
Solutions to Sample Final Exam Problems, Math 246, Spring 2009

(1) Consider the differential equation
dy

dt
= (9− y2)y2.

(a) Identify its equilibrium (stationary) points and classify their stability.
(b) Sketch how solutions move in the interval −5 ≤ y ≤ 5 (its phase-line portrait).
(c) If y(0) = −1, how does the solution y(t) behave as t→∞?

Solution (a,b): The right-hand side factors as (3 + y)(3 − y)y2. The stationary
solutions are y = −3, y = 0, and y = 3. A sign analysis of (3 + y)(3 − y)y2 shows
that the phase-line portrait for this equation is therefore

− + + −
←←←← • →→→→ • →→→→ • ←←←← y

−3 0 3
unstable semistable stable

Solution (c): The phase-line shows that if y(0) = −1 then y(t)→ 0 as t→∞.

(2) Solve (possibly implicitly) each of the following initial-value problems. Identify their
intervals of definition.

(a)
dy

dt
+

2ty

1 + t2
= t2 , y(0) = 1 .

Solution: This equation is linear and is already in normal form. An integrating
factor is

exp

(
∫ t

0

2s

1 + s2
ds

)

= exp
(

log(1 + t2)
)

= 1 + t2 ,

so that
d

dt

(

(1 + t2)y
)

= (1 + t2)t2 = t2 + t4 .

Integrate this to obtain

(1 + t2)y = 1
3
t3 + 1

5
t5 + c .

The initial condition y(0) = 1 implies that c = (1 + 02) · 1 − 1
3
03 − 1

5
05 = 1.

Therefore

y =
1 + 1

3
t3 + 1

5
t5

1 + t2
.

This solution exists for every t.

(b)
dy

dx
+

exy + 2x

2y + ex
= 0 , y(0) = 0 .

Solution: Express this equation in the differential form

(exy + 2x) dx + (2y + ex) dy = 0 .

This differential form is exact because

∂y(e
xy + 2x) = ex = ∂x(2y + ex) = ex .

We can therefore find H(x, y) such that

∂xH(x, y) = exy + 2x , ∂yH(x, y) = 2y + ex .
1
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The first equation implies H(x, y) = exy + x2 + h(y). Plugging this into the
second equation gives

ex + h′(y) = 2y + ex ,

which yields h′(y) = 2y. Taking h(y) = y2, the general solution is

exy + x2 + y2 = c .

The initial condition y(0) = 0 implies that c = e0 · 0 + 02 + 02 = 0. Therefore

y2 + exy + x2 = 0 .

If you had been asked for an explicit solution then the quadratic formula yields

y =
−ex +

√
e2x − 4x2

2
.

Here the positive square root is taken because that solution satisfies the initial
condition. It exists wherever e2x ≥ 4x2.

(3) Let y(t) be the solution of the initial-value problem

dy

dt
= y2 + t2 , y(0) = 1 .

Use two steps of the forward Euler method to approximate y(0.2).

Solution. The forward Euler method is
fn = f(yn, tn) ,

yn+1 = yn + hfn ,

tn+1 = tn + h ,

where h is the time step, t0 is the initial time, and y0 is the initial data.
When the forward Euler method is applied with h = 0.1, t0 = 0, y0 = 1, and

f(y, t) = y2 + t2 for two steps

f0 = f(y0, t0) = y 2
0 + t 2

0 = 12 + 02 = 1 ,

y1 = y0 + hf0 = 1 + 0.1 · 1 = 1.1 ,

t1 = t0 + h = 0 + 0.1 = 0.1 ,

f1 = f(y1, t1) = y 2
1 + t 2

1 = (1.1)2 + (0.1)2 ,

y2 = y1 + hf1 = 1.1 + 0.1 ·
(

(1.1)2 + (0.1)2
)

.

The approximation is therefore

y(0.2) ≈ 1.1 + 0.1 ·
(

(1.1)2 + (0.1)2
)

.

You DO NOT have to work out the arithmetic! If you did then y2 = 1.222.

Remark. You should be able to answer similar questions that ask you to use the
imploved Euler (trapeziodal Heun) method.
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(4) Give an explicit real-valued general solution of the following equations.

(a)
d2y

dt2
− 2

dy

dt
+ 5y = tet + cos(2t)

Solution. This is a constant coefficient, inhomogeneous, linear equation. Its
characteristic polynomial is

p(z) = z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

This has the conjugate pair of roots 1± i2, which yields a general solution of the
associated homogeneous problem

yH(t) = c1e
t cos(2t) + c2e

t sin(2t) .

