Solutions to Sample Problems for Third In-Class Exam Math 246, Spring 2009, Professor David Levermore
(1) Consider the matrices

$$
\mathbf{A}=\left(\begin{array}{cc}
-i 2 & 1+i \\
2+i & -4
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ll}
7 & 6 \\
8 & 7
\end{array}\right) .
$$

Compute the matrices
(a) \mathbf{A}^{T},

Solution. The transpose of \mathbf{A} is

$$
\mathbf{A}^{T}=\left(\begin{array}{cc}
-i 2 & 2+i \\
1+i & -4
\end{array}\right)
$$

(b) $\overline{\mathbf{A}}$,

Solution. The conjugate of \mathbf{A} is

$$
\overline{\mathbf{A}}=\left(\begin{array}{cc}
i 2 & 1-i \\
2-i & -4
\end{array}\right)
$$

(c) \mathbf{A}^{*},

Solution. The adjoint of \mathbf{A} is

$$
\mathbf{A}^{*}=\left(\begin{array}{cc}
i 2 & 2-i \\
1-i & -4
\end{array}\right) .
$$

(d) $5 \mathbf{A}-\mathbf{B}$,

Solution. The difference of $5 \mathbf{A}$ and \mathbf{B} is given by
$5 \mathbf{A}-\mathbf{B}=\left(\begin{array}{cc}-i 10 & 5+i 5 \\ 10+i 5 & -20\end{array}\right)-\left(\begin{array}{ll}7 & 6 \\ 8 & 7\end{array}\right)=\left(\begin{array}{cc}-7-i 10 & -1+i 5 \\ 2+i 5 & -27\end{array}\right)$.
(e) $\mathbf{A B}$,

Solution. The product of \mathbf{A} and \mathbf{B} is given by

$$
\begin{aligned}
\mathbf{A B} & =\left(\begin{array}{cc}
-i 2 & 1+i \\
2+i & -4
\end{array}\right)\left(\begin{array}{ll}
7 & 6 \\
8 & 7
\end{array}\right) \\
& =\left(\begin{array}{cc}
-i 2 \cdot 7+(1+i) \cdot 8 & -i 2 \cdot 6+(1+i) \cdot 7 \\
(2+i) \cdot 7-4 \cdot 8 & (2+i) \cdot 6-4 \cdot 7
\end{array}\right) \\
& =\left(\begin{array}{cc}
8-i 6 & 7-i 5 \\
-18+i 7 & -16+i 6
\end{array}\right) .
\end{aligned}
$$

(f) \mathbf{B}^{-1}.

Solution. Observe that it is clear that \mathbf{B} has an inverse because

$$
\operatorname{det}(\mathbf{B})=\operatorname{det}\left(\begin{array}{ll}
7 & 6 \\
8 & 7
\end{array}\right)=7 \cdot 7-6 \cdot 8=49-48=1
$$

The inverse of \mathbf{B} is given by

$$
\mathbf{B}^{-1}=\frac{1}{\operatorname{det}(\mathbf{B})}\left(\begin{array}{cc}
7 & -6 \\
-8 & 7
\end{array}\right)=\left(\begin{array}{cc}
7 & -6 \\
-8 & 7
\end{array}\right) .
$$

(2) Consider the matrix

$$
\mathbf{A}=\left(\begin{array}{cc}
3 & 3 \\
4 & -1
\end{array}\right)
$$

(a) Find all the eigenvalues of \mathbf{A}.

Solution. The characteristic polynomial of \mathbf{A} is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-2 z-15=(z-1)^{2}-16 .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are 1 ± 4, or simply -3 and 5 .
(b) For each eigenvalue of \mathbf{A} find all of its eigenvectors.

