
Second In-Class Exam Solutions

Math 246, Spring 2009, Professor David Levermore

(1) [4] Give the interval of existence for the solution of the initial-value problem

sin(t)
d4z

dt4
+

1 + t2

1 − t

dz

dt
=

et

5 − t
, z(2) = z′(2) = z′′(2) = z′′′(2) = 0 .

Solution. The normal form of the equation is

d4z

dt4
+

1 + t2

(1 − t) sin(t)

dz

dt
=

et

(5 − t) sin(t)
,

The coefficient and forcing are both continuous over the interval (1, π), which contains
the initial time t = 2. The coefficient is not defined at t = 1 while both the coefficient
and the forcing are not defined at t = π. The interval of existence is therefore (1, π).

(2) [8] Let L be a linear ordinary differential operator with constant coefficients. Suppose
that all the roots of its characteristic polynomial (listed with their multiplicities) are
4 + i3, 4 + i3, 4 − i3, 4 − i3, −2, −2, −2, 7, 0, 0.

(a) Give the order of L.

Solution. Because there are 10 roots listed, the degree of the characteristic
polynomial is 10, whereby the order of L is 10.

(b) Give a general real solution of the homogeneous equation Ly = 0.

Solution. A general solution is

y = c1e
4t cos(3t) + c2e

4t sin(3t) + c3t e4t cos(3t) + c4t e4t sin(3t)

+ c5e
−2t + c6t e−2t + c7t

2e−2t + c8e
7t + c9 + c10t .

The reasoning is as follows:
• the double conjugate pair 4 ± i3 yields

e4t cos(3t) , e4t sin(3t) , t e4t cos(3t) , and t e4t sin(3t) ;

• the triple real root −2 yields e−2t, t e−2t, and t2e=2t;
• the single real root 7 yields e7t;
• the double real root 0 yields 1 and t.

(3) [8] Let D =
d

dt
. Consider the equation

Ly = D2y + 4Dy + 13y = sin(t2) .

(a) Compute the Green function g(t) associated with L.

Solution. The Green function g(t) satisfies

D2g + 4Dg + 13g = 0 , g(0) = 0 , g′(0) = 1 .

This initial-value problem may be solved either directly or by Laplace transform.
1
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Directly. The characteristic polynomial of L is p(z) = z2+4z+13 = (z+2)2+32,
which has roots −2±i3. Set g(t) = c1e

−2t cos(3t)+c2e
−2t sin(3t). The first initial

condition implies g(0) = c1 = 0, whereby g(t) = c2e
−2t sin(3t). Because

g′(t) = 3c2e
−2t cos(3t) − 2c2e

−2t sin(3t) ,

the second initial condition implies g′(0) = 3c2 = 1, whereby c2 = 1
3
. The Green

function associated with L is therefore given by

g(t) = 1
3
e−2t sin(3t) .

Laplace. The characteristic polynomial of L is p(z) = z2+4z+13 = (z+2)2+32.
The Green function associated with L is then given by

g(t) = L−1

(

1

p(s)

)

= L−1

(

1

(s + 2)2 + 33

)

.

Referring to the table on the last page, item 3 with a = −2 and b = 3 gives

g(t) = 1
3
L−1

(

3

(s + 2)2 + 33

)

= 1
3
e−2t sin(3t) .

(b) Use the Green function to express a particular solution YP (t) in terms of two
definite integrals. DO NOT evaluate the definite integrals.

Solution. For any initial time tI a particular solution Y
P
(t) is given by

Y
P
(t) =

∫

t

tI

g(t − s) sin(s2) ds = 1
4

∫

t

tI

e−2(t−s) sin
(

3(t − s)
)

sin(s2) ds .

Because sin
(

3(t− s)
)

= sin(3t) cos(3s)− cos(3t) sin(3s), this particular solution
is given in terms of definite integrals as

Y
P
(t) = 1

3
e−2t sin(3t)

∫

t

tI

e2s cos(3s) sin(s2) ds

− 1
3
e−2t cos(3t)

∫

t

tI

e2s sin(3s) sin(s2) ds .