A particular solution yP (t) can be found by the method of undetermined coeffi-
cients. The characteristics of the forcing terms tet and cos(2t) are r+ is = 1 and
r + is = i2 respectively. Because these characteristics are different, they should
be treated separately. This can be done using either KEY identity evaluation or
direct substitution.

KEY Indentity Evaluations. The forcing term t et has degree d = 1 and
characteristic r + is = 1, which is a root of p(z) of multiplicity m = 0. Because
m + d = 1, you need the KEY identity and its first derivative

L(ezt) = (z2 − 2z + 5)ezt ,

L(t ezt) = (z2 − 2z + 5)t ezt + (2z − 2) ezt .

Evaluate these at z = 1 to find L(et) = 4et and L(t et) = 4t et. Dividing the
second of these equations by 4 yields L(1

4
t et) = t et, which implies yP1(t) = 1

4
t et.

The forcing term cos(2t) has degree d = 0 and characteristic r + is = i2, which
is a root of p(z) of multiplicity m = 0. Because m + d = 0, you only need the
KEY identity

L(ezt) = (z2 − 2z + 5)ezt .

Evaluate this at z = i2 to find L(ei2t) = (1 − i4)ei2t. Dividing this by (1 − i4)
yeilds

L

(

ei2t

1− i4

)

= ei2t .

Because cos(2t) = Re(ei2t), the above equation implies

yP2(t) = Re

(

ei2t

1− i4

)

= Re

(

(1 + i4)ei2t

12 + 42

)

= 1
17

Re
(

(1 + i4)ei2t
)

= 1
17

(

cos(2t)− 4 sin(2t)
)

.

Combining these particular solutions with the general solution of the associated
homogeneous problem yields the general solution

y = yH(t) + yP1(t) + yP2(t)

= c1e
t cos(2t) + c2e

t sin(2t) + 1
4
t et + 1

17
cos(2t)− 4

17
sin(2t) .
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Direct Substitution. The forcing term t et has degree d = 1 and characteristic
r + is = 1, which is a root of p(z) of multiplicity m = 0. Because m = 0 and
m + d = 1, you seek a particular solution of the form

yP1(t) = A0t et + A1e
t .

Because

y′

P1(t) = A0t et + (A0 + A1)e
t , y′′

P1(t) = A0t et + (2A0 + A1)e
t ,

one sees that

LyP1(t) = y′′

P1(t)− 2y′

P1(t) + 5yP1(t)

=
(

A0t et + (2A0 + A1)e
t
)

− 2
(

A0t et + (A0 + A1)e
t
)

+ 5
(

A0t et + A1e
t
)

= 4A0t et + 4A1e
t .

Setting 4A0t et +4A1e
t = t et, we see that 4A0 = 1 and 4A1 = 0, whereby A0 = 1

4

and A1 = 0. Hence, yP (t) = 1
4
t et.

The forcing term cos(2t) has degree d = 0 and characteristic r + is = i2, which
is a root of p(z) of multiplicity m = 0. Because m = 0 and m + d = 0, you seek
a particular solution of the form

yP2(t) = A cos(2t) + B sin(2t) .

Because
y′

P2(t) = −2A sin(2t) + 2B cos(2t) ,

y′′

P2(t) = −4A cos(2t)− 4B sin(2t) ,

one sees that

LyP2(t) = y′′

P2(t)− 2y′

P2(t) + 5yP2(t)

=
(

− 4A cos(2t)− 4B sin(2t)
)

− 2
(

− 2A sin(2t) + 2B cos(2t)
)

+ 5
(

A cos(2t) + B sin(2t)
)

= (A− 4B) cos(2t) + (B + 4A) sin(2t) .

Setting (A− 4B) cos(2t) + (B + 4A) sin(2t) = cos(2t), we see that

A− 4B = 1 , B + 4A = 0 .

This system can be solved by any method you choose to find A = 1
17

and B =

− 4
17

, whereby

yP2(t) = 1
17

cos(2t)− 4
17

sin(2t) .