Solution (using the Cayley-Hamilton method from notes). One has

$$
\mathbf{A}+3 \mathbf{I}=\left(\begin{array}{ll}
6 & 3 \\
4 & 2
\end{array}\right), \quad \mathbf{A}-5 \mathbf{I}=\left(\begin{array}{cc}
-2 & 3 \\
4 & -6
\end{array}\right)
$$

Every nonzero column of $\mathbf{A}-5 \mathbf{I}$ has the form

$$
\alpha_{1}\binom{1}{-2} \quad \text { for some } \alpha_{1} \neq 0
$$

These are all the eigenvectors associated with -3 . Similarly, every nonzero column of $\mathbf{A}+3 \mathbf{I}$ has the form

$$
\alpha_{2}\binom{3}{2} \quad \text { for some } \alpha_{2} \neq 0
$$

These are all the eigenvectors associated with 5.
(c) Diagonalize \mathbf{A}.

Solution. If you use the eigenpairs

$$
\left(-3,\binom{1}{-2}\right), \quad\left(5,\binom{3}{2}\right)
$$

then set

$$
\mathbf{V}=\left(\begin{array}{cc}
1 & 3 \\
-2 & 2
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{cc}
-3 & 0 \\
0 & 5
\end{array}\right)
$$

Because $\operatorname{det}(\mathbf{V})=1 \cdot 2-(-2) \cdot 3=2+6=8$, you see that

$$
\mathbf{V}^{-1}=\frac{1}{8}\left(\begin{array}{cc}
2 & -3 \\
2 & 1
\end{array}\right)
$$

You conclude that \mathbf{A} has the diagonalization

$$
\mathbf{A}=\mathbf{V D V}^{-1}=\left(\begin{array}{cc}
1 & 3 \\
-2 & 2
\end{array}\right)\left(\begin{array}{cc}
-3 & 0 \\
0 & 5
\end{array}\right) \frac{1}{8}\left(\begin{array}{cc}
2 & -3 \\
2 & 1
\end{array}\right)
$$

You do not have to multiply these matrices out for full credit. You can do so to check your answer. (You should get \mathbf{A} if you do.) Had you started with different eigenpairs, the steps would be the same as above but you would obtain a different diagonalization.
(3) Solve each of the following initial-value problems.

$$
\text { (a) } \frac{\mathrm{d}}{\mathrm{~d} t}\binom{x}{y}=\left(\begin{array}{cc}
2 & 2 \\
5 & -1
\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{1}{-1} \text {. }
$$

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{cc}2 & 2 \\ 5 & -1\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-z-12=(z+3)(z-4) .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are -3 and 4. These have the form $\frac{1}{2} \pm \frac{7}{2}$. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{\frac{1}{2} t}\left[\mathbf{I} \cosh \left(\frac{7}{2} t\right)+\left(\mathbf{A}-\frac{1}{2} \mathbf{I}\right) \frac{\sinh \left(\frac{7}{2} t\right)}{\frac{7}{2}}\right] \\
& =e^{\frac{1}{2} t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cosh \left(\frac{7}{2} t\right)+\left(\begin{array}{cc}
\frac{3}{2} & 2 \\
5 & -\frac{3}{2}
\end{array}\right) \frac{\sinh \left(\frac{7}{2} t\right)}{\frac{7}{2}}\right] \\
& =e^{\frac{1}{2} t}\left(\begin{array}{cc}
\cosh \left(\frac{7}{2} t\right)+\frac{3}{7} \sinh \left(\frac{7}{2} t\right) & \cosh \left(\frac{4}{2} \sinh \left(\frac{7}{2} t\right)-\frac{3}{7} \sinh \left(\frac{7}{2} t\right)\right.
\end{array}\right) .
\end{aligned}
$$