Remark: The above definite integrals cannot be evaluated analytically.

(4) [12] The functions e
1

3
t3 and te

1

3
t3 are solutions of the homogeneous equation

d2y

dt2
− 2t2

dy

dt
+ (t4 − 2t)y = 0 .

(You do not have to check that this is true!)

(a) Compute their Wronskian.

Solution. The Wronskian is

W [e
1

3
t3 , te

1

3
t3 ](t) = det

(

e
1

3
t
3

te
1

3
t
3

t2e
1

3
t
3

(t3 + 1)e
1

3
t
3

)

= e
1

3
t
3 · (t3 + 1)e

1

3
t
3 − t2e

1

3
t
3 · te 1

3
t
3

= e
2

3
t
3

.
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(b) Solve the initial-value problem

d2y

dt2
− 2t2

dy

dt
+ (t4 − 2t)y = t2e

1

3
t3 , y(0) = y′(0) = 0 .

Try to evaluate all integrals explicitly.

Solution. This nonhomogeneous equation has variable coefficients, so you must
use either the general Green function method or the variation of parameters
method to solve it. It is already in normal form. Because by part (a)

W [e
1

3
t3 , te

1

3
t3 ](t) = e

2

3
t3 6= 0 ,

you know that e
1

3
t3 and te

1

3
t3 constitute a fundamental set of solutions to the

associated homogeneous equation.

General Green Function. The Green function G(t, s) is given by

G(t, s) =

det

(

e
1

3
s3

se
1

3
s3

e
1

3
t3 te

1

3
t3

)

W [e
1

3
s3

, se
1

3
s3

](s)
=

e
1

3
s
3

te
1

3
t
3 − e

1

3
t
3

se
1

3
s
3

e
2

3
t3

= (t − s)
e

1

3
t3

e
1

3
s3

= (t − s)e
1

3
t3e−

1

3
t3 .

The Green function formula then yields the solution

y(t) =

∫

t

0

G(t, s) s2e
1

3
s
3

ds = e
1

3
t
3

∫

t

0

(t − s)s2 ds

= te
1

3
t3

∫

t

0

s2 ds − e
1

3
t3

∫

t

0

s3 ds

= te
1

3
t
3 1

3
t3 − e

1

3
t
3 1

4
t4 = 1

12
t4e

1

3
t
3

.

Variation of Parameters. A general solution of the associated homogeneous
equation is

y
H

(t) = c1e
1

3
t3 + c2te

1

3
t3 .

Seek a solution in the form

y = u1(t)e
1

3
t
3

+ u2(t)te
1

3
t
3

,

where u′

1(t) and u′

2(t) satisfy the linear algebraic system

u′

1(t)e
1

3
t3 + u′

2(t)te
1

3
t3 = 0 ,

u′

1(t)t
2e

1

3
t3 + u′

2(t)(t
3 + 1)e

1

3
t3 = t2e

1

3
t3 .

Solve this system to obtain the explicit first-order equations

u′

1(t) = −t3 , u′

2(t) = t2 .

Integrate these equations to find

u1(t) = c1 − 1
4
t4 , u2(t) = c2 + 1

3
t3 .
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A general solution is therefore

y(t) = c1e
1

3
t3 + c2te

1

3
t3 − 1

4
t4e

1

3
t3 + 1

3
t3te

1

3
t3

= c1e
1

3
t3 + c2te

1

3
t3 + 1

12
t4e

1

3
t3 .

Because

y′(t) = c1t
2e

1

3
t
3

+ c2(t
3 + 1)e

1

3
t
3

+ 1
12

(t6 + 4t3)e
1

3
t
3

,

when the initial conditions are imposed you find that

y(0) = c1 · 1 + c2 · 0 + 0 = 0 , y′(0) = c1 · 0 + c2 · 1 + 0 = 0 .

