
First In-Class Exam Solutions
Math 246, Spring 2009, Professor David Levermore

(1) [12] Suppose you have used a numerical method to approximate the solution of an
initial-value problem over the time interval [0, 5] with 1000 uniform time steps. About
how many uniform time steps do you need to reduce the global error of your approx-
imation by a factor of 81 if the method you had used was each of the following?

(a) Runge-Kutta method
Solution: This method is fourth order, so its global error scales like h4. To
reduce the error by a factor of 81, you must reduce h by a factor of 81

1

4 = 3.
You must therefore increase the number of time steps by a factor of 3, which
means you need 3000 uniform time steps.

(b) Heun-midpoint method
Solution: This method is second order, so its global error scales like h2. To
reduce the error by a factor of 81, you must reduce h by a factor of 81

1

2 = 9.
You must therefore increase the number of time steps by a factor of 9, which
means you need 9000 uniform time steps.

(c) Heun-trapezoidal method
Solution: This method is second order, so its global error scales like h2. To
reduce the error by a factor of 81, you must reduce h by a factor of 81

1

2 = 9.
You must therefore increase the number of time steps by a factor of 9, which
means you need 9000 uniform time steps.

(d) Euler method
Solution: This method is first order, so its global error scales like h. To reduce
the error by a factor of 81, you must reduce h by a factor of 81. You must
therefore increase the number of time steps by a factor of 81, which means you
need 81000 uniform time steps.

(2) [20] Find the explicit solution for each of the following initial-value problems and
identify its interval of existence (interval of definition).

(a)
dy

dx
=

ex

1 + y
, y(0) = −2.

Solution: This equation is separable. Its separated differential form is

(y + 1) dy = ex dx , =⇒ 1

2
(y + 1)2 = ex + c .

The initial condition y(0) = −2 implies that c = 1

2
(−2 + 1)2− e0 = 1

2
− 1 = −1

2
.

Therefore (y + 1)2 = 2ex − 1, which can be solved as

z = −1−
√

2ex − 1 , with interval of existence x > log(1

2
) .

The negative square root is needed to satisfy the initial condition.

(b)
du

dt
=

t3 − u

1 + t
, u(2) = 3.

1



2

Solution: This equation is linear. Its linear normal form is

du

dt
+

1

1 + t
u =

t3

1 + t
.

An integrating factor is exp
( ∫ t

0

1

1+s
ds

)

= exp(log(1 + t)) = 1 + t, so that

d

dt

(

(1 + t)u
)

= (1 + t) · t3

1 + t
= t3 , =⇒ (1 + t)u = 1

4
t4 + c .

The initial condition u(2) = 3 implies that c = (1 + 2) · 3 − 1

4
24 = 9 − 4 = 5.

Therefore

u =
1

4
t4 + 5

1 + t
, with interval of existence t > −1 .

(3) [16] Consider the differential equation
dx

dt
= x(2− x)(4− x)2.

(a) Sketch its phase-line. Indicate all of the stationary (equilibrium) solutions and
classify each as being either stable, unstable, or semistable.

(b) If x(0) = 6, how does the solution x(t) behave as t→∞?
(c) If x(0) = 3, how does the solution x(t) behave as t→∞?
(d) If x(0) = 1, how does the solution x(t) behave as t→∞?
(e) If x(0) = −2, how does the solution x(t) behave as t→∞?

Solution (a): The stationary solutions are x = 0, x = 2, and x = 4. A sign analysis
of x(2− x)(4− x)2 shows that the phase-line for this equation is therefore

− + − −
←←←← • →→→→ • ←←←← • ←←←← y

0 2 4
unstable stable semistable

(b): The phase-line shows that if x(0) = 6 then x(t)→ 4 as t→∞.
(c): The phase-line shows that if x(0) = 3 then x(t)→ 2 as t→∞.
(d): The phase-line shows that if x(0) = 1 then x(t)→ 2 as t→∞.
(e): The phase-line shows that if x(0) = −2 then x(t)→ −∞ as t→∞.

(4) [16] Consider the following MATLAB function M-file.

function [t,y] = solveit(ti, yi, tf, n)

h = (tf - ti)/n;
t = zeros(n + 1, 1);
y = zeros(n + 1, 1);
t(1) = ti;
y(1) = yi;
for k = 1:n
yhalf = y(k) + (h/2)*(2*y(k) - (y(k))̂ 2);
t(k + 1) = t(k) + h;
y(k + 1) = y(k) + h*(2*yhalf - (yhalf)̂ 2);
end
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(a) What is the initial-value problem being approximated numerically?
(b) What is the numerical method being used?
(c) What are the output values of t(2) and y(2) that you would expect for input

values of ti = 1, yi = 1, tf = 5, n = 20?

