Contents

- First (stationary/critical point locations)
- Second: now we solve for the eigen values for the systems to show how the stability of these points change as alpha change

```
% Abdulmalik Almeheini
% MATH246 extracredit HW
% problems 6 and 8 from sec 9.3
```

```
clear
```

clear
clc
clc
warning off all
warning off all
for alph = 0:0.2:
for alph = 0:0.2:
f = @(t, x) (1-alph)*[x(1)*(1 - x(1) - x(2));
f = @(t, x) (1-alph)*[x(1)*(1 - x(1) - x(2));
x(2)*(3 - x(1) - 2*x(2))] + alph*[x(1)*(1 - x(1) - x(2));
x(2)*(3 - x(1) - 2*x(2))] + alph*[x(1)*(1 - x(1) - x(2));
x(2)*(1/2 - (3/4)*x(1)-(1/4)*x(2))];
x(2)*(1/2 - (3/4)*x(1)-(1/4)*x(2))];
figure; hold on
figure; hold on
for a = -2.25:0.25:1.75
for a = -2.25:0.25:1.75
for b = -2,5:0.5:4
for b = -2,5:0.5:4
[t, xa] = ode45(f, [0 10], [a b]);
[t, xa] = ode45(f, [0 10], [a b]);
plot(xa(:,1), xa(:,2))
plot(xa(:,1), xa(:,2))
[t, xa] = ode45(f, [0 -5], [a b]);
[t, xa] = ode45(f, [0 -5], [a b]);
plot(xa(:,1), xa(:,2))
plot(xa(:,1), xa(:,2))
end
end
end
end
axis([[-3 4 - -3 4])
axis([[-3 4 - -3 4])
xlabel x
xlabel x
ylabel y
ylabel y
title 'trajectories of the systems in problem 6 and 8
title 'trajectories of the systems in problem 6 and 8
end

```
end
```



```
% From the graphs above we can see how the systems in problem 6 change to
% become the systems in problem 8 as alpha changes from 0 to 1. The reason
% behind using alpha is to see how the systems behave as they change
% from a state to another( which the two states here are problems 6 and 8.)
```


First (stationary/critical point locations) :

```
% The first graph shows the trajectories of the systems when alpha = 0 which is
% exactly the trajectories of the systems in problem 6.
% As we can see from the first graph that the system when alpha =0
% has 4 critical points at (0,0),(1,0),(0,3/2),and(-1,2). And when we jump
% to see the systems when the alpha = 1 we can see that it still have 4
% critical points , however, two of them are different and two are the same
% (0,0) and (1,0).
% And to see how the systems behaved while changing from problem 6 to
% problem 8 we change the value of alpha from 0 to 1 with increment of 0.2.
% this changing in the value give us four more graphs that tell us the story
% behind these systems.
% if we look at the systems trajectories when alpha is 0.2, 0.4 and 0.6, we
% can see the all of them share two of the critical points ( 0,0) and(1,0).
% However, they all have different values for the other two critical
% points. one thing we can notice in these different critical points is that
% as alpha goes from 0 to 0.6 they are changing every time to the same
% directions, for example, when alpha = 0 the systems started with
% (0,0),(1,0),(0,3/2) and(-1,2), and as alpha increased to 0.6 two of them
% changed, the critical point (0,3/2) changed to (0,50/33) then
% (0,20/13) then at alpha = 0.6 to (0,30/19) and the critical point
% (-1,2) changed to ( -17/14,31/14) then (-7/4,11/4) then (-11/2,13/2), we
% can see that the first one was moving along the positive y axis and the
% other one was moving along the positive y axis and along the
% negative x axis like moving toward the corner.
% However, when alpha changes to 0.8 and then to 1 something strange
% happens to the systems. This strange thing occurs to one of the critical
% points. we know that two of the critical points were moving and each one was moving at a specific direction,
% however, when alpha changes to 0.8 the critical point (-11/2, 13/2) moves all the way from
% the second quadrant to the fourth quadrant to become ( 2,-1)
% then when alpha changes to 1 it jumps to the first quadrant to become (1/2,1/2)
% thats how these systems went from the first state to the second. And to illustrate these changes
% I solved for the critical points for the systems with each different value of alpha.
```

