Third In-Class Exam Solutions
 Math 246, Spring 2009, Professor David Levermore Thursday, 30 April 2009

(1) [8] Consider the matrices

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & -4 \\
1 & 3
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ll}
3 & 5 \\
2 & 4
\end{array}\right)
$$

Compute the matrices
(a) $\mathbf{A B} \quad$ Solution. $\mathbf{A B}=\left(\begin{array}{cc}2 & -4 \\ 1 & 3\end{array}\right)\left(\begin{array}{ll}3 & 5 \\ 2 & 4\end{array}\right)=\left(\begin{array}{cc}-2 & -6 \\ 9 & 17\end{array}\right)$
(b) $\mathbf{B}^{-1} \quad$ Solution. Because $\operatorname{det}(\mathbf{B})=3 \cdot 4-2 \cdot 5=12-10=2$,

$$
\mathbf{B}^{-1}=\frac{1}{\operatorname{det}(\mathbf{B})}\left(\begin{array}{cc}
4 & -5 \\
-2 & 3
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
4 & -5 \\
-2 & 3
\end{array}\right)
$$

(2) [15] Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
5 & 2 \\
8 & -1
\end{array}\right)
$$

(a) Find all the eigenvalues of \mathbf{A}.

Solution. The characteristic polynomial of \mathbf{A} is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-4 z-21=(z+3)(z-7) .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are -3 and 7 .
(b) For each eigenvalue of \mathbf{A} find an associated eigenvector.

Solution (using the Cayley-Hamilton method from notes). One has

$$
\mathbf{A}+3 \mathbf{I}=\left(\begin{array}{ll}
8 & 2 \\
8 & 2
\end{array}\right), \quad \mathbf{A}-7 \mathbf{I}=\left(\begin{array}{cc}
-2 & 2 \\
8 & -8
\end{array}\right)
$$

Every nonzero column of $\mathbf{A}-7 \mathbf{I}$ has the form

$$
\alpha_{1}\binom{-1}{4} \quad \text { for some } \alpha_{1} \neq 0
$$

any of which is an eigenvector associated with -3 . Similarly, every nonzero column of $\mathbf{A}+3 \mathbf{I}$ has the form

$$
\alpha_{2}\binom{1}{1} \quad \text { for some } \alpha_{2} \neq 0
$$

any of which is an eigenvector associated with 7 .
(c) Diagonalize \mathbf{A}.

Solution. Because A has the eigenpairs

$$
\left(7,\binom{1}{1}\right), \quad\left(-3,\binom{-1}{4}\right)
$$

set

$$
\mathbf{V}=\left(\begin{array}{cc}
1 & -1 \\
1 & 4
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{cc}
7 & 0 \\
0 & -3
\end{array}\right)
$$

Because $\operatorname{det}(\mathbf{V})=4-(-1)=5$,

$$
\mathbf{V}^{-1}=\frac{1}{\operatorname{det}(\mathbf{V})}\left(\begin{array}{cc}
4 & 1 \\
-1 & 1
\end{array}\right)=\frac{1}{5}\left(\begin{array}{cc}
4 & 1 \\
-1 & 1
\end{array}\right)
$$

Then \mathbf{A} has the diagonalization

$$
\mathbf{A}=\mathbf{V D V}^{-1}=\left(\begin{array}{cc}
1 & -1 \\
1 & 4
\end{array}\right)\left(\begin{array}{cc}
7 & 0 \\
0 & -3
\end{array}\right) \frac{1}{5}\left(\begin{array}{cc}
4 & 1 \\
-1 & 1
\end{array}\right)
$$

(3) [10] Suppose you know that $e^{t \mathbf{A}}=\left(\begin{array}{cc}\cos (2 t)+\sin (2 t) & -\sin (2 t) \\ 2 \sin (2 t) & \cos (2 t)-\sin (2 t)\end{array}\right)$.
(a) Solve the initial-value problem

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\mathbf{A}\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{1}{2} .
$$

Solution. The solution is given by

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{x(0)}{y(0)}=\left(\begin{array}{cc}
\cos (2 t)+\sin (2 t) & -\sin (2 t) \\
2 \sin (2 t) & \cos (2 t)-\sin (2 t)
\end{array}\right)\binom{1}{2} \\
& =\binom{\cos (2 t)-\sin (2 t)}{2 \cos (2 t)}
\end{aligned}
$$

(b) Determine A.