The solution of the initial-value problem is therefore

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{x(0)}{y(0)}=e^{t \mathbf{A}}\binom{1}{-1} \\
& =e^{\frac{1}{2} t}\left(\begin{array}{cc}
\cosh \left(\frac{7}{2} t\right)+\frac{3}{7} \sinh \left(\frac{7}{2} t\right) & \cosh \left(\frac{7}{2} \sinh \left(\frac{7}{2} t\right)-\frac{3}{7} \sinh \left(\frac{7}{2} t\right)\right.
\end{array}\right)\left(\begin{array}{c}
1 \\
\frac{10}{7} \sinh \left(\frac{7}{2} t\right)
\end{array}\right. \\
& =e^{\frac{1}{2} t}\binom{\cosh \left(\frac{7}{2} t\right)-\frac{1}{7} \sinh \left(\frac{7}{2} t\right)}{-\cosh \left(\frac{7}{2} t\right)+\frac{13}{7} \sinh \left(\frac{7}{2} t\right)} .
\end{aligned}
$$

(b) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right)\binom{x}{y}, \quad\binom{x(0)}{y(0)}=\binom{1}{1}$.

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{cc}1 & 1 \\ -4 & 1\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-2 z+5=(z-1)^{2}+4
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are $1 \pm i 2$. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{t}\left[\mathbf{I} \cos (2 t)+(\mathbf{A}-\mathbf{I}) \frac{\sin (2 t)}{2}\right] \\
& =e^{t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos (2 t)+\left(\begin{array}{cc}
0 & 1 \\
-4 & 0
\end{array}\right) \frac{\sin (2 t)}{2}\right] \\
& =e^{t}\left(\begin{array}{cc}
\cos (2 t) & \frac{1}{2} \sin (2 t) \\
-2 \sin (2 t) & \cos (2 t)
\end{array}\right)
\end{aligned}
$$

The solution of the initial-value problem is therefore

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{x(0)}{y(0)}=e^{t \mathbf{A}}\binom{1}{1} \\
& =e^{t}\left(\begin{array}{cc}
\cos (2 t) & \frac{1}{2} \sin (2 t) \\
-2 \sin (2 t) & \cos (2 t)
\end{array}\right)\binom{1}{1} \\
& =e^{t}\binom{\cos (2 t)+\frac{1}{2} \sin (2 t)}{-2 \sin (2 t)+\cos (2 t)}
\end{aligned}
$$

(4) Compute $e^{t \mathbf{A}}$ for $\mathbf{A}=\left(\begin{array}{ll}1 & 4 \\ 1 & 1\end{array}\right)$.

Solution. The characteristic polynomial of \mathbf{A} is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-2 z-3=(z-1)^{2}-4 .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are 1 ± 2. One then has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{t}\left[\mathbf{I} \cosh (2 t)+(\mathbf{A}-\mathbf{I}) \frac{\sinh (2 t)}{2}\right] \\
& =e^{t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cosh (2 t)+\left(\begin{array}{ll}
0 & 4 \\
1 & 0
\end{array}\right) \frac{\sinh (2 t)}{2}\right] \\
& =e^{t}\left(\begin{array}{cc}
\cosh (2 t) & 2 \sinh (2 t) \\
\frac{1}{2} \sinh (2 t) & \cosh (2 t)
\end{array}\right) .
\end{aligned}
$$

(5) Find a general solution for each of the following systems.
(a) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)\binom{x}{y}$

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{ll}3 & -4 \\ 1 & -1\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-2 z+1=(z-1)^{2} .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which is 1 , a double root. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{t}[\mathbf{I}+(\mathbf{A}-\mathbf{I}) t]=e^{t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right) t\right] \\
& =e^{t}\left(\begin{array}{cc}
1+2 t & -4 t \\
t & 1-2 t
\end{array}\right) .
\end{aligned}
$$

A general solution is therefore given by

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{c_{1}}{c_{2}}=e^{t}\left(\begin{array}{cc}
1+2 t & -4 t \\
t & 1-2 t
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =e^{t}\binom{c_{1}(1+2 t)-4 c_{2} t}{c_{1} t+c_{2}(1-2 t)}
\end{aligned}
$$

(b) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{ll}2 & -5 \\ 4 & -2\end{array}\right)\binom{x}{y}$