Combining these particular solutions with the general solution of the associated
homogeneous problem yields the general solution

y = yH(t) + yP1(t) + yP2(t)

= c1e
t cos(2t) + c2e

t sin(2t) + 1
4
t et + 1

17
cos(2t)− 4

17
sin(2t) .
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(b)
d2y

dt2
+ 9y = tan(3t)

Solution. This is a constant coefficient, inhomogeneous, linear equation. Its
characteristic polynomial is

p(z) = z2 + 9 = z2 + 32 .

This has the conjugate pair of roots ±i3, which yields a general solution of the
associated homogeneous problem

yH(t) = c1 cos(3t) + c2 sin(3t) .

Because of the form of the forcing term, you must use either the Green function
method or variation of parameters to find a particular solution.

Variation of Parameters. The equation is already in normal form. Seek a
solution in the form

y(t) = u1(t) cos(3t) + u2(t) sin(3t) ,

where u′

1(t) and u′

2(t) satisfy

u′

1(t) cos(3t) + u′

2(t) sin(3t) = 0 ,

−u′

1(t)3 sin(3t) + u′

2(t)3 cos(3t) = tan(3t) .

Solve this system to find

u′

1(t) = − sin(3t)2

3 cos(3t)
= 1

3
cos(3t)− 1

3
sec(3t) , u′

2(t) = 1
3
sin(3t) .

Integrate these to find

u1(t) = c1 + 1
9
sin(3t)− 1

9
log

(

tan(3t) + sec(3t)
)

, u2(t) = c2 − 1
9
cos(3t) .

A general solution is therefore

y = u1(t) cos(3t) + u2(t) sin(3t)

= c1 cos(3t) + c2 sin(3t)− 1
9
cos(3t) log

(

tan(3t) + sec(3t)
)

.

Green Function Method. The associated Green function g(t) satisfies the
initial-value problem

d2g

dt2
+ 9g = 0 , g(0) = 0 , g′(0) = 1 .

Because g(t) = c1 cos(3t) + c2 sin(3t), the first initial condition implies c1 =
g(0) = 0. Because then g′(t) = 3c2 cos(3t), the second initial condition implies
3c2 = g′(0) = 1. Hence,

g(t) = 1
3
sin(3t) .



6

A particular solution is then given by

yP (t) =

∫ t

0

g(t− s) tan(3s) ds = 1
3

∫ t

0

sin(3t− 3s) tan(3s) ds

= 1
3

∫ t

0

(

sin(3t) cos(3s)− cos(3t) sin(3s)
)

tan(3s) ds

= 1
3
sin(3t)

∫ t

0

sin(3s) ds− 1
3
cos(3t)

∫ t

0

sin(3s)2

cos(3s)
ds .

Because
∫ t

0

sin(3s) ds = −1
3
cos(3s)

∣

∣

∣

∣

t

s=0

= 1
3
− 1

3
cos(3t) ,

∫ t

0

sin(3s)2

cos(3s)
ds =

∫ t

0

sec(3s)− cos(3s) ds

= 1
3

(

log
(

tan(3s) + sec(3s)
)

− sin(3s)
)

∣

∣

∣

∣

t

s=0

= 1
3

(

log
(

tan(3t) + sec(3t)
)

− sin(3t)
)

,

you find that

yP (t) = 1
9
sin(3t)

(

1− cos(3t)
)

− 1
9
cos(3t)

(

log
(

tan(3t) + sec(3t)
)

− sin(3t)
)

= 1
9
sin(3t)− 1

9
cos(3t) log

(

tan(3t) + sec(3t)
)

.

A general solution is therefore

y = yH(t) + yP (t)

= c1 cos(3t) + c2 sin(3t) + 1
9
sin(3t)− 1

9
cos(3t) log

(

tan(3t) + sec(3t)
)

.

(5) When a mass of 2 kilograms is hung vertically from a spring, it stretches the spring
0.5 meters. (Gravitational acceleration is 9.8 m/sec2.) At t = 0 the mass is set in
motion from 0.3 meters below its equilibrium (rest) position with a upward velocity
of 2 m/sec. Neglect drag and assume that the spring force is proportional to its
displacement. Formulate an initial-value problem that governs the motion of the
mass for t > 0. (DO NOT solve this initial-value problem; just write it down!)