These show that c1 = c2 = 0. The solution of the initial-value problem is
therefore

y(t) = 1
12

t4e
1

3
t
3

.

(5) [4] What answer will be produced by the following MATLAB commands?

>> ode1 = ’D2y - 2*Dy + 5*y = 0’;
>> dsolve(ode1, ’t’)
ans =

Solution. The commands ask MATLAB to give a general solution of the equation

D2y − 2Dy + 5y = 0 , where D =
d

dt
.

MATLAB will produce the answer

C1*exp(t)*sin(2*t) + C2*exp(t)*cos(2*t)

This can be seen as follows. This is a constant coefficient, homogeneous equation.
The characteristic polynomial is

p(z) = z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

Its roots are the conjugate pair −1 ± i2. A general solution is therefore

y = c1e
t cos(2t) + c2e

t sin(2t) .

Up to notational differnces, this is the answer that MATLAB produces.

(6) [8] Solve the initial-value problem

y′′ + 4y = 9 sin(t) , y(0) = 0 , y′(0) = 5 .

Solution. This is a constant coefficient, nonhomogeneous equation. Its characteristic
polynomial is

p(z) = z2 + 4 = z2 + 22 .

This has the conjugate pair of roots ±i2. A general solution of the associated homo-
geneous equation is

y
H

(t) = c1 cos(2t) + c2 sin(2t) .

The forcing 9 sin(t) has degree d = 0 and characteristic r + is = i, which is a root of
p(z) of multiplicity m = 0. A particular solution y

P
(t) can be found by the method of
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undetermined coefficients using either KEY identity evaluation or direct substitution.
You could also solve the initial-value problem using the Laplace transform.

KEY Indentity Evaluation. Because m + d = 0, you only need to evaluate the
KEY identity at z = i, to find

L(et) = p(i)eit = (i2 + 4)eit = (−1 + 4)eit = 3eit .

Multiplying this equation by 3 yields L(3eit) = 9eit. Taking the imaginary part of
both sides then gives L(3 sin(t)) = 9 sin(t). Hence, y

P
(t) = 3 sin(t).

Direct Substitution. Because m = d = 0, you seek a particular solution of the
form

y
P
(t) = A cos(t) + B sin(t) .

Because

y′

P
(t) = −A sin(t) + B cos(t) , y′′

P
(t) = −A cos(t) − B sin(t) ,

one sees that

Ly
P
(t) = y′′

P
(t) + 4yP (t) = −A cos(t) − B sin(t) + 4A cos(t) + 4B sin(t)

= 3A cos(t) + 3B sin(t) .

Setting Ly
P
(t) = 3A cos(t) + 3B sin(t) = 9 sin(t), we see that A = 0 and B = 3.

Hence, y
P
(t) = 3 sin(t).

By either approach you find that y
P
(t) = 3 sin(t), which yields the general solution

y(t) = c1 cos(2t) + c2 sin(2t) + 3 sin(t) .

Because
y′(t) = −2c1 sin(2t) + 2c2 cos(2t) + 3 cos(t) .

when the initial conditions are imposed you obtain

y(0) = c1 · 1 + c2 · 0 + 0 = 0 , y′(0) = −2c1 · 0 + 2c2 · 1 + 3 = 5 .

These are solved to find that c1 = 0 and c2 = 1. The solution of the initial-value
problem is therefore

y(t) = sin(2t) + 3 sin(t) .

Laplace. The Laplace transform of the initial-value problem is

L[y′′](s) + 4L[y](s) = 9L[sin(t)](s) .

If we set L[y](s) = Y (s) then

L[y′](s) = sY (s) − y(0) = sY (s) ,

L[y′′](s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − 5 .

Referring to the table on the last page, item 3 with a = 0 and b = 1 yields

L[sin(t)](s) =
1

s2 + 1
.

The Laplace transform of the initial-value problem thereby becomes

(s2 + 4)Y (s) − 5 =
9

s2 + 1
.
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This can be solved for Y (s) to obtain

Y (s) =
5

s2 + 4
+

9

(s2 + 1)(s2 + 4)
.