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{ll}2 & -5 \\ 4 & -2\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}+16 .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are $\pm i 4$. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =\left[\mathbf{I} \cos (4 t)+\mathbf{A} \frac{\sin (4 t)}{4}\right]=\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos (4 t)+\left(\begin{array}{ll}
2 & -5 \\
4 & -2
\end{array}\right) \frac{\sin (4 t)}{4}\right] \\
& =\left(\begin{array}{cc}
\cos (4 t)+\frac{1}{2} \sin (4 t) \\
\sin (4 t) & -\frac{5}{4} \sin (4 t) \\
\cos (4 t)-\frac{1}{2} \sin (4 t)
\end{array}\right) .
\end{aligned}
$$

A general solution is therefore given by

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{c_{1}}{c_{2}}=\left(\begin{array}{cc}
\cos (4 t)+\frac{1}{2} \sin (4 t) & -\frac{5}{4} \sin (4 t) \\
\sin (4 t) & \cos (4 t)-\frac{1}{2} \sin (4 t)
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =\binom{c_{1}\left(\cos (4 t)+\frac{1}{2} \sin (4 t)\right)-c_{2} \frac{5}{4} \sin (4 t)}{c_{1} \sin (4 t)+c_{2}\left(\cos (4 t)-\frac{1}{2} \sin (4 t)\right)} .
\end{aligned}
$$

(c) $\frac{\mathrm{d}}{\mathrm{d} t}\binom{x}{y}=\left(\begin{array}{cc}5 & 4 \\ -5 & 1\end{array}\right)\binom{x}{y}$

Solution. The characteristic polynomial of $\mathbf{A}=\left(\begin{array}{cc}5 & 4 \\ -5 & 1\end{array}\right)$ is given by

$$
p(z)=z^{2}-\operatorname{tr}(\mathbf{A}) z+\operatorname{det}(\mathbf{A})=z^{2}-6 z+25=(z-3)^{2}+16 .
$$

The eigenvalues of \mathbf{A} are the roots of this polynomial, which are $3 \pm i 4$. One therefore has

$$
\begin{aligned}
e^{t \mathbf{A}} & =e^{3 t}\left[\mathbf{I} \cos (4 t)+(\mathbf{A}-3 \mathbf{I}) \frac{\sin (4 t)}{4}\right] \\
& =e^{3 t}\left[\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cos (4 t)+\left(\begin{array}{cc}
2 & 4 \\
-5 & -2
\end{array}\right) \frac{\sin (4 t)}{4}\right] \\
& =e^{3 t}\left(\begin{array}{cc}
\cos (4 t)+\frac{1}{2} \sin (4 t) & \sin (4 t) \\
-\frac{5}{4} \sin (4 t) & \cos (4 t)-\frac{1}{2} \sin (4 t)
\end{array}\right) .
\end{aligned}
$$

A general solution is therefore given by

$$
\begin{aligned}
\binom{x(t)}{y(t)} & =e^{t \mathbf{A}}\binom{c_{1}}{c_{2}}=e^{3 t}\left(\begin{array}{cc}
\cos (4 t)+\frac{1}{2} \sin (4 t) & \sin (4 t) \\
-\frac{5}{4} \sin (4 t) & \cos (4 t)-\frac{1}{2} \sin (4 t)
\end{array}\right)\binom{c_{1}}{c_{2}} \\
& =e^{3 t}\binom{c_{1}\left(\cos (4 t)+\frac{1}{2} \sin (4 t)\right)+c_{2} \sin (4 t)}{-c_{1} \frac{5}{4} \sin (4 t)+c_{2}\left(\cos (4 t)-\frac{1}{2} \sin (4 t)\right)} .
\end{aligned}
$$