Solution. Let h(t) be the displacement (in meters) of the mass from its equilibrium
(rest) position at time t (in seconds), with upward displacements being positive. The
governing initial-value problem then has the form

m
d2h

dt2
+ kh = 0 , h(0) = −.3 , h′(0) = 2 ,

where m is the mass and k is the spring constant. The problem says that m = 2
kilograms. The spring constant is obtained by balancing the weight of the mass (mg

= 2 · 9.8 Newtons) with the force applied by the spring when it is stetched .5 m.
This gives k .5 = 2 · 9.8, or

k =
2 · 9.8

.5
= 4 · 9.8 Newtons/m .
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The governing initial-value problem is therefore

2
d2h

dt2
+ 4 · 9.8h = 0 , h(0) = −.3 , h′(0) = 2 .

Had you chosen positive h to be downward displacements then the only thing that
would differ is the sign of the initial data.

(6) Give an explicit general solution of the equation

d2y

dt2
+ 2

dy

dt
+ 5y = 0 .

Sketch a typical solution for t ≥ 0. If this equation governs a damped spring-mass
system, is the system over, under, or critically damped?

Solution. This is a constant coefficient, homogeneous, linear equation. Its charac-
teristic polynomial is

p(z) = z2 + 2z + 5 = (z + 1)2 + 22 .

This has the conjugate pair of roots −1± i2, which yields a general solution

y = c1e
−t cos(2t) + c2e

−t sin(2t) .

When c 2
1 + c 2

2 > 0 this can be put into the amplitute-phase form

y = Ae−t cos(2t− δ) ,

where A > 0 and 0 ≤ δ < 2π are determined from c1 and c2 by

A =
√

c 2
1 + c 2

2 , cos(δ) =
c1

A
, sin(δ) =

c2

A
.

In other words, (A, δ) are the polar coordinates for the point in the plane whose
Cartesian coordinates are (c1, c2). The sketch should show a decaying oscillation with
amplitude Ae−t and quasiperiod 2π

2
= π. The equation governs an under damped

spring-mass system because its characteristic polynomial has a conjugate pair of
roots.

(7) Find the Laplace transform Y (s) of the solution y(t) to the initial-value problem

d2y

dt2
+ 4

dy

dt
+ 8y = f(t) , y(0) = 2 , y′(0) = 4 .

where

f(t) =

{

4 for 0 ≤ t < 2 ,

t2 for 2 ≤ t .

You may refer to the table in Section 6.2 of the book. (DO NOT take the inverse
Laplace transform to find y(t); just solve for Y (s)!)

Solution. The Laplace transform of the initial-value problem is

L[y′′](s) + 4L[y′](s) + 8L[y](s) = L[f ](s) ,

where
L[y](s) = Y (s) ,

L[y′](s) = sY (s)− y(0) = sY (s)− 2 ,

L[y′′](s) = s2Y (s)− sy(0)− y′(0) = s2Y (s)− 2s− 4 .
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To compute L[f ](s), first write f as

f(t) =
(

1− u(t− 2)
)

4 + u(t− 2)t2 = 4− u(t− 2)4 + u(t− 2)t2

= 4 + u(t− 2)(t2 − 4) = 4 + u(t− 2)
((

2 + (t− 2)
)2 − 4

)

= 4 + u(t− 2)
(

4(t− 2) + (t− 2)2
)

.

Referring to the table of Laplace transforms in the book, item 13 with c = 2, item 1,
and item 3 with n = 1 and n = 2 then show that

L[f ](s) = 4L[1](s) + 4L
[

u(t− 2)(t− 2)
]

(s) + L
[

u(t− 2)(t− 2)2
]

(s)

= 4L[1](s) + 4e−2sL[t](s) + e−2sL[t2](s)

= 4
1

s
+ 4e−2s 1

s2
+ e−2s 2

s3
.

The Laplace transform of the initial-value problem then becomes

(

s2Y (s)− 2s− 4
)

+ 4
(

sY (s)− 2
)

+ 8Y (s) =
4

s
+ e−2s 4

s2
+ e−2s 2

s3
,

which becomes

(s2 + 4s + 8)Y (s)− 2s− 12 =
4

s
+ e−2s 4

s2
+ e−2s 2

s3
.

Hence, Y (s) is given by

Y (s) =
1

s2 + 4s + 8

(

2s + 12 +
4

s
+ e−2s 4

s2
+ e−2s 2

s3

)

.

(8) Find the function y(t) whose Laplace transform Y (s) is given by

(a) Y (s) =
e−3s4

s2 − 6s + 5
, (b) Y (s) =

e−2ss

s2 + 4s + 8
.

You may refer to the table in Section 6.2 of the book.

