
Third In-Class Exam Solutions
Math 246, Spring 2009, Professor David Levermore

Thursday, 30 April 2009

(1) [8] Consider the matrices

A =

(

2 −4
1 3

)

, B =

(

3 5
2 4

)

.

Compute the matrices

(a) AB Solution. AB =

(

2 −4
1 3

) (

3 5
2 4

)

=

(

−2 −6
9 17

)

(b) B−1 Solution. Because det(B) = 3 · 4 − 2 · 5 = 12 − 10 = 2,

B−1 =
1

det(B)

(

4 −5
−2 3

)

=
1

2

(

4 −5
−2 3

)

.

(2) [15] Consider the matrix

A =

(

5 2
8 −1

)

.

(a) Find all the eigenvalues of A.

Solution. The characteristic polynomial of A is given by

p(z) = z2 − tr(A)z + det(A) = z2 − 4z − 21 = (z + 3)(z − 7) .

The eigenvalues of A are the roots of this polynomial, which are −3 and 7.

(b) For each eigenvalue of A find an associated eigenvector.

Solution (using the Cayley-Hamilton method from notes). One has

A + 3I =

(

8 2
8 2

)

, A− 7I =

(

−2 2
8 −8

)

.

Every nonzero column of A − 7I has the form

α1

(

−1
4

)

for some α1 6= 0 ,

any of which is an eigenvector associated with −3. Similarly, every nonzero
column of A + 3I has the form

α2

(

1
1

)

for some α2 6= 0 ,

any of which is an eigenvector associated with 7.
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(c) Diagonalize A.

Solution. Because A has the eigenpairs
(

7 ,

(

1
1

))

,

(

−3 ,

(

−1
4

))

,

set

V =

(

1 −1
1 4

)

, D =

(

7 0
0 −3

)

.

Because det(V) = 4 − (−1) = 5,

V−1 =
1

det(V)

(

4 1
−1 1

)

=
1

5

(

4 1
−1 1

)

.

Then A has the diagonalization

A = VDV−1 =

(

1 −1
1 4

) (

7 0
0 −3

)

1

5

(

4 1
−1 1

)

.

(3) [10] Suppose you know that etA =

(

cos(2t) + sin(2t) − sin(2t)
2 sin(2t) cos(2t) − sin(2t)

)

.

(a) Solve the initial-value problem

d

dt

(

x

y

)

= A

(

x

y

)

,

(

x(0)
y(0)

)

=

(

1
2

)

.

Solution. The solution is given by
(

x(t)
y(t)

)

= etA

(

x(0)
y(0)

)

=

(

cos(2t) + sin(2t) − sin(2t)
2 sin(2t) cos(2t) − sin(2t)

)(

1
2

)

=

(

cos(2t) − sin(2t)
2 cos(2t)

)

.

(b) Determine A.

Solution. The simplest way to do this is

A =
detA

dt

∣

∣

∣

∣

t=0

=

(

−2 sin(2t) + 2 cos(2t) −2 cos(2t)
4 cos(2t) −2 sin(2t) − 2 cos(2t)

) ∣

∣

∣

∣

t=0

=

(

2 −2
4 −2

)

.

Alternative Solution. Because
detA

dt
= AetA, and because

(

etA
)

−1

= e−tA,

you see that

A =
detA

dt

(

etA
)

−1

=
detA

dt
e−tA .

Because A is independent of t you may evaluate the right-hand side at any t. It
is best to set t = 0 on the right-hand side because e0A = I. The right-hand side
is then evaluated as in the previous solution.
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(4) [10] Consider two interconnected tanks filled with brine (salt water). The first tank
contains 70 liters and the second contains 40 liters. Brine flows with a concentration
of 3 grams of salt per liter flows into the first tank at a rate of 5 liters per hour. Well
stirred brine flows from the first tank to the second at a rate of 7 liters per hour, from
the second to the first at a rate of 2 liters per hour, and from the second into a drain
at a rate of 5 liters per hour. At t = 0 there are 35 grams of salt in the first tank
and 25 grams in the second. Give an initial-value problem that governs the amount
of salt in each tank as a function of time.

Solution. The rates work out so there will always be 70 liters of brine in the first
tank and 40 liters in the second. Let S1(t) and S2(t) be the grams of salt in the first
and second tanks respectively. These are governed by the initial-value problem

dS1

dt
= 3·5 +

S2

40
2 −

S1

70
7 , S1(0) = 35 ,

dS2

dt
=

S1

70
7 −

S2

40
2 −

S2

40
5 , S2(0) = 25 .

(5) [8] Transform the equation
d4y

dt4
+ et

d3y

dt3
−

dy

dt
+ 5y = t2 into a first-order system of

ordinary differential equations.

Solution: Because the equation is fourth order, the first order system must have
dimension four. The simplest such first order system is

d

dt









x1

x2

x3

x4









=









x2

x3

x4

t2 − 5x1 + x2 − etx4









, where









x1

x2

x3

x4









=









y

y′

y′′

y′′′









.

(6) [15] Consider the vector-valued functions x1(t) =

(

1 + t5

2t2

)

, x2(t) =

(

t3

2

)

.

(a) Compute the Wronskian W [x1,x2](t).

Solution.

W [x1,x2](t) = det

(

1 + t5 t3

2t2 2

)

= (1 + t5)2 − 2t5 = 2 .