(6) Sketch the phase-plane portrait for each of the systems in the previous problem. Indicate typical trajectories. For each portrait identify its type and give a reason why the origin is either attracting, stable, unstable, or repelling.
(a) Solution. Because the characteristic polynomial of \mathbf{A} is $p(z)=(z-1)^{2}$, one sees that $\mu=1$ and $\delta=0$. Because

$$
\mathbf{A}-\mathbf{I}=\left(\begin{array}{ll}
2 & -4 \\
1 & -2
\end{array}\right)
$$

we see that the eigenvectors associated with 1 are

$$
\alpha\binom{2}{1} \quad \text { for some } \alpha \neq 0 .
$$

Because $\mu=1>0, \delta=0$, and $a_{21}>0$ the phase portrait is a counterclockwise twist source. The origin is thereby repelling. The phase portrait should show there is one trajectory that emerges from the origin on each side of the line $y=x / 2$. Every other trajectory emerges from the origin with a clockwise twist.
(b) Solution. Because the characteristic polynomial of \mathbf{A} is $p(z)=z^{2}+16$, one sees that $\mu=0$ and $\delta=-16$. There are no real eigenpairs. Because $\mu=0$, $\delta=-16<0$, and $a_{21}>0$ the phase portrait is a counterclockwise center. The origin is thereby stable. The phase portrait should indicate a family of counterclockwise elliptical trajectories that go around the origin.
(c) Solution. Because the characteristic polynomial of \mathbf{A} is $p(z)=(z-3)^{2}+16$, one sees that $\mu=3$ and $\delta=-16$. There are no real eigenpairs. Because $\mu=3, \delta=-16<0$, and $a_{21}<0$ the phase portrait is a clockwise spiral source. The origin is thereby repelling. The phase portrait should indicate a family of clockwise spiral trajectories that emerge from the origin.
(7) Transform the equation $\frac{\mathrm{d}^{3} u}{\mathrm{~d} t^{3}}+t^{2} \frac{\mathrm{~d} u}{\mathrm{~d} t}-3 u=\sinh (2 t)$ into a first-order system of ordinary differential equations.
Solution: Because the equation is third order, the first order system must have dimension three. The simplest such first order system is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
x_{2} \\
x_{3} \\
\sinh (2 t)+3 x_{1}-t^{2} x_{2}
\end{array}\right), \quad \text { where } \quad\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
u \\
u^{\prime} \\
u^{\prime \prime}
\end{array}\right) .
$$

(8) Consider the vector-valued functions $\mathbf{x}_{1}(t)=\binom{t^{4}+3}{2 t^{2}}, \mathbf{x}_{2}(t)=\binom{t^{2}}{3}$.
(a) Compute the Wronskian $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)$.

Solution.

$$
W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t)=\operatorname{det}\left(\begin{array}{cc}
t^{4}+3 & t^{2} \\
2 t^{2} & 3
\end{array}\right)=3 t^{4}+9-2 t^{4}=t^{4}+9
$$

(b) Find $\mathbf{A}(t)$ such that $\mathbf{x}_{1}, \mathbf{x}_{2}$ is a fundamental set of solutions to $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}=\mathbf{A}(t) \mathbf{x}$ wherever $W\left[\mathbf{x}_{1}, \mathbf{x}_{2}\right](t) \neq 0$.
Solution. Let $\boldsymbol{\Psi}(t)=\left(\begin{array}{cc}t^{4}+3 & t^{2} \\ 2 t^{2} & 3\end{array}\right)$. Because $\frac{\boldsymbol{\Psi}(t)}{\mathrm{d} t}=\mathbf{A}(t) \boldsymbol{\Psi}(t)$, one has

$$
\begin{aligned}
\mathbf{A}(t) & =\frac{\mathbf{\Psi}(t)}{\mathrm{d} t} \boldsymbol{\Psi}(t)^{-1}=\left(\begin{array}{cc}
4 t^{3} & 2 t \\
4 t & 0
\end{array}\right)\left(\begin{array}{cc}
t^{4}+3 & t^{2} \\
2 t^{2} & 3
\end{array}\right)^{-1} \\
& =\frac{1}{t^{4}+9}\left(\begin{array}{cc}
4 t^{3} & 2 t \\
4 t & 0
\end{array}\right)\left(\begin{array}{cc}
3 & -t^{2} \\
-2 t^{2} & t^{4}+3
\end{array}\right)=\frac{1}{t^{4}+9}\left(\begin{array}{cc}
8 t^{3} & -2 t^{5}+6 t \\
12 t & -4 t^{3}
\end{array}\right) .
\end{aligned}
$$

(c) Give a fundamental matrix $\boldsymbol{\Psi}(t)$ for the system found in part (b).