Solution (a). The denominator factors as (s − 5)(s − 1), so the partial fraction
decomposition is

4

s2 − 6s + 5
=

4

(s− 5)(s− 1)
=

1

s− 5
− 1

s− 1
.

Referring to the table of Laplace transforms in the book, item 11 with n = 0 and
a = 5, and with n = 0 and a = 1 gives

L[e5t](s) =
1

s− 5
, L[et](s) =

1

s− 1
,

whereby

4

s2 − 6s + 5
= L[e5t](s)−L[et](s) = L

[

e5t − et
]

(s) .

It follows from item 13 with c = 3 and f(t) = e5t − et that

L
[

u(t− 3)
(

e5(t−3) − et−3
)]

(s) = e−3s 4

s2 − 6s + 5
= Y (s) .
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You therefore conclude that

y(t) = L−1[Y (s)](t) = u(t− 3)
(

e5(t−3) − et−3
)

.

Solution (b). The denominator does not have real factors. The partial fraction
decomposition is

s

s2 + 4s + 8
=

s

(s + 2)2 + 4
=

s + 2

(s + 2)2 + 22
− 2

(s + 2)2 + 22
.

Referring to the table of Laplace transforms in the book, items 10 and 9 with a = −2
and b = 2 give

L[e−2t cos(2t)](s) =
s + 2

(s + 2)2 + 22
, L[e−2t sin(2t)](s) =

2

(s + 2)2 + 22
,

whereby

s

s2 + 4s + 8
= L[e−2t cos(2t)](s)−L[e−2t sin(2t)](s)

= L
[

e−2t
(

cos(2t)− sin(2t)
)]

(s) .

It follows from item 13 with c = 2 and f(t) = e−2t
(

cos(2t)− sin(2t)
)

that

L
[

u(t− 2)e−2(t−2)
(

cos(2(t− 2))− sin(2(t− 2))
)]

(s) = e−2s s

s2 + 4s + 8
= Y (s) .

You therefore conclude that

y(t) = L−1[Y (s)](t) = u(t− 2)e−2(t−2)
(

cos(2(t− 2))− sin(2(t− 2))
)

.

(9) Consider the real vector-valued functions x1(t) =

(

1
t

)

, x2(t) =

(

t3

3 + t4

)

.

(a) Compute the Wronskian W [x1,x2](t).

Solution. The Wronskian is given by

W [x1,x2](t) = det

(

1 t3

t 3 + t4

)

= 1 · (3 + t4)− t · t3 = 3 + t4 − t4 = 3 .

(b) Find A(t) such that x1, x2 is a fundamental set of solutions to the linear system
dx

dt
= A(t)x.

Solution. Set

Ψ(t) =
(

x1(t) x2(t)
)

=

(

1 t3

t 3 + t4

)

.

If x1 and x2 are solutions to the linear system then the matrix-valued function
Ψ must satisfy

dΨ

dt
(t) = A(t)Ψ(t) .
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Because det(Ψ(t)) = W [x1,x2](t) = 3 6= 0, we see that Ψ(t) is a fundamental
matrix of the linear system with A(t) given by

A(t) =
dΨ

dt
(t)Ψ(t)−1 =

(

0 3t2

1 4t3

)

1

3

(

3 + t4 −t3

−t 1

)

=
1

3

(

−3t3 3t2

3− 3t3 3t3

)

=

(

−t3 t2

1− t3 t3

)

.

It follows that x1, x2 is a fundamental set of solutions to the linear system with
this A(t).

(c) Give a general solution to the system you found in part (b).

Solution. Because x1, x2 is a fundamental set of solutions to the linear system
with the above A(t), a general solution is given by

x(t) = c1x1 + c2x2 = c1

(

1
t

)

+ c2

(

t3

3 + t4

)

.

(10) Give a general real vector-valued solution of the linear planar system
dx

dt
= Ax for

(a) A =

(

6 4
4 0

)

, (b) A =

(

1 2
−2 1

)

.

Solution (a). The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A)

= z2 − 6z − 16 = (z − 3)2 − 25 = (z − 3)2 − 52 .

The eigenvalues of A are the roots of this polynomial, which are 3± 5, or simply −2
and 8. One therefore has

etA = e3t

[

I cosh(5t) + (A− 3I)
sinh(5t)

5

]

= e3t

[(

1 0
0 1

)

cosh(5t) +

(

3 4
4 −3

)

sinh(5t)

5

]

= e3t

(

cosh(5t) + 3
5
sinh(5t) 4

5
sinh(5t)

4
5
sinh(5t) cosh(5t)− 3

5
sinh(5t)

)

.