Solution (a): The initial-value problem being approximated numerically is

dy

dt
= 2y − y2 , y(ti) = yi .

(b): It is being approximated by the Heun-midpoint method.
(c): When ti = 1, yi = 1, tf = 5, n = 20 one has h = (tf – ti)/n = (5 – 1)/20 = .2,
t(1) = ti = 1, and y(1) = yi = 1.
Setting k = 1 inside the “for” loop then yields

yhalf = y(1) + (h/2) (2 y(1) – y(1)2) = 1 + .1 (2 · 1− 1) = 1.1 ,

t(2) = t(1) + h = 1 + .2 = 1.2 ,

y(2) = y(1) + h (2 yhalf – yhalf2) = 1 + .2 (2 · 1.1− (1.1)2) .

The above answer got full credit, but y(2) = 1.198 if you worked out the arithmetic.

(5) [16] A student borrows $6000 at an interest rate of 10% per year compounded con-
tinuously. Assume that the student makes payments continuously at a constant rate
of k dollars per year. Let B(t) denote the balance of the loan at t years.

(a) Write down an initial-value problem that governs B(t) at any positive time for
which the balance is still positive.

(b) Determine the value of k required to pay off the loan in five years.

Solution (a): The balance B(t) satisfies the initial-value problem

dB

dt
= .1B − k , B(0) = 6000 .

(b): The equation is linear and can be put into the integrating factor form

d

dt

(

e−.1tB
)

= −ke−.1t , =⇒ e−.1tB(t) = 10ke−.1t + c ,

=⇒ B(t) = 10k + ce.1t .

The initial condition B(0) = 6000 implies that c = 6000− 10k. Hence,

B(t) = 10k(1− e.1t) + 6000e.1t .

Paying off the loan in five years means that B(5) = 0. Therefore k must satisfy

0 = 6000e.5 − 10k(e.5 − 1) , =⇒ k =
600e.5

e.5 − 1
.

(6) [20] Give an implicit general solution to each of the following differential equations.

(a) 2xy dx + (2x2 + ey) dy = 0 .

Solution: This differential form is not exact because

∂y(2xy) = 2x 6= ∂x(2x
2 + ey) = 4x .

You therefore seek an integrating factor µ such that

∂y[2xyµ] = ∂x[(2x
2 + ey)µ] .
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Expanding the partial derivatives yields

2xy∂yµ + 2xµ = (2x2 + ey)∂xµ + 4xµ .

If you set ∂xµ = 0 then this becomes

2xy∂yµ + 2xµ = 4xµ ,

which reduces to y∂yµ = µ. This has the normal form

∂yµ−
1

y
µ , =⇒ ∂y

(

µ

y

)

= 0 ,

which yields the integrating factor µ = y.

Because y is an integrating factor, the differential form

2xy2 dx + (x2y + yey) dy = 0 is exact .

You can therefore find H(x, y) such that

∂xH(x, y) = 2xy2 , ∂yH(x, y) = x2y + yey .

Integrating the first equation with respect to x yields

H(x, y) =

∫

2xy2 dx = x2y2 + h(y) .

Plugging this expression for H(x, y) into the second equation gives

2x2y + h′(y) = ∂yH(x, y) = 2x2y + yey ,

which yields h′(y) = yey. One integration by parts then yields

h(y) =

∫

yeydy = yey −
∫

ey dy = yey − ey − c .

Taking h(y) = (y − 1)ey, a general solution is therefore given implicitly by

x2y2 + (y − 1)ey = c .

(b) (3x2y2 + 5x4) dx + (2x3y + 4y3) dy = 0 .

Solution: This differential form is exact because

∂y(3x
2y2 + 5x4) = 6x2y = ∂x(2x

3y + 4y3) = 6x2y .

We can therefore find H(x, y) such that

∂xH(x, y) = 3x2y2 + 5x4 , ∂yH(x, y) = 2x3y + 4y3 .

Integrating the second equation with respect to y yields

H(x, y) =

∫

(2x3y + 4y3) dx = x3y2 + y4 + h(x) .

Plugging this expression for H(x, y) into the first equation gives

3x2y2 + h′(x) = ∂xH(x, y) = 3x2y2 + 5x4 ,

which yields h′(x) = 5x4. Taking h(x) = x5, a general solution is therefore given
implicitly by

x3y2 + y4 + x5 = c .