These are the critical/stationary points and corrisponding solution for the systems as alpha goes from 0 to 1 :

```
clear
clc
for alph = 0:0.2:1
syms x y
```

```
S1 = x*(1 - x - y);
S2 = (1-alph)*y*(3-x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[xc, yc] = solve(S1, S2, x, y);
disp('Critical points:'); disp([xc yc])
A = jacobian([S1 S2], [x y]);
evals = eig(A);
end
```

Critical points:
[0, 0]
[1, 0]
[0, 3/2]
[$-1,2$]
Critical points
$\left[\begin{array}{lll}{[} & 0, & 0] \\ {[} & 1, & 0]\end{array}\right]$
$\left[\begin{array}{rrr}1, & 0\end{array}\right]$
$[-17 / 14,31 / 14]$
Critical points
$\left[\begin{array}{lll}{[} & 0, & 0\end{array}\right]$
I 1, 0]
[0, 20/13]
$\left[\begin{array}{ll}-7 / 4, & 11 / 4]\end{array}\right.$
Critical points:
[0, 0]
$\left[\begin{array}{lll}{[1,} & 0\end{array}\right]$
$[-11 / 2, \quad 13 / 2]$
Critical points:
[0, 0]
$[1,0]$
[$0,5 / 3$]
[2, -1]
Critical points:
[0, 0]
[0,2 2]
1/2, 1/2]

Second: now we solve for the eigen values for the systems to show how the stability of these points change as alpha change

```
clear
clc
% when alpha = 0
syms x y
alph = 0;
S1 = x*(1 - x - y);
S2 = (1-alph)*y*(3-x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[xc, yc] = solve(S1, S2, x, y);
disp('Critical points:'); disp([xc yc]);
A = jacobian([S1 S2], [x y]);
evals = eig(A)
disp('Eigenvalues at (0,0);');
disp(double(subs(evals, {x, y}, {0, 0})))
disp('Eigenvalues at (1,0);');
disp(double(subs(evals, {x, y}, {1, 0})))
disp('Eigenvalues at (0,3/2);');
disp(double(subs(evals, {x, y}, {0, 3/2})))
disp('Eigenvalues at (-1,2);');
disp(double(subs(evals, {x, y}, {-1, 2})))
```

```
Critical points:
[ 0, 0]
[ 1, 0]
[ 0, 3/2]
[ -1, 2]
evals =
    2-(5*y)/2 - (x^2 - 2*x*y + 4*x + 9*y^2 - 12*y + 4)^(1/2)/2 - (3*x)/2
    (x^2 - 2*x*y + 4*x + 9* y^2 - 12*y + 4)^(1/2)/2 - (5*y)/2 - (3*x)/2 + 2
Eigenvalues at (0,0);
```

 1
    ```
Eigenvalues at (1,0);
    -1
Eigenvalues at (0,3/2);
    -3.0000
    -0.5000
Eigenvalues at (-1,2);
    -3.5616
    0.5616
```

\% From the eigen values we can conclude that at the point $(0,0)$ a we have
\% a nodel source b/c both eigen values are real and positive values so its unstable, and at the
\% points $(1,0)$ and $(-1,2)$ we have saddles, which they are also unstable
$\% \mathrm{~b} / \mathrm{c}$ one of the eigen values is negative and the other is positive
\% and finally at the point ($0,3 / 2$) we have a nodel sink (stable) b/c both eigen values are
\% real and negative.

```
clear
clc
% when alpha = 0.2
syms x y
alph = 0.2;
S1 = x*(1 - x - y);
S2 = (1-alph)*y*(3-x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[xc, yc] = solve(S1, S2, x, y);
disp('Critical points:'); disp([xc yc]);
A = jacobian([S1 S2], [x y]);
evals = eig(A)
disp('Eigenvalues at (0,0);');
disp(double(subs(evals, {x, y}, {0, 0})))
disp('Eigenvalues at (1,0);');
disp(double(subs(evals, {x, y}, {1, 0})))
disp('Eigenvalues at (0,50/33);');
disp(double(subs(evals, {x, y}, {0, 50/33})))
disp('Eigenvalues at (-17/14,31/14);');
disp(double(subs(evals, {x, y}, {-17/14, 31/14})))
```