A general solution is therefore given by

x = c1e
3t

(

cosh(5t) + 3
5
sinh(5t)

4
5
sinh(5t)

)

+ c2e
3t

(

4
5
sinh(5t)

cosh(5t)− 3
5
sinh(5t)

)

.

Alternative Solution (a). The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A)

= z2 − 6z − 16 = (z − 3)2 − 25 = (z − 3)2 − 52 .
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The eigenvalues of A are the roots of this polynomial, which are 3± 5, or simply −2
and 8. Because

A + 2I =

(

8 4
4 2

)

, A− 8I =

(

−2 4
4 −8

)

,

we see that A has the eigenpairs
(

−2 ,

(

1
−2

))

,

(

8 ,

(

2
1

))

.

A general solution is therefore given by

x = c1e
−2t

(

1
−2

)

+ c2e
8t

(

2
1

)

.

Solution (b). The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A)

= z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

The eigenvalues of A are the roots of this polynomial, which are 1±i2. One therefore
has

etA = et

[

I cos(2t) + (A− I)
sin(2t)

2

]

= et

[(

1 0
0 1

)

cos(2t) +

(

0 2
−2 0

)

sinh(2t)

2

]

= et

(

cos(2t) sin(2t)
− sin(2t) cos(2t)

)

.

A general solution is therefore given by

x = c1e
t

(

cos(2t)
− sin(2t)

)

+ c2e
t

(

sin(2t)
cos(2t)

)

.

Alternative Solution (b). The characteristic polynomial of A is

p(z) = z2 − tr(A)z + det(A)

= z2 − 2z + 5 = (z − 1)2 + 4 = (z − 1)2 + 22 .

The eigenvalues of A are the roots of this polynomial, which are 1± i2. Because

A− (1 + i2)I =

(

−i2 2
−2 −i2

)

, A− (1− i2)I =

(

i2 2
−2 i2

)

,

we see that A has the eigenpairs
(

1 + i2 ,

(

1
i

))

,

(

1− i2 ,

(

−i

1

))

.

Because

e(1+i2)t

(

1
i

)

= et

(

cos(2t) + i sin(2t)
− sin(2t) + i cos(2t)

)

,
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two real solutions of the system are

et

(

cos(2t)
− sin(2t)

)

, et

(

sin(2t)
cos(2t)

)

.

A general solution is therefore

x = c1e
t

(

cos(2t)
− sin(2t)

)

+ c2e
t

(

sin(2t)
cos(2t)

)

.

(11) A real 2×2 matrix A has eigenvalues 2 and −1 with associated eigenvectors
(

3
1

)

and

(

−1
2

)

.

(a) Give a general solution to the linear planar system
dx

dt
= Ax.

Solution. A general solution is

x = c1e
2t

(

3
1

)

+ c2e
−t

(

−1
2

)

.

(b) Classify the stability of the origin. Sketch a phase-plane portrait for this system
and identify its type. (Carefully mark all sketched trajectories with arrows!)

Solution. The coefficient matrix has two real eigenvalues of opposite sign. The
origin is therefore a saddle and is thereby unstable. There is one trajectory
moves away from (0, 0) along each half of the line x = 3y, and one trajectory
moves towards(0, 0) along each half of the line y = −2x. (These are the lines of
eigenvectors.) Every other trajectory sweeps away from the line y = −2x and
towards the line x = 3y. A phase-plane portrait was sketched during the review
session.

(12) Consider the nonlinear planar system

dx

dt
= −5y ,

dy

dt
= x− 4y − x2 .

(a) Find all of its equilibrium (critical, stationary) points.

Solution. Stationary points satisfy

0 = −5y , 0 = x− 4y − x2 .

The first equation implies y = 0, whereby the second equation becomes 0 =
x−x2 = x(1−x), which implies either x = 0 or x = 1. All the stationary points
of the system are therefore

(0, 0) , (1, 0) .
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(b) Compute the coefficient matrix of the linearization (the derivative matrix) at
each equilibrium (critical, stationary) point.

Solution. Because
(

f(x, y)
g(x, y)

)

=

(

−5y
x− 4y − x2

)

,

the matrix of partial derivatives is
(

∂xf(x, y) ∂yf(x, y)
∂xg(x, y) ∂yg(x, y)

)

=

(

0 −5
1− 2x −4

)

.