Solution. The simplest way to do this is
$\mathbf{A}=\left.\frac{\mathrm{d} e^{t \mathbf{A}}}{\mathrm{~d} t}\right|_{t=0}=\left.\left(\begin{array}{cc}-2 \sin (2 t)+2 \cos (2 t) & -2 \cos (2 t) \\ 4 \cos (2 t) & -2 \sin (2 t)-2 \cos (2 t)\end{array}\right)\right|_{t=0}=\left(\begin{array}{ll}2 & -2 \\ 4 & -2\end{array}\right)$.
Alternative Solution. Because $\frac{\mathrm{d} e^{t \mathbf{A}}}{\mathrm{~d} t}=\mathbf{A} e^{t \mathbf{A}}$, and because $\left(e^{t \mathbf{A}}\right)^{-1}=e^{-t \mathbf{A}}$, you see that

$$
\mathbf{A}=\frac{\mathrm{d} e^{t \mathbf{A}}}{\mathrm{~d} t}\left(e^{t \mathbf{A}}\right)^{-1}=\frac{\mathrm{d} e^{t \mathbf{A}}}{\mathrm{~d} t} e^{-t \mathbf{A}}
$$

Because \mathbf{A} is independent of t you may evaluate the right-hand side at any t. It is best to set $t=0$ on the right-hand side because $e^{0 \mathbf{A}}=\mathbf{I}$. The right-hand side is then evaluated as in the previous solution.
(4) [10] Consider two interconnected tanks filled with brine (salt water). The first tank contains 70 liters and the second contains 40 liters. Brine flows with a concentration of 3 grams of salt per liter flows into the first tank at a rate of 5 liters per hour. Well stirred brine flows from the first tank to the second at a rate of 7 liters per hour, from the second to the first at a rate of 2 liters per hour, and from the second into a drain at a rate of 5 liters per hour. At $t=0$ there are 35 grams of salt in the first tank and 25 grams in the second. Give an initial-value problem that governs the amount of salt in each tank as a function of time.
Solution. The rates work out so there will always be 70 liters of brine in the first tank and 40 liters in the second. Let $S_{1}(t)$ and $S_{2}(t)$ be the grams of salt in the first and second tanks respectively. These are governed by the initial-value problem

$$
\begin{array}{ll}
\frac{\mathrm{d} S_{1}}{\mathrm{~d} t}=3 \cdot 5+\frac{S_{2}}{40} 2-\frac{S_{1}}{70} 7, & S_{1}(0)=35 \\
\frac{\mathrm{~d} S_{2}}{\mathrm{~d} t}=\frac{S_{1}}{70} 7-\frac{S_{2}}{40} 2-\frac{S_{2}}{40} 5, & S_{2}(0)=25
\end{array}
$$

(5) [8] Transform the equation $\frac{\mathrm{d}^{4} y}{\mathrm{~d} t^{4}}+e^{t} \frac{\mathrm{~d}^{3} y}{\mathrm{~d} t^{3}}-\frac{\mathrm{d} y}{\mathrm{~d} t}+5 y=t^{2}$ into a first-order system of ordinary differential equations.

Solution: Because the equation is fourth order, the first order system must have dimension four. The simplest such first order system is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{2} \\
x_{3} \\
x_{4} \\
t^{2}-5 x_{1}+x_{2}-e^{t} x_{4}
\end{array}\right), \quad \text { where } \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
y \\
y^{\prime} \\
y^{\prime \prime} \\
y^{\prime \prime \prime}
\end{array}\right)
$$

(6) [15] Consider the vector-valued functions $\mathbf{x}_{1}(t)=\binom{1+t^{5}}{2 t^{2}}, \mathbf{x}_{2}(t)=\binom{t^{3}}{2}$.
(a) Compute the Wronskian $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.

Solution.