The partial fraction identity

9

(z + 1)(z + 4)
=

3

z + 1
+

−3

z + 4
evaluated at z = s2

yields the partial fraction identity

9

(s2 + 1)(s2 + 4)
=

3

s2 + 1
− 3

s2 + 4
.

It follows that

Y (s) =
5

s2 + 4
+

3

s2 + 1
− 3

s2 + 4
=

2

s2 + 4
+

3

s2 + 1
.

Referring to the table on the last page, item 3 with a = 0 and b = 2, and with a = 0
and b = 1 shows that the solution to the initial-value problem is

y(t) = L−1[Y (s)](t) = L−1

[

2

s2 + 22

]

(t) + 3L−1

[

1

s2 + 12

]

(t) = sin(2t) + 3 sin(t) .

(7) [8] Give a general real solution of the equation

y′′ − y = et .

Solution. This is a constant coefficient, nonhomogeneous equation. Its characteristic
polynomial is

p(z) = z2 − 1 = (z + 1)(z − 1) .

This has the real roots −1 and 1. A general solution of the associated homogeneous
equation is

y
H

(t) = c1e
−t + c2e

t .

The forcing et has degree d = 0 and characteristic r + is = 1, which is a root of p(z)
of multiplicity m = 1. A particular solution y

P
(t) can be found by the method of

undetermined coefficients using either KEY identity evaluation or direct substitution.

KEY Indentity Evaluation. Because m + d = 1, you need the KEY identity and
its first derivative

L
(

ezt
)

= (z2 − 1)ezt ,

L
(

t ezt
)

= (z2 − 1)t ezt + 2zezt .

Evaluate these at z = 1 to find

L
(

et
)

= 0 , L
(

t et
)

= 2et .

Dividing the second equation by 2 yields L
(

1
2
t et

)

= et . Hence, yP (t) = 1
2
t et. A

general solution is therefore

y = c1e
−t + c2e

t + 1
2
t et .
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Direct Substitution. Because m = 1 and d = 0, you seek a particular solution of
the form

y
P
(t) = At et ,

Because
y′

P
(t) = At et + A et = A(t + 1) et ,

y′′

P
(t) = A(t + 1) et + A et = A(t + 2) et ,

one sees that

Ly
P
(t) = y′′

P
(t) − y

P
(t) = A(t + 2) et − At et = 2A et .

Setting Ly
P
(t) = 2A et = et, we see that 2A = 1. It follows that A = 1

2
, whereby

y
P
(t) = 1

4
t et. A general solution is therefore

y = c1e
−t + c2e

t + 1
2
t et .

(8) [8] The vertical displacement of a mass on a spring is given by

h(t) = 3e−t cos(πt) − 4e−t sin(πt) .

Express this in the form h(t) = Ae−t cos(πt − δ) with A > 0 and 0 ≤ δ < 2π,
identifying the period and phase of the oscillation. (The phase may be expressed in
terms of an inverse trig function.)

Solution. By compairing

Ae−t cos(πt − δ) = Ae−t cos(δ) cos(πt) + Ae−t sin(δ) sin(πt) ,

with h(t) = 3e−t cos(πt) − 4e−t sin(πt), we see that

A cos(δ) = 3 , A sin(δ) = −4 .

This shows that (A, δ) are the polar coordinates of the point in the plane whose
Cartesian coordinates are (3,−4). Clearly A is given by

A =
√

32 + 42 =
√

9 + 16 =
√

25 = 5 .

Because (3,−4) lies in the fourth quadrant, the phase δ satisfies 3π

2
< δ < 2π. Because

cos(δ) = 3
5
, sin(δ) = −4

5
, tan(δ) = −4

3
,

you can express the phase by any one of the formulas

δ = 2π − cos−1
(

3
5

)

, δ = 2π − sin−1
(

4
5

)

, δ = 2π − tan−1
(

4
3

)

.