```
Critical points:
[ 0, 0]
[ 1, 0]
[ 0, 50/33]
[ -17/14, 31/14]
evals =
    7/4 - (43*y)/20-((441*x^2)/400-(103*x*y)/100 + (63*x)/20 + (529*y^2)/100-(69*y)/10 + 9/4)^(1/2)/2 - (59*x)/40
    ((441*x^2)/400 - (103*x*y)/100 + (63*x)/20 + (529*y^2)/100 - (69*y)/10 + 9/4)^(1/2)/2 - (43*y)/20 - (59*x)/40 + 7/4
Eigenvalues at (0,0);
        1.0000
        2.5000
Eigenvalues at (1,0);
    -1.0000
        1.5500
Eigenvalues at (0,50/33);
    -2.5000
    -0.5152
Eigenvalues at (-17/14,31/14);
        -3.0553
        0.6160
```

$\%$ When we see the aigen values of the systems when alpha $=0.2$
\% we see that thier stability havent changed, where
$\%(0,0),(1,0)$ and $(-17 / 14,31 / 14)$ are unstabel and $(0,50 / 33)$ is stable, so
\% thier locations only have changed.

clear

clc

```
% when alpha = 0.4
syms x y
alph = 0.4;
S1 = x*(1 - x - y);
S2 = (1-alph)*y*(3 - x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[xc, yc] = solve(S1, s2, x, y);
disp('Critical points:'); disp([xc yc]);
A = jacobian([S1 S2], [x y]);
evals = eig(A)
disp('Eigenvalues at (0,0);');
disp(double(subs(evals, {x, y}, {0, 0})))
disp('Eigenvalues at (1,0);');
disp(double(subs(evals, {x, y}, {1, 0})))
disp('Eigenvalues at (0,20/13);');
disp(double(subs(evals, {x, y}, {0, 20/13})))
disp('Eigenvalues at (-7/4,11/4);');
disp(double(subs(evals, {x, y}, {-7/4, 11/4})))
```

```
Critical points
[ 0, 0]
1, 0]
[ 0, 20/13]
[ -7/4, 11/4]
evals =
    3/2 - (9*y)/5 - ((121*x^2)/100 + (2*x*y)/25 + (11*x)/5 + (64*y^2)/25 - (16*y)/5 + 1)^(1/2)/2 - (29*x)/20
    ((121*x^2)/100 + (2*x*y)/25 + (11*x)/5 + (64*y^2)/25 - (16*y)/5 + 1)^(1/2)/2 - (9*y)/5 - (29*x)/20 + 3/2
Eigenvalues at (0,0);
    1
        2
Eigenvalues at (1,0);
    -1.0000
        1.1000
Eigenvalues at (0,20/13);
    -2.0000
    -0.5385
Eigenvalues at (-7/4,11/4);
    -2.5731
    0.7481
```

```
% also when we see the aigen values of the systems when alpha = 0.4
% we see that thier stability havent changed, where
% (0,0),(1,0) and (-7/4,11/4) are unstabel and (0,20/13) is stable ,so
% thier locations only have changed .
```

clear
clc
\% when alpha $=0.6$
syms $x y$
alph $=0.6$;
S1 $=x^{*}(1-x-y)$;
$\mathrm{S} 2=(1-\mathrm{alph}) * \mathrm{y}$ *(3-x-2*y)$+\mathrm{alph} \mathrm{y}_{\mathrm{y}}(1 / 2-(3 / 4) * \mathrm{x}-(1 / 4) * \mathrm{y})$;
[xc, yc] = solve(S1, S2, x, y);
disp('Critical points:'); disp([xc yc]);
A = jacobian([S1 S2], [x y]);
evals $=$ eig(A)
disp('Eigenvalues at $\left.(0,0) ;^{\prime}\right)$;
disp(double(subs(evals, \{x, y\}, \{0, 0\})))
disp('Eigenvalues at $(1,0) ; ')$;
disp(double(subs(evals, $\{x, y\},\{1,0\})$)
disp('Eigenvalues at $(0,30 / 19) ; ')$;
disp(double(subs(evals, $\{x, y\},\{0,30 / 19\}))$)
disp('Eigenvalues at (-11/2,13/2);');
disp(double(subs(evals, $\{x, y\},\{-11 / 2,13 / 2\}))$)

```
Critical points
[ 0, 0]
I 1, 0]
[ 0, 30/19]
-11/2, 13/2]
```

```
evals =
    5/4 - (29*y)/20 - ((529*x^2)/400 + (133*x*y)/100 + (23*x)/20 + (81*y^2)/100 - (9*y)/10 + 1/4)^(1/2)/2 - (57*x)/40
    ((529*x^2)/400 + (133*x*y)/100 + (23*x)/20 + (81*y^2)/100 - (9*y)/10 + 1/4)^(1/2)/2 - (29*y)/20-(57*x)/40 + 5/4
Eigenvalues at (0,0);
        1.0000
        1.5000
Eigenvalues at (1,0);
    -1.0000
    0.6500
Eigenvalues at (0,30/19);
    -1.5000
    -0.5789
Eigenvalues at (-11/2,13/2);
    -2.2582
    1.5832
```

\% also when alpha $=0.6$ the critical points stability dont change.