Evaluating this matrix at each stationary point yields the coefficient matrices

A =

(

0 −5
1 −4

)

at (0, 0) , A =

(

0 −5
−1 −4

)

at (1, 0) .

(c) Classify the type and stability of each equilibrium (critical, stationary) point.

Solution. The coefficient matrix A at (0, 0) has eigenvalues that satisfy

0 = det(zI−A) = z2 − tr(A)z + det(A) = z2 + 4z + 5 = (z + 2)2 + 12 .

The eigenvalues are thereby −2 ± i. Because a21 = 1 > 0, the stationary point
(0, 0) is therefore a counterclockwise spiral sink, which is asymptotically stable

or attracting. This is one of the generic types, so it describes the phase-plane
portrait of the nonlinear system near (0, 0).
The coefficient matrix A at (1, 0) has eigenvalues that satisfy

0 = det(zI −A) = z2 − tr(A)z + det(A) = z2 + 4z − 5 = (z + 2)2 − 32 .

The eigenvalues are thereby −2 ± 3, or simply −5 and 1. The stationary point
(1, 0) is therefore a saddle, which is unstable. This is one of the generic types,
so it describes the phase-plane portrait of the nonlinear system near (1, 0).

(d) Sketch a plausible global phase-plane portrait. (Carefully mark all sketched
trajectories with arrows!)

Solution. The nullcline for dx

dt
is the line y = 0. This line partitions the plane

into regions where x is increasing or decreasing as t increases. The nullcline for
dy

dt
is the parabola y = 1

4
(x − x2). This curve partitions the plane into regions

where y is increasing or decreasing as t increases. Neither of these nullclines is
invariant.

The stationary point (0, 0) is a counterclockwise spiral sink.

The stationary point (1, 0) is a saddle. The coefficient matrix A has eigenvalues
−5 and 1. Because

A + 5I =

(

5 −5
−1 1

)

, A− I =

(

−1 −5
−1 −5

)

,

it has the eigenpairs
(

−5 ,

(

1
1

))

,

(

1 ,

(

−5
1

))
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Near (1, 0) there is one trajectory that emerges from (1, 0) tangent to each side
of the line x = 1−5y. There is also one trajectory that approaches (1, 0) tangent
to each side of the line y = x − 1. These trajectories are separatrices. A global
phase-plane portrait was sketched during the review session.

Remark. The global phase-plane portrait becomes clearer if you are able to
observe that H(x, y) = 1

2
x2 + 5

2
y2 − 1

3
x3 satisfies

d

dt
H(x, y) = ∂xH(x, y)

dx

dt
+ ∂yH(x, y)

dy

dt

= (x− x2)(−5y) + 5y(x− 4y − x2) = −20y2 ≤ 0 .

The trajectories of the system are thereby seen to cross the level sets of H(x, y)
so as to decrease H(x, y). You would not be expected to see this on the Final.

(13) Consider the nonlinear planar system

dx

dt
= x(3− 3x + 2y) ,

dy

dt
= y(6− x− y) .

Do parts (a-d) as for the previous problem.
(a) Find all of its equilibrium (critical, stationary) points.

Solution. Stationary points satisfy

0 = x(3− 3x + 2y) , 0 = y(6− x− y) .

The first equation implies either x = 0 or 3 − 3x + 2y = 0, while the second
equation implies either y = 0 or 6− x− y = 0. If x = 0 and y = 0 then (0, 0) is
a stationary point. If x = 0 and 6− x− y = 0 then (0, 6) is a stationary point.
If 3− 3x + 2y = 0 and y = 0 then (1, 0) is a stationary point. If 3− 3x + 2y = 0
and 6 − x − y = 0 then upon solving these equations one finds that (3, 3) is a
stationary point. All the stationary points of the system are therefore

(0, 0) , (0, 6) , (1, 0) , (3, 3) .

(b) Compute the coefficient matrix of the linearization (the derivative matrix) at
each equilibrium (critical, stationary) point.

Solution. Because
(

f(x, y)
g(x, y)

)

=

(

3x− 3x2 + 2xy

6y − xy − y2

)

,

the matrix of partial derivatives is
(

∂xf(x, y) ∂yf(x, y)
∂xg(x, y) ∂yg(x, y)

)

=

(

3− 6x + 2y 2x
−y 6− x− 2y

)

.

