Sample Problems for Third In-Class Exam Math 246, Spring 2009, Professor David Levermore

(1) Consider the matrices

$$
\mathbf{A}=\left(\begin{array}{cc}
-i 2 & 1+i \\
2+i & -4
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ll}
7 & 6 \\
8 & 7
\end{array}\right)
$$

Compute the matrices
(a) \mathbf{A}^{T},
(b) $\overline{\mathbf{A}}$,
(c) \mathbf{A}^{*},
(d) $5 \mathrm{~A}-\mathbf{B}$,
(e) $\mathbf{A B}$,
(f) \mathbf{B}^{-1}.
(2) Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
3 & 3 \\
4 & -1
\end{array}\right)
$$

(a) Find all the eigenvalues of \mathbf{A}.
(b) For each eigenvalue of \mathbf{A} find all of its eigenvectors.
(c) Diagonalize \mathbf{A}.
(3) Solve each of the following initial-value problems.
(a) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}2 & 2 \\ 5 & -1\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{1}{-1}$.
(b) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{1}{1}$.
(4) Compute $e^{t \mathbf{A}}$ for $\mathbf{A}=\left(\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right)$.
(5) Find a general solution for each of the following systems.
(a) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)\binom{x}{y}$
(b) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{ll}2 & -5 \\ 4 & -2\end{array}\right)\binom{x}{y}$
(c) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}5 & 4 \\ -5 & 1\end{array}\right)\binom{x}{y}$
(6) Sketch the phase-plane portrait for each of the systems in the previous problem. Indicate typical trajectories. For each portrait identify its type and give a reason why the origin is either attracting, stable, unstable, or repelling.
(7) Transform the equation $\frac{\mathrm{d}^{3} u}{\mathrm{~d} t^{3}}+t^{2} \frac{\mathrm{~d} u}{\mathrm{~d} t}-3 u=\sinh (2 t)$ into a first-order system of ordinary differential equations.
(8) Consider the vector-valued functions $\mathbf{x}_{1}(t)=\binom{t^{4}+3}{2 t^{2}}, \mathbf{x}_{2}(t)=\binom{t^{2}}{3}$.
(a) Compute the Wronskian $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.
(b) Find $\mathbf{A}(t)$ such that $\mathbf{x}_{1}, \mathbf{x}_{2}$ is a fundamental set of solutions to the system

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\mathbf{A}(t) \mathbf{x}
$$

wherever $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$.
(c) Give a fundamental matrix $\boldsymbol{\Psi}(t)$ for the system found in part (b).
(d) Compute the Green matrix $\mathbf{G}(t, s)$ for the system found in part (b).
(e) For the system found in part (b), solve the initial-value problem

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\mathbf{A}(t) \mathbf{x}, \quad \mathbf{x}(1)=\binom{1}{0}
$$

(9) Consider two interconnected tanks filled with brine (salt water). The first tank contains 100 liters and the second contains 50 liters. Brine flows with a concentration of 2 grams of salt per liter flows into the first tank at a rate of 3 liters per hour. Well stirred brine flows from the first tank to the second at a rate of 5 liters per hour, from the second to the first at a rate of 2 liters per hour, and from the second into a drain at a rate of 3 liters per hour. At $t=0$ there are 5 grams of salt in the first tank and 20 grams in the second. Give an initial-value problem that governs the amount of salt in each tank as a function of time.
(10) Given that 1 is an eigenvalue of the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & -1 & 1 \\
1 & 1 & -1 \\
0 & -1 & 3
\end{array}\right)
$$

find all the eigenvectors of \mathbf{A} associated with 1.