Solution. A fundamental matrix is $\boldsymbol{\Psi}(t)=\left(\begin{array}{ll}\mathbf{x}_{1}(t) & \mathbf{x}_{2}(t)\end{array}\right)=\left(\begin{array}{cc}t^{4}+3 & t^{2} \\ 2 t^{2} & 3\end{array}\right)$.
(d) Compute the Green matrix $\mathbf{G}(t, s)$ for the system found in part (b).

Solution. The Green matrix is given by

$$
\begin{aligned}
\mathbf{G}(t, s) & =\mathbf{\Psi}(t) \mathbf{\Psi}(s)^{-1}=\left(\begin{array}{cc}
t^{4}+3 & t^{2} \\
2 t^{2} & 3
\end{array}\right) \frac{1}{s^{4}+9}\left(\begin{array}{cc}
3 & -s^{2} \\
-2 s^{2} & s^{4}+3
\end{array}\right) \\
& =\frac{1}{s^{4}+9}\left(\begin{array}{cc}
3 t^{4}+9-2 t^{2} s^{2} & t^{2} s^{4}+3 t^{2}-t^{4} s^{2}-3 s^{2} \\
6 t^{2}-6 s^{2} & 3 s^{4}+9-2 t^{2} s^{2}
\end{array}\right) .
\end{aligned}
$$

(e) For the system found in part (b), solve the initial-value problem

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\mathbf{A}(t) \mathbf{x}, \quad \mathbf{x}(1)=\binom{1}{0}
$$

Solution. The solution of the initial-value problem is given by

$$
\begin{aligned}
\mathbf{x}(t)=\mathbf{G}(t, 1) \mathbf{x}(1) & =\frac{1}{10}\left(\begin{array}{cc}
3 t^{4}+9-2 t^{2} & 4 t^{2}-t^{4}-3 \\
6 t^{2}-6 & 12-2 t^{2}
\end{array}\right)\binom{1}{0} \\
& =\frac{1}{10}\binom{3 t^{4}+9-2 t^{2}}{6 t^{2}-6} .
\end{aligned}
$$

Alternative Solution. A general solution is given by $\mathbf{x}(t)=\boldsymbol{\Psi}(t) \mathbf{c}$ where $\Psi(t)$ is the fundamental matrix you found in part (c). By imposing the initial condition you find that $\mathbf{x}(1)=\boldsymbol{\Psi}(1) \mathbf{c}$, whereby $\mathbf{c}=\boldsymbol{\Psi}(1)^{-1} \mathbf{x}(1)$. The solution of the initial-value problem is therefore given by

$$
\begin{aligned}
\mathbf{x}(t)=\boldsymbol{\Psi}(t) \mathbf{\Psi}(1)^{-1} \mathbf{x}(1) & =\left(\begin{array}{cc}
t^{4}+3 & t^{2} \\
2 t^{2} & 3
\end{array}\right)\left(\begin{array}{cc}
1^{4}+3 & 1^{2} \\
21^{2} & 3
\end{array}\right)^{-1}\binom{1}{0} \\
& =\left(\begin{array}{cc}
t^{4}+3 & t^{2} \\
2 t^{2} & 3
\end{array}\right)\left(\begin{array}{ll}
4 & 1 \\
2 & 3
\end{array}\right)^{-1}\binom{1}{0} \\
& =\left(\begin{array}{cc}
t^{4}+3 & t^{2} \\
2 t^{2} & 3
\end{array}\right) \frac{1}{12-2}\left(\begin{array}{cc}
3 & -1 \\
-2 & 4
\end{array}\right)\binom{1}{0} \\
& =\frac{1}{10}\left(\begin{array}{cc}
t^{4}+3 & t^{2} \\
2 t^{2} & 3
\end{array}\right)\binom{3}{-2}=\frac{1}{10}\binom{3 t^{4}+9-2 t^{2}}{6 t^{2}-6} .
\end{aligned}
$$