Because the quasi frequency ν is given by ν = π, the quasi period T is given by

T =
2π

ν
=

2π

π
= 2 .

(9) [8] When a mass of 2 kilograms is hung vertically from a spring, at rest it stretches
the spring .2 m. (Gravitational acceleration is g = 9.8 m/sec2.) At t = 0 the mass is
displaced .1 m above its rest position and is released with a downward initial velocity
of .3 m/sec. Assume that the spring force is proportional to displacement, that there
is no drag force, and that the mass is driven by an external force of Fext(t) = 10 cos(ωt)
Newtons (1 Newton = 1 kg m/sec2), where up is taken to be positive.
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(a) Formulate an initial-value problem that governs the motion of the mass for t > 0.
DO NOT solve this initial-value problem, just write it down!

Solution. Let h(t) be the displacement (in meters) of the mass from its equi-
librium (rest) position at time t (in seconds), with upward displacements being
positive. The governing initial-value problem then has the form

m
d2h

dt2
+ kh = Fext(t) , h(0) = .1 , h′(0) = −.3 ,

where m is the mass and k is the spring constant. The problem says that m = 2
kilograms. The spring constant is obtained by balancing the weight of the mass
(mg = 2 · 9.8 Newtons) with the force applied by the spring when it is stetched
.2 m. This gives k .2 = 2 · 9.8, or

k =
2 · 9.8

.2
=

2 · 98

2
= 98 Newtons/m .

Because Fext(t) = 10 cos(ωt), the governing initial-value problem is therefore

2
d2h

dt2
+ 98 h = 10 cos(ωt) , h(0) = −.1 , h′(0) = −.3 .

(b) What is the natural frequency of this spring?

Solution. The natural frequency ωo of the spring is given by

ωo =

√

k

m
=

√

98

2
=

√
49 = 7 1/sec (or rad/sec) .

(c) At what value of the driving frequency ω does resonance occur?

Solution. Resonance occurs when the driving frequency ω equals the natural
frequency ωo. Hence, by the answer to part (b), resonance occurs when

ω = ωo = 7 1/sec (or rad/sec) .

(10) [8] Compute the Laplace transform of f(t) = u(t − 3) e−2t from its definition. (Here
u is the unit step function.)

Solution. The definition of Laplace transform gives

L[f ](s) = lim
T→∞

∫

T

0

e−stu(t − 3) e−2t dt = lim
T→∞

∫

T

3

e−(s+2)t dt .

This limit diverges to +∞ for s ≤ −2 because in that case
∫

T

3

e−(s+2)t dt ≥
∫

T

3

1 dt = T − 3 ,

which clearly diverges to +∞ as T → ∞.
For s > −2 you obtain

∫

T

3

e−(s+2)t dt = −e−(s+2)t

s + 2

∣

∣

∣

∣

T

3

= −e−(s+2)T

s + 2
+

e−(s+2)3

s + 2
.
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Hence, for s > −2 one has that

L[f ](s) = lim
T→∞

∫

T

3

e−(s+2)t dt = lim
T→∞

(

e−(s+2)3

s + 2
− e−(s+2)T

s + 2

)

=
e−(s+2)3

s + 2
.

(11) [8] Find the Laplace transform Y (s) of the solution y(t) of the initial-value problem

d2y

dt2
+ 8

dy

dt
+ 20y = f(t) , y(0) = 5 , y′(0) = −3 ,

where

f(t) =

{

t for 0 ≤ t < 3 ,

3e−(t−3) for 3 ≤ t .

You may refer to the table on the last page. DO NOT take the inverse Laplace
transform to find y(t), just solve for Y (s)!

Solution. The Laplace transform of the initial-value problem is

L[y′′](s) + 8L[y′](s) + 20L[y](s) = L[f ](s) .

If we set L[y](s) = Y (s) then

L[y′](s) = sY (s) − y(0) = sY (s) − 5 ,

L[y′′](s) = s2Y (s) − sy(0) − y′(0) = s2Y (s) − 5s + 3 .