(b) Find A(t) such that x1, x2 is a fundamental set of solutions to the system
dx

dt
= A(t)x wherever W [x1,x2](t) 6= 0.

Solution. Let Ψ(t) =

(

1 + t5 t3

2t2 2

)

. Because
dΨ(t)

dt
= A(t)Ψ(t), one has

A(t) =
Ψ(t)

dt
Ψ(t)−1 =

(

5t4 3t2

4t 0

) (

1 + t5 t3

2t2 2

)

−1

=

(

5t4 3t2

4t 0

)

1

2

(

2 −t3

−2t2 1 + t5

)

=
1

2

(

4t4 3t3 − 2t7

8t −4t4

)

=

(

2t4 3

2
t2 − t7

4t −2t4

)

.



4

(c) Give a general solution to the system you found in part (b).

Solution. Because W [x1,x2](t) = 2 6= 0, a general solution is

x = c1x1(t) + c2x2(t) = c1

(

1 + t5

2t2

)

+ c2

(

t3

2

)

.

(7) [16] Find a general solution for each of the following systems.

(a)
d

dt

(

x

y

)

=

(

−3 4
−1 1

) (

x

y

)

Solution. Let A =

(

−3 4
−1 1

)

. The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A) = z2 + 2z + 1 = (z + 1)2 ,

which has the double root −1. Then, because µ = −1 and ν = 0,

etA = e−t
[

I + (A + I) t
]

= e−t

[(

1 0
0 1

)

+

(

−2 4
−1 2

)

t

]

= e−t

(

1 − 2t 4t
−t 1 + 2t

)

.

A general solution is therefore
(

x

y

)

= etA

(

c1

c2

)

= c1e
−t

(

1 − 2t
−t

)

+ c2e
−t

(

4t
1 + 2t

)

.

(b)
d

dt

(

x

y

)

=

(

1 −2
5 −1

) (

x

y

)

Solution. Let A =

(

1 −2
5 −1

)

. The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A) = z2 + 9 = z2 + 32 ,

which has the conjugate pair of roots ±i3. Then, because µ = 0 and ν = 4,

etA = I cos(3t) + A
sin(3t)

3
=

(

1 0
0 1

)

cos(3t) +

(

1 −2
5 −1

)

sin(3t)

3

=

(

cos(3t) + 1

3
sin(3t) −2

3
sin(4t)

5

3
sin(3t) cos(3t) − 1

3
sin(3t)

)

.

A general solution is therefore
(

x

y

)

= etA

(

c1

c2

)

= c1

(

cos(3t) + 1

3
sin(3t)

5

3
sin(3t)

)

+ c2

(

−2

3
sin(3t)

cos(3t) − 1

3
sin(3t)

)

.
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(8) [10] Sketch the phase-plane portrait for each of the two systems in the previous
problem. For each portrait identify its type and give a reason why the origin is either
attracting, stable, unstable, or repelling.

Solution (a). The coefficient matrix A has the eigenvalue −1. Because

A + I =

(

−2 4
−1 2

)

,

it has the eigenpair
(

−1 ,

(

2
1

))

.

Because A 6= −I, the portrait is a twist sink (improper nodal sink) and is thereby
attracting (asymptotically stable). Because a21 = −1 < 0, the phase portrait is a
clockwise twist sink. There is one trajectory that approaches the origin along each
half of the line y = 1

2
x. Trajectories above the line y = 1

2
x will approach the origin

tangent to the line y = 1

2
x from the right. Trajectories below the line y = 1

2
x will

approach the origin tangent to the line y = 1

2
x from the left.

Solution (b). The coefficient matrix A has the eigenvalues ±i3. The portrait is
therefore a center and the origin is thereby stable. Because a21 = 5 > 0, the phase
portrait is a counterclockwise center.

(9) [8] Suppose you know that a 2 × 2 matrix A can be diagonalized as A = VDV−1

where

V =

(

2 −1
1 2

)

, D =

(

6 0
0 −4

)

.

Use this information to compute etA.

Solution. Because etA = VetDV−1 with etD =

(

e6t 0
0 e−4t

)

and V−1 = 1

5

(

2 1
−1 2

)

,

etA = VetDV−1 =

(

2 −1
1 2

) (

e6t 0
0 e−4t

)

1

5

(

2 1
−1 2

)

=
1

5

(

2 −1
1 2

) (

2e6t e6t

−e−4t 2e−4t

)

=
1

5

(

4e6t + e−4t 2e6t − 2e−4t

2e6t − 2e−4t e6t + 4e−4t

)

.

Alternative Solution. Because

A = VDV−1 =

(

2 −1
1 2

) (

6 0
0 −4

)

1

5

(

2 1
−1 2

)

=
1

5

(

2 −1
1 2

) (

12 6
−4 8

)

=
1

5

(

20 20
20 −10

)

=

(

4 4
4 −2

)

,

and because the eigenvalues of A are 1 ± 5, we obtain

etA = et

[

I cosh(5t) + (A − I)
sinh(5t)

5

]

= et

[(

1 0
0 1

)

cosh(5t) +

(

3 4
4 −3

)

sinh(5t)

5

]

= et

(

cosh(5t) + 3

5
sinh(5t) 4

5
sinh(5t)

4

5
sinh(5t) cosh(5t) − 3

5
sinh(5t)

)

.

This is equivalent to the solution given previously.