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\operatorname{det}\left(\begin{array}{cc}
1+t^{5} & t^{3} \\
2 t^{2} & 2
\end{array}\right)=\left(1+t^{5}\right) 2-2 t^{5}=2
$$

(b) Find $\mathbf{A}(t)$ such that $\mathbf{x}_{1}, \mathbf{x}_{2}$ is a fundamental set of solutions to the system $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A}(t) \mathbf{x}$ wherever $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$.
Solution. Let $\boldsymbol{\Psi}(t)=\left(\begin{array}{rr}1+t^{5} & t^{3} \\ 2 t^{2} & 2\end{array}\right)$. Because $\frac{\mathrm{d} \boldsymbol{\Psi}(t)}{\mathrm{d} t}=\mathbf{A}(t) \boldsymbol{\Psi}(t)$, one has

$$
\begin{aligned}
\mathbf{A}(t) & =\frac{\mathbf{\Psi}(t)}{\mathrm{d} t} \boldsymbol{\Psi}(t)^{-1}=\left(\begin{array}{cc}
5 t^{4} & 3 t^{2} \\
4 t & 0
\end{array}\right)\left(\begin{array}{cc}
1+t^{5} & t^{3} \\
2 t^{2} & 2
\end{array}\right)^{-1} \\
& =\left(\begin{array}{cc}
5 t^{4} & 3 t^{2} \\
4 t & 0
\end{array}\right) \frac{1}{2}\left(\begin{array}{cc}
2 & -t^{3} \\
-2 t^{2} & 1+t^{5}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
4 t^{4} & 3 t^{3}-2 t^{7} \\
8 t & -4 t^{4}
\end{array}\right)=\left(\begin{array}{cc}
2 t^{4} & \frac{3}{2} t^{2}-t^{7} \\
4 t & -2 t^{4}
\end{array}\right) .
\end{aligned}
$$

(c) Give a general solution to the system you found in part (b).

Solution. Because $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=2 \neq 0$, a general solution is

$$
\mathbf{x}=c_{1} \mathbf{x}_{1}(t)+c_{2} \mathbf{x}_{2}(t)=c_{1}\binom{1+t^{5}}{2 t^{2}}+c_{2}\binom{t^{3}}{2} .
$$

(7) [16] Find a general solution for each of the following systems.
(a) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{ll}-3 & 4 \\ -1 & 1\end{array}\right)\binom{x}{y}$

Solution. Let $\mathbf{A}=\left(\begin{array}{ll}-3 & 4 \\ -1 & 1\end{array}\right)$. The characteristic polynomial of \mathbf{A} is

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}+2 z+1=(z+1)^{2}
$$

which has the double root -1 . Then, because $\mu=-1$ and $\nu=0$,

$$
\begin{aligned}
e^{t \mathbf{A}}=e^{-t}[\mathbf{I}+(\mathbf{A}+\mathbf{I}) t] & =e^{-t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right) t\right] \\
& =e^{-t}\left(\begin{array}{cc}
1-2 t & 4 t \\
-t & 1+2 t
\end{array}\right) .
\end{aligned}
$$

A general solution is therefore

$$
\binom{x}{y}=e^{t \mathbf{A}}\binom{c_{1}}{c_{2}}=c_{1} e^{-t}\binom{1-2 t}{-t}+c_{2} e^{-t}\binom{4 t}{1+2 t} .
$$

(b) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{ll}1 & -2 \\ 5 & -1\end{array}\right)\binom{x}{y}$

Solution. Let $\mathbf{A}=\left(\begin{array}{ll}1 & -2 \\ 5 & -1\end{array}\right)$. The characteristic polynomial of \mathbf{A} is

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}+9=z^{2}+3^{2}
$$

which has the conjugate pair of roots $\pm i 3$. Then, because $\mu=0$ and $\nu=4$,

$$
\begin{aligned}
e^{t \mathbf{A}}=\mathbf{I} \cos (3 t)+\mathbf{A} \frac{\sin (3 t)}{3} & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos (3 t)+\left(\begin{array}{ll}
1 & -2 \\
5 & -1
\end{array}\right) \frac{\sin (3 t)}{3} \\
& =\left(\begin{array}{cc}
\cos (3 t)+\frac{1}{3} \sin (3 t) & -\frac{2}{3} \sin (4 t) \\
\frac{5}{3} \sin (3 t) & \cos (3 t)-\frac{1}{3} \sin (3 t)
\end{array}\right) .
\end{aligned}
$$

A general solution is therefore

$$
\binom{x}{y}=e^{t \mathbf{A}}\binom{c_{1}}{c_{2}}=c_{1}\binom{\cos (3 t)+\frac{1}{3} \sin (3 t)}{\frac{5}{3} \sin (3 t)}+c_{2}\binom{-\frac{2}{3} \sin (3 t)}{\cos (3 t)-\frac{1}{3} \sin (3 t)} .
$$