(9) Consider two interconnected tanks filled with brine (salt water). The first tank contains 100 liters and the second contains 50 liters. Brine flows with a concentration of 2 grams of salt per liter flows into the first tank at a rate of 3 liters per hour. Well stirred brine flows from the first tank to the second at a rate of 5 liters per hour, from the second to the first at a rate of 2 liters per hour, and from the second into a drain at a rate of 3 liters per hour. At $t=0$ there are 5 grams of salt in the first tank and 20 grams in the second. Give an initial-value problem that governs the amount of salt in each tank as a function of time.
Solution: The rates work out so there will always be 100 liters of brine in the first tank and 50 liters in the second. Let $S_{1}(t)$ be the grams of salt in the first tank and $S_{2}(t)$ be the grams of salt in the second tank. These are governed by the initial-value problem

$$
\begin{array}{ll}
\frac{\mathrm{d} S_{1}}{\mathrm{~d} t}=2 \cdot 3+\frac{S_{2}}{50} 2-\frac{S_{1}}{100} 5, & S_{1}(0)=2 \\
\frac{\mathrm{~d} S_{2}}{\mathrm{~d} t}=\frac{S_{1}}{100} 5-\frac{S_{2}}{50} 2-\frac{S_{2}}{50} 3, & S_{2}(0)=20
\end{array}
$$

You could leave the answer in the above form. It can however be simplified to

$$
\begin{array}{ll}
\frac{\mathrm{d} S_{1}}{\mathrm{~d} t}=6+\frac{S_{2}}{25}-\frac{S_{1}}{20}, & S_{1}(0)=2 \\
\frac{\mathrm{~d} S_{2}}{\mathrm{~d} t}=\frac{S_{1}}{20}-\frac{S_{2}}{10}, & S_{2}(0)=20
\end{array}
$$

(10) Given that 1 is an eigenvalue of the matrix

$$
\mathbf{A}=\left(\begin{array}{ccc}
2 & -1 & 1 \\
1 & 1 & -1 \\
0 & -1 & 3
\end{array}\right)
$$

find all the eigenvectors of \mathbf{A} associated with 1.
Solution. The eigenvectors of \mathbf{A} associated with 1 are all nonzero vectors \mathbf{v} that satisfy $\mathbf{A v}=\mathbf{v}$. Equivalently, they are all nonzero vectors \mathbf{v} that satisfy $(\mathbf{A}-\mathbf{I}) \mathbf{v}=0$, which is

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -1 \\
0 & -1 & 2
\end{array}\right)\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)=0 .
$$

The entries of \mathbf{v} thereby satisfy the homogeneous linear algebraic system

$$
\begin{aligned}
v_{1}-v_{2}+v_{3} & =0 \\
v_{1}-v_{3} & =0 \\
-v_{2}+2 v_{3} & =0
\end{aligned}
$$

You may solve this system either by elimination or by row reduction. For example, by row reduction you obtain

$$
\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -1 \\
0 & -1 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & -1 & 2
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right)
$$

By either method you find that its general solution is

$$
v_{1}=\alpha, \quad v_{2}=2 \alpha, \quad v_{3}=\alpha, \quad \text { for any constant } \alpha .
$$

The eigenvectors of \mathbf{A} associated with 1 therefore have the form

$$
\alpha\left(\begin{array}{l}
1 \\
2 \\
1
\end{array}\right) \text { for any nonzero constant } \alpha \text {. }
$$

