\right)=0
$$

which yields the integrating factor $\mu=y$.
Because y is an integrating factor, the differential form

$$
2 x y^{2} \mathrm{~d} x+\left(x^{2} y+y e^{y}\right) \mathrm{d} y=0 \quad \text { is exact. }
$$

You can therefore find $H(x, y)$ such that

$$
\partial_{x} H(x, y)=2 x y^{2}, \quad \partial_{y} H(x, y)=x^{2} y+y e^{y} .
$$

Integrating the first equation with respect to x yields

$$
H(x, y)=\int 2 x y^{2} \mathrm{~d} x=x^{2} y^{2}+h(y)
$$

Plugging this expression for $H(x, y)$ into the second equation gives

$$
2 x^{2} y+h^{\prime}(y)=\partial_{y} H(x, y)=2 x^{2} y+y e^{y}
$$

which yields $h^{\prime}(y)=y e^{y}$. One integration by parts then yields

$$
h(y)=\int y e^{y} \mathrm{~d} y=y e^{y}-\int e^{y} \mathrm{~d} y=y e^{y}-e^{y}-c
$$

Taking $h(y)=(y-1) e^{y}$, a general solution is therefore given implicitly by

$$
x^{2} y^{2}+(y-1) e^{y}=c
$$

(b) $\left(3 x^{2} y^{2}+5 x^{4}\right) \mathrm{d} x+\left(2 x^{3} y+4 y^{3}\right) \mathrm{d} y=0$.

Solution: This differential form is exact because

$$
\partial_{y}\left(3 x^{2} y^{2}+5 x^{4}\right)=6 x^{2} y=\partial_{x}\left(2 x^{3} y+4 y^{3}\right)=6 x^{2} y .
$$

We can therefore find $H(x, y)$ such that

$$
\partial_{x} H(x, y)=3 x^{2} y^{2}+5 x^{4}, \quad \partial_{y} H(x, y)=2 x^{3} y+4 y^{3} .
$$

Integrating the second equation with respect to y yields

$$
H(x, y)=\int\left(2 x^{3} y+4 y^{3}\right) \mathrm{d} x=x^{3} y^{2}+y^{4}+h(x)
$$

Plugging this expression for $H(x, y)$ into the first equation gives

$$
3 x^{2} y^{2}+h^{\prime}(x)=\partial_{x} H(x, y)=3 x^{2} y^{2}+5 x^{4}
$$

which yields $h^{\prime}(x)=5 x^{4}$. Taking $h(x)=x^{5}$, a general solution is therefore given implicitly by

$$
x^{3} y^{2}+y^{4}+x^{5}=c .
$$