(8) [10] Sketch the phase-plane portrait for each of the two systems in the previous problem. For each portrait identify its type and give a reason why the origin is either attracting, stable, unstable, or repelling.
Solution (a). The coefficient matrix \mathbf{A} has the eigenvalue -1 . Because

$$
\mathbf{A}+\mathbf{I}=\left(\begin{array}{ll}
-2 & 4 \\
-1 & 2
\end{array}\right)
$$

it has the eigenpair

$$
\left(-1,\binom{2}{1}\right) .
$$

Because $\mathbf{A} \neq-\mathbf{I}$, the portrait is a twist sink (improper nodal sink) and is thereby attracting (asymptotically stable). Because $a_{21}=-1<0$, the phase portrait is a clockwise twist sink. There is one trajectory that approaches the origin along each half of the line $y=\frac{1}{2} x$. Trajectories above the line $y=\frac{1}{2} x$ will approach the origin tangent to the line $y=\frac{1}{2} x$ from the right. Trajectories below the line $y=\frac{1}{2} x$ will approach the origin tangent to the line $y=\frac{1}{2} x$ from the left.

Solution (b). The coefficient matrix \mathbf{A} has the eigenvalues $\pm i 3$. The portrait is therefore a center and the origin is thereby stable. Because $a_{21}=5>0$, the phase portrait is a counterclockwise center.
(9) [8] Suppose you know that a 2×2 matrix \mathbf{A} can be diagonalized as $\mathbf{A}=\mathbf{V D V}^{-1}$ where

$$
\mathbf{V}=\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{cc}
6 & 0 \\
0 & -4
\end{array}\right)
$$

Use this information to compute $e^{t \mathbf{A}}$.
Solution. Because $e^{t \mathbf{A}}=\mathbf{V} e^{t \mathbf{D}} \mathbf{V}^{-1}$ with $e^{t \mathbf{D}}=\left(\begin{array}{cc}e^{6 t} & 0 \\ 0 & e^{-4 t}\end{array}\right)$ and $\mathbf{V}^{-1}=\frac{1}{5}\left(\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right)$,

$$
\begin{aligned}
e^{t \mathbf{A}} & =\mathbf{V} e^{t \mathbf{D}} \mathbf{V}^{-1}=\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
e^{6 t} & 0 \\
0 & e^{-4 t}
\end{array}\right) \frac{1}{5}\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
2 e^{6 t} & e^{6 t} \\
-e^{-4 t} & 2 e^{-4 t}
\end{array}\right)=\frac{1}{5}\left(\begin{array}{cc}
4 e^{6 t}+e^{-4 t} & 2 e^{6 t}-2 e^{-4 t} \\
2 e^{6 t}-2 e^{-4 t} & e^{6 t}+4 e^{-4 t}
\end{array}\right) .
\end{aligned}
$$

Alternative Solution. Because

$$
\begin{aligned}
\mathbf{A} & =\mathbf{V D V}^{-1}=\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
6 & 0 \\
0 & -4
\end{array}\right) \frac{1}{5}\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right) \\
& =\frac{1}{5}\left(\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
12 & 6 \\
-4 & 8
\end{array}\right)=\frac{1}{5}\left(\begin{array}{cc}
20 & 20 \\
20 & -10
\end{array}\right)=\left(\begin{array}{cc}
4 & 4 \\
4 & -2
\end{array}\right),
\end{aligned}
$$

and because the eigenvalues of \mathbf{A} are 1 ± 5, we obtain

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{t}\left[\mathbf{I} \cosh (5 t)+(\mathbf{A}-\mathbf{I}) \frac{\sinh (5 t)}{5}\right]=e^{t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cosh (5 t)+\left(\begin{array}{cc}
3 & 4 \\
4 & -3
\end{array}\right) \frac{\sinh (5 t)}{5}\right] \\
& =e^{t}\left(\begin{array}{cc}
\cosh (5 t)+\frac{3}{5} \sinh (5 t) & \frac{4}{5} \sinh (5 t) \\
\frac{4}{5} \sinh (5 t) & \cosh (5 t)-\frac{3}{5} \sinh (5 t)
\end{array}\right) .
\end{aligned}
$$

This is equivalent to the solution given previously.

