
Solutions of Sample Problems for First In-Class Exam

Math 246, Spring 2009, Professor David Levermore

(1) (a) Write a MATLAB command that evaluates the definite integral
∫

∞

0

r

1 + r4
dr .

Solution: The simplest solution is

int(’x/(1+x̂ 4)’,’x’,0,inf) ,

where you can replace x by any other letter our use Inf instead of inf.

(b) Sketch the graph that you expect would be produced by the following MATLAB
commands.

[x, y] = meshgrid(−5:0.5:5,−5:0.2:5)
contour(x, y, x.̂ 2 + y.̂ 2, [25, 25])
axis square

Solution: Your sketch should show both x and y axes marked from −5 to 5
and a single circle of radius 5 centered at the origin. The tick marks on the axes
should mark intervals of length .5.

(2) Find the explicit solution for each of the following initial-value problems and identify
its interval of existence (definition).

(a)
dz

dt
=

cos(t)− z

1 + t
, z(0) = 2.

Solution: This equation is linear in z, so write it in the linear normal form

dz

dt
+

z

1 + t
=

cos(t)

1 + t
.

An integrating factor is given by

exp

(
∫ t

0

1

1 + s
ds

)

= exp
(

log(1 + t)
)

= 1 + t ,

Upon multiplying the equation by (1 + t), one finds that

d

dt

(

(1 + t)z
)

= cos(t) ,

which is then integrated to obtain

(1 + t)z = sin(t) + c .

The integration constant c is found through the initial condition z(0) = 2 by
setting t = 0 and z = 0, whereby

c = (1 + 0)2− sin(0) = 2 .

Hence, upon solving explicitly for z, the solution is

z =
2 + sin(t)

1 + t
.

The interval of existence for this solution is t > −1.
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(b)
du

dz
= eu + 1 , u(0) = 0.

Solution: This equation is autonomus (and therefore separable), so write it in
the separated differential form

1

eu + 1
du = dz .

This equation can be integrated to obtain

z =

∫

1

eu + 1
du =

∫

e−u

1 + e−u
du = − log(1 + e−u) + c .

The integration constant c is found through the initial condition u(0) = 0 by
setting z = 0 and u = 0, whereby

c = 0 + log(1 + e0) = log(2) .

Hence, the solution is given implicitly by

z = − log(1 + e−u) + log(2) = − log

(

1 + e−u

2

)

.

This may be solve for u as follows:

e−z =
1 + e−u

2
,

2e−z − 1 = e−u ,

u = − log(2e−z − 1) .

The interval of existence for this solution is z < log(2).

(3) Consider the differential equation

dy

dt
= 4y2 − y4 .

(a) Find all of its stationary (equilibrium) solutions and classify each as being either
stable, unstable, or semistable.

Solution: The right-hand side of the equation factors as

4y2 − y4 = y2(4− y2) = y2(2 + y)(2− y) ,

which implies that y = −2, y = 0, and y = 2 are all of its stationary solutions.
A sign analysis of y2(2 + y)(2− y) then shows that

dy

dt
> 0 when −2 < y < 0 or 0 < y < 2 ,

dy

dt
< 0 when −∞ < y < −2 or 2 < y <∞ .

The phase-line for this equation is therefore

− + + −
←←←← • →→→→ • →→→→ • ←←←←

−2 0 2
unstable semistable stable
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(b) If y(0) = 1, how does the solution y(t) behave as t→∞?

Solution: It is clear from the answer to (a) that

dy

dt
> 0 when 0 < y < 2 ,

so that y(t)→ 2 as t→∞ if y(0) = 1.

(c) If y(0) = −1, how does the solution y(t) behave as t→∞?

Solution: It is clear from the answer to (a) that

dy

dt
> 0 when −2 < y < 0 ,

so that y(t)→ 0 as t→∞ if y(0) = −1.

(d) Sketch a graph of y versus t showing the direction field and several solution
curves. The graph should show all the stationary solutions as well as solution
curves above and below each of them. Every value of y should lie on at least
one sketched solution curve.

Solution: Will be given during the review session.

(4) A tank initially contains 100 liters of pure water. Beginning at time t = 0 brine (salt
water) with a salt concentration of 2 grams per liter (g/l) flows into the tank at a
constant rate of 3 liters per minute (l/min) and the well-stirred mixture flows out of
the tank at the same rate. Let S(t) denote the mass (g) of salt in the tank at time
t ≥ 0.
(a) Write down an initial-value problem that governs S(t).

Solution: Because water flows in and out of the tank at the same rate, the tank
will contain 100 liters of salt water for every t > 0. The salt concentration of
the water in the tank at time t will therefore be S(t)/100 g/l. Because this is
also the concentration of the outflow, S(t), the mass of salt in the tank at time
t, will satisfy

dS

dt
= RATE IN− RATE OUT = 2 · 3− S

100
· 3 = 6− 3

100
S .

Because there is no salt in the tank initially, the initial-value problem that gov-
erns S(t) is

dS

dt
= 6− 3

100
S , S(0) = 0 .

(b) Is S(t) an increasing or decreasing function of t? (Give your reasoning.)

Solution: One sees from part (a) that

dS

dt
= 3

100
(200− S) > 0 for S < 200 ,

whereby S(t) is an increasing function of t that will approach the stationary
value of 200 g as t→∞.

(c) What is the behavior of S(t) as t→∞? (Give your reasoning.)

Solution: The argument given for part (b) already shows that S(t) is an in-
creasing function of t that approaches the stationary value of 200 g as t→∞.
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(d) Derive an explicit formula for S(t).

Solution: The differential equation given in the answer to part (a) is linear, so
write it in the form

dS

dt
+ 3

100
S = 6 .

An integrating factor is e
3

100
t, whereby

d

dt

(

e
3

100
tS

)

= 6e
3

100
t .