Evaluating this matrix at each stationary point yields the coefficient matrices

A =

(

3 0
0 6

)

at (0, 0) ,

A =

(

−3 2
0 5

)

at (1, 0) ,

A =

(

15 0
−6 −6

)

at (0, 6) ,

A =

(

−9 6
−3 −3

)

at (3, 3) .
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(c) Identify the type and stability of each equilibrium (critical, stationary) point.

Solution. The coefficient matrix A at (0, 0) is diagonal, so you can read-off its
eigenvalues as 3 and 6. The stationary point (0, 0) is thereby a nodal source,
which is unstable (or even better is repelling). This is one of the generic types,
so it describes the phase-plane portrait of the nonlinear system near (0, 0).

The coefficient matrix A at (0, 6) is triangular, so you can read-off its eigenvalues
as −6 and 15. The stationary point (0, 6) is thereby a saddle, which is unstable.
This is one of the generic types, so it describes the phase-plane portrait of the
nonlinear system near (0, 6).

The coefficient matrix A at (1, 0) is triangular, so you can read-off its eigenvalues
as −3 and 5. The stationary point (1, 0) is thereby a saddle, which is unstable.
This is one of the generic types, so it describes the phase-plane portrait of the
nonlinear system near (1, 0).
The coefficient matrix A at (0, 6) has eigenvalues that satisfy

0 = det(zI −A) = z2 − tr(A)z + det(A) = z2 + 12z + 45 = (z + 6)2 + 32 .

Its eigenvalues are thereby −6 ± i3. Because a21 = −3 < 0, the stationary
point (3, 3) is therefore a clockwise spiral sink, which is asymptotically stable

or attracting. This is one of the generic types, so it describes the phase-plane
portrait of the nonlinear system near (3, 3).

(d) Sketch a plausible global phase-plane portrait. (Carefully mark all sketched
trajectories with arrows!)

Solution. The nullclines for dx
dt

are the lines x = 0 and 3− 3x + 2y = 0. These
lines partition the plane into regions where x is increasing or decreasing as t

increases. The nullclines for dy

dt
are the lines y = 0 and 6−x−y = 0. These lines

partition the plane into regions where y is increasing or decreasing as t increases.

Next, observe that the lines x = 0 and y = 0 are invariant. A trajectory that
starts on one of these lines must stay on that line. Along the line x = 0 the
system reduces to

dy

dt
= y(6− y) .

Along the line y = 0 the system reduces to

dx

dt
= 3x(1− x) .

The arrows along these invariant lines can be determined from a phase-line
portrait of these reduced systems.

The stationary point (0, 0) is a nodal source. The coefficient matrix A has
eigenvalues 3 and 6. Because

A− 3I =

(

0 0
0 3

)

, A− 6I =

(

−3 0
0 0

)

,

it has the eigenpairs
(

3 ,

(

1
0

))

,

(

6 ,

(

0
1

))
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Near there is one trajectory that emerges from (0, 0) along each side of the
invariant lines y = 0 and x = 0. Every other trajectory emerges from (0, 0)
tangent to the line y = 0, which is the line corresponding to the eigenvalue with
the smaller absolute value.

The stationary point (0, 6) is a saddle. The coefficient matrix A has eigenvalues
−6 and 15. Because

A + 6I =

(

21 0
−6 0

)

, A− 15I =

(

0 0
−6 −21

)

,

it has the eigenpairs
(

−6 ,

(

0
1

))

,

(

15 ,

(

7
−2

))

Near (0, 6) there is one trajectory that approaches (0, 6) along each side of the
invariant line x = 0. There is also one trajectory that emerges from (0, 6) tangent
to each side of the line y = 6− 2

7
x. These trajectories are separatrices.

The stationary point (1, 0) is a saddle. The coefficient matrix A has eigenvalues
−3 and 5. Because

A + 3I =

(

0 2
0 8

)

, A− 5I =

(

−8 2
0 0

)

,

it has the eigenpairs
(

−3 ,

(

1
0

))

,

(

5 ,

(

1
4

))

Near (1, 0) there is one trajectory that emerges from (1, 0) along each side of the
invariant line y = 0. There is also one trajectory that approaches (1, 0) tangent
to each side of the line y = 4(x− 1). These trajectories are also separatrices.

Finally, the stationary point (3, 3) is a clockwise spiral sink. All trajectories
in the positive quadrant will spiral into it. A phase-plane global portrait was
sketched during the review session.