To compute L[f ](s) you first express f(t) in terms of unit step functions as

f(t) = t
(

u(t) − u(t − 3)
)

+ 3e−(t−3)u(t − 3)

= u(t) t + u(t − 3)
(

3e−(t−3) − t
)

= t + u(t − 3)
(

3e−(t−3) − (t − 3) − 3
)

.

Referring to the table on the last page, item 1 with a = 0 and n = 1, item 6 with
c = 3 and f(t) = 3e−t − t − 3, and item 1 with a = −1 and n = 0, and with a = 0
and n = 0 yields

L[f ](s) = L[t](s) + L
[

u(t − 3)
(

3e−(t−3) − (t − 3) − 3
)]

(s)

=
1

s2
+ e−3sL[3e−t − t − 3](s)

=
1

s2
+ e−3s

(

3

s + 1
− 1

s2
− 3

s

)

.

The Laplace transform of the initial-value problem then becomes

(

s2Y (s) − 5s + 3
)

+ 8
(

sY (s) − 5
)

+ 20Y (s) =
1

s2
+ e−3s

(

3

s + 1
− 1

s2
− 3

s

)

,

which becomes

(s2 + 8s + 20)Y (s) − 5s + 3 − 40 =
1

s2
+ e−3s

(

3

s + 1
− 1

s2
− 3

s

)

.

Hence, Y (s) is given by

Y (s) =
1

s2 + 8s + 20

(

5s + 37 +
1

s2
+ e−3s

(

3

s + 1
− 1

s2
− 3

s

))

.
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(12) [16] Find the inverse Laplace transforms of the following functions. You may refer to
the table on the last page.

(a) F (s) =
8

s2 − 2s − 3
,

Solution. The denominator factors as (s − 3)(s + 1), so the partial fraction
decomposition is

8

s2 − 2s − 3
=

8

(s − 3)(s + 1)
=

2

s − 3
+

−2

s + 1
.

Referring to the table on the last page, item 1 with a = 3 and n = 0 and with
a = −1 and n = 0 gives

L[e3t](s) =
1

s − 3
, =⇒ L−1

[

1

s − 3

]

(t) = e3t ,

L[e−t](s) =
1

s + 1
, =⇒ L−1

[

1

s + 1

]

(t) = e−t .

By the linearity of L−1 you therefore conclude that

L−1

[

8

s2 − 2s − 3

]

(t) = L−1

[

2

s − 3
− 2

s + 1

]

(t)

= 2L−1

[

1

s − 3

]

(t) − 2L−1

[

1

s + 1

]

(t)

= 2e3t − 2e−t .

(b) F (s) =
8 e−πs

s2 − 6s + 13
.

Solution. Complete the square in the denominator to get (s−3)2 +4. Referring
to the table on the last page, item 3 with a = 3 and b = 2 gives

L[e3t sin(2t)](s) =
2

(s − 3)2 + 22
, =⇒ L−1

[

2

s2 − 6s + 13

]

(t) = e3t sin(2t) .

By item 6 with c = π and f(t) = 4e3t sin(2t) you therefore conclude that

L−1

[

e−πs
8

s2 − 6s + 13

]

(t) = u(t− π)L−1

[

8

s2 − 6s + 13

]

(t − π)

= u(t− π) 4e3(t−π) sin
(

2(t − π)
)

= u(t− π) 4e3(t−π) sin(2t) .
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A Short Table of Laplace Transforms

L[eattn](s) =
n!

(s − a)n+1
for s > a ,

L[eat cos(bt)](s) =
s − a

(s − a)2 + b2
for s > a ,

L[eat sin(bt)](s) =
b

(s − a)2 + b2
for s > a ,

L[eatf(t)](s) = F (s − a) where F (s) = L[f(t)](s) ,

L[tnf(t)](s) = (−1)nF (n)(s) where F (s) = L[f(t)](s) ,

L[u(t − c)f(t − c)](s) = e−csF (s) where F (s) = L[f(t)](s)

and u is the step function .