```
clear
clc
% when alpha = 0.8
syms x y
alph = 0.8;
S1 = x*(1 - x - y);
S2 = (1-alph)*y*(3-x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[xc, yc] = solve(S1, S2, x, y);
disp('Critical points:'); disp([xc yc]);
A = jacobian([S1 S2], [x y]);
evals = eig(A)
disp('Eigenvalues at (0,0);');
disp(double(subs(evals, {x, y}, {0, 0})))
disp('Eigenvalues at (1,0);');
disp(double(subs(evals, {x, y}, {1, 0})))
disp('Eigenvalues at (0,5/3);');
disp(double(subs(evals, {x, y}, {0, 5/3})))
disp('Eigenvalues at (2,-1);');
disp(double(subs(evals, {x, y}, {2, -1})))
```

```
critical points
[ 0, 0]
[ 1, 0]
[ 0, 5/3]
[ 2, -1]
evals =
    1 - (11*y)/10-((36*x^2)/25 + (68*x*y)/25 + y^2/25)^(1/2)/2 - (7*x)/5
    ((36*x^2)/25 + (68*x*y)/25 + y^2/25)^(1/2)/2 - (11*y)/10-(7*x)/5 + 1
Eigenvalues at (0,0);
    1
        1
Eigenvalues at (1,0);
    -1.0000
        0.2000
Eigenvalues at (0,5/3);
        -1.0000
    -0.6667
Eigenvalues at (2,-1);
    -1.0000
    -0.4000
```

\% But when we look at the eigen values of the systems when alpha $=0.8$ we
\% notice that the stability of the critical point that changes it location
\% from the second quadrant to the fourth qudrant also changes, which it
\% became stable and swiched to nodel sink. while nothing happens to the
\% stability of the other points.

```
clear
clc
% when alpha = 1
syms x y
alph = 1
S1 = x*(1 - x - y);
S2 = (1-alph)*y*(3 - x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[xc, yc] = solve(S1, S2, x, y);
disp('Critical points:'); disp([xc yc])
A = jacobian([S1 S2], [x y]);
evals = eig(A)
disp('Eigenvalues at (0,0);');
disp(double(subs(evals, {x, y}, {0, 0})))
disp('Eigenvalues at (0,2);');
disp(double(subs(evals, {x, y}, {0, 2})))
disp('Eigenvalues at (1,0);');
disp(double(subs(evals, {x, y}, {1, 0})))
disp('Eigenvalues at (1/2,1/2);');
disp(double(subs(evals, {x, y}, {1/2, 1/2})))
```

```
Critical points
[ 0, 0]
[ 0, 2]
[ 1, 0]
[ 1/2, 1/2]
evals =
    3/4 - (3*y)/4 - ((25*x^2)/16 + (17*x*y)/4 - (5*x)/4 + y^2/4 - y/2 + 1/4)^(1/2)/2 - (11*x)/8
    ((25*x^2)/16+(17*x*y)/4-(5*x)/4+y^2/4-y/2+1/4)^(1/2)/2-(3*y)/4-(11*x)/8+3/4
Eigenvalues at (0,0);
        0.5000
        1.0000
Eigenvalues at (0,2);
    -1.0000
    -0.5000
Eigenvalues at (1,0);
    -1.0000
    -0.2500
Eigenvalues at (1/2,1/2);
    -0.7844
    0.1594
```

\% and when we look at the eigen values of the systems when alpha=1 we also
\% see that these changes countinue happening on some of the points. first,
\% we know that the point that changed its location from the second to the
\% fourth quadrant moves to the first quadrant when alpha = 1, however, what
\% we see here that its changes it stability while its moving so it return
\% to be unstable again. and another thing is the point $(1,0)$ that havent
\% changed at all while alpha changed from 0 to 0.8 finally becomes stable
\% when alpha $=1$ and i think this changes occuers b/c of the point that
\% comes close to it.