This is the integrated to obtain

e
3

100
tS = 200e

3

100
t + c .

The integration constant c is found by setting t = 0 and S = 0, whereby

c = e0 · 0− 200 · e0 = −200 .

Then solving for S gives

S(t) = 200− 200e−
3

100
t .

(5) Suppose you are using the Heun-midpoint method to numerically approximate the
solution of an initial-value problem over the time interval [0, 5]. By what factor would
you expect the error to decrease when you increase the number of time steps taken
from 500 to 2000.

Solution: The Heun-midpoint method is second order, which means its (global)
error scales like h2 where h is the time step. When the number of time steps taken
increases from 500 to 2000, the time step h decreases by a factor of 4. The error will
therefore decrease (like h2) by a factor of 42 = 16.

(6) Give an implicit general solution to each of the following differential equations.

(a)

(

y

x
+ 3x

)

dx +
(

log(x)− y
)

dy = 0 .

Solution: Because

∂y

(

y

x
+ 3x

)

=
1

x
= ∂x

(

log(x)− y
)

=
1

x
,

the equation is exact. You can therefore find H(x, y) such that

∂xH(x, y) =
y

x
+ 3x , ∂yH(x, y) = log(x)− y .

The first of these equations implies that

H(x, y) = y log(x) + 3

2
x2 + h(y) .

Plugging this into the second equation then shows that

log(x)− y = ∂yH(x, y) = log(x) + h′(y) .

Hence, h′(y) = −y, which yields h(y) = −1

2
y2. The general solution is therefore

governed implicitly by

y log(x) + 3

2
x2 − 1

2
y2 = c ,

where c is an arbitrary constant.
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(b) (x2 + y3 + 2x) dx + 3y2 dy = 0 .

Solution: Because

∂y(x
2 + y3 + 2x) = 3y2 6= ∂x(3y

2) = 0 ,

the equation is not exact. Seek an integrating factor µ(x, y) such that

∂y

(

(x2 + y3 + 2x)µ
)

= ∂x(3y
2µ) .

This means that µ must satisfy

(x2 + y3 + 2x)∂yµ + 3y2µ = 3y2∂xµ .

If you assume that µ depends only on x (so that ∂yµ = 0) then this reduces to

µ = ∂xµ ,

which depends only on x. One sees from this that µ = ex is an integrating factor.
This implies that

(x2 + y3 + 2x)ex dx + 3y2ex dy = 0 is exact .

You can therefore find H(x, y) such that

∂xH(x, y) = (x2 + y3 + 2x)ex , ∂yH(x, y) = 3y2ex .

The second of these equations implies that

H(x, y) = y3ex + h(x) .

Plugging this into the first equation then yields

(x2 + y3 + 2x)ex = ∂xH(x, y) = y3ex + h′(x) .

Hence, h satisfies
h′(x) = (x2 + 2x)ex .

This can be integrated to obtain h(x) = x2ex. The general solution is therefore
governed implicitly by

(y3 + x2)ex = c ,

where c is an arbitrary constant.

(7) A 2 kilogram (kg) mass initially at rest is dropped in a medium that offers a resistance
of v2/40 newtons (= kg m/sec2) where v is the downward velocity (m/sec) of the mass.
The gravitational acceleration is 9.8 m/sec2.
(a) What is the terminal velocity of the mass?

Solution: The terminal velocity is the velocity at which the force of resistence
balances that of gravity. This happens when

1

40
v2 = mg = 2 · 9.8 .

Upon solving this for v one obtains

v =
√

40 · 2 · 9.8 m/sec (full marks)

=
√

4 · 2 · 98 =
√

4 · 2 · 2 · 49

=
√

42 · 72 = 4 · 7 = 28 m/sec .
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(b) Write down an initial-value problem that governs v as a function of time. (You
do not have to solve it!)

Solution: The net downward force on the falling mass is the force of gravity
minus the force of resistence. By Newton (ma = F ), this leads to

m
dv

dt
= mg − 1

40
v2 .

Because m = 2 and g = 9.8, and because the mass is initially at rest, this yields
the initial-value problem

dv

dt
= 9.8− 1

80
v2 , v(0) = 0 .

(8) Consider the following MATLAB function M-file.

function [t,y] = solveit(ti, yi, tf, n)

h = (tf - ti)/n;
t = zeros(n + 1, 1);
y = zeros(n + 1, 1);
t(1) = ti;
y(1) = yi;
for i = 1:n
z = t(i)̂ 4 + y(i)̂ 2;
t(i + 1) = t(i) + h;
y(i + 1) = y(i) + (h/2)*(z + t(i + 1)̂ 4 + (y(i) + h*z)̂ 2);
end

(a) What is the initial-value problem being approximated numerically?

Solution: The initial-value problem being approximated is

dy

dt
= t4 + y2 , y(to) = yo .

(b) What is the numerical method being used?

Solution: The Heun-Trapezoidal (improved Euler) method is being used.

(c) What are the output values of t(2) and y(2) that you would expect for input
values of ti = 1, yi = 1, tf = 5, n = 20?

Solution: The time step is given by h = (tf - ti)/n = (5 - 1)/20 = 1/5 = .2.
The initial time and data are given by t(1) = ti = 1 and y(1) = yi = 1. One
then has

t(2) = t(1) + h = 1 + .2 = 1.2 ,

z = t(1)4 + y(1)2 = 1 + 1 = 2 ,

y(2) = y(1) + (h/2)
(

z + t(2)4 + (y(1) + h z)2
)

= 1 + .1
(

2 + (1.2)4 + (1 + .2 · 2)2
)

.


