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o« First (stationary/critical point locations) :
« Second: now we solve for the eigen values for the systems to show how the stability of these points change as alpha change

% Abdulmalik Almeheini
% MATH246 extracredit HW
% problems 6 and 8 from sec 9.3

clear
Cllc
warning off all
for alph = 0:0.2:1
£ = @(t, x) (l-alph)*[x(1)*(1 - x(1) - x(2));
x(2)*(3 - x(1) - 2*x(2))] + alph*[x(1)*(1 - x(1) - x(2));
X(2)*(1/2 - (3/4)*x(l) - (1/4)*x(2))1;
figure; hold on
for a = -2.25:0.25:1.75
for b = -2.5:0.5:4
[t, xa] = ode45(f, [0 10], [a bl);
plot(xa(:,1), xa(:,2))
[t, xa] = ode45(f, [0 -5], [a b]);
plot(xa(:,1), xa(:,2))
end
end
axis([-3 4 -3 4])
xlabel x
ylabel y
title 'trajectories of the systems in problem 6 and 8'
end
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From the graphs above we can see how the systems in problem 6 change to
become the systems in problem 8 as alpha changes from 0 to 1. The reason
behind using alpha is to see how the systems behave as they change

from a state to another( which the two states here are problems 6 and 8.)
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First (stationary/critical point locations) :

The first graph shows the trajectories of the systems when alpha = 0 which is
exactly the trajectories of the systems in problem 6.

As we can see from the first graph that the system when alpha =0

has 4 critical points at (0,0),(1,0),(0,3/2),and(-1,2). And when we jump

to see the systems when the alpha = 1 we can see that it still have 4

critical points , however, two of them are different and two are the same

(0,0) and (1,0).

And to see how the systems behaved while changing from problem 6 to

problem 8 we change the value of alpha from 0 to 1 with increment of 0.2.

this changing in the value give us four more graphs that tell us the story

behind these systems.

if we look at the systems trajectories when alpha is 0.2, 0.4 and 0.6, we

can see the all of them share two of the critical points ( 0,0) and(1,0).

However, they all have different values for the other two critical

points. one thing we can notice in these different critical points is that

as alpha goes from 0 to 0.6 they are changing every time to the same

directions, for example, when alpha = 0 the systems started with
(0,0),(1,0),(0,3/2)and(-1,2), and as alpha increased to 0.6 two of them

changed, the critical point (0,3/2) changed to (0,50/33) then

(0,20/13) then at alpha = 0.6 to (0,30/19) and the critical point

(-1,2) changed to ( -17/14,31/14) then (-7/4,11/4) then (-11/2,13/2), we

can see that the first one was moving along the positive y axis and the

other one was moving along the positive y axis and along the

negative x axis like moving toward the corner.

However, when alpha changes to 0.8 and then to 1 something strange

happens to the systems. This strange thing occurs to one of the critical

points. we know that two of the critical points were moving and each one was moving at a specific direction,
however, when alpha changes to 0.8 the critical point (-11/2, 13/2) moves all the way from
the second quadrant to the fourth quadrant to become ( 2,-1)

then when alpha changes to 1 it jumps to the first quadrant to become (1/2,1/2)
thats how these systems went from the first state to the second. And to illustrate these changes
I solved for the critical points for the systems with each different value of alpha.
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These are the critical/stationary points and corrisponding solution for the systems as alpha goes from 0 to 1:

clear

cle

for alph = 0:0.2:1
syms x y



S1 X*(1 - X - y);

S2 = (l-alph)*y*(3 - x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[xc, yc] = solve(Sl, S2, x, y);

disp('Critical points:'); disp([xc yc])

A = jacobian([S1 S2]1, [x y]);
evals = eig(A);
end

Critical points:

[ o, 0]
r 1, 0]
[ 0, 3/2]
[-1, 2]

Critical points:

[ 0, 0]
[ 1, 0]
[ 0, 50/33]

[ -17/14, 31/14)

Critical points:

[ 0, 0]
[ 1, 0]
[ 0, 20/13]

[ -7/4, 11/4)]

Critical points:

[ 0, 0]
[ 1, 0]
[ 0, 30/19]

[ -11/2, 13/2]

Critical points:
[0, 0]

[ 1
[ 0, 5/3]
[ 2

[ 0, 0]
[ 0, 2]
[ 1, 0]
[ 1/2, 1/2]

Second: now we solve for the eigen values for the systems to show how the stability of these points change as alpha change

clear
clc

% when alpha = 0

syms x y

alph = 0;

S1 = x*(1 - x - y);

S2 = (l-alph)*y*(3 - x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[xc, yc] = solve(Sl, S2, x, y);

disp('Critical points:'); disp([xc ycl);

A = jacobian([S1 S2], [x y]):
evals = eig(A)

disp('Eigenvalues at (0,0);');
disp(double(subs(evals, {x, y}, {0, 0})))
disp('Eigenvalues at (1,0);');
disp(double(subs(evals, {x, y}, {1, 0})))
disp('Eigenvalues at (0,3/2);');
disp(double(subs(evals, {x, y}, {0, 3/2})))
disp('Eigenvalues at (-1,2);');
disp(double(subs(evals, {x, y}, {-1, 2})))

Critical points:

[ o, 0]

[ 1, 0]

[ 0, 3/2]

[ -1, 2]

evals =

2 - (5%y)/2 - (x"2 - 2*x*y + 4*x + 9%y"2 - 12*y + 4)"(1/2)/2 - (3*x)/2
(X2 = 2%x*y + 4*x + 9%y"2 — 12%y + 4)"(1/2)/2 - (5%y)/2 - (3*x)/2 + 2

Eigenvalues at (0,0);
1



Eigenvalues at (1,0);
-1
2

Eigenvalues at (0,3/2);
-3.0000
-0.5000

Eigenvalues at (-1,2);
-3.5616
0.5616

% From the eigen values we can conclude that at the point ( 0,0) a we have

% a nodel source b/c both eigen values are real and positive values so its unstable, and at the
% points (1,0) and (-1,2) we have saddles, which they are also unstable

% b/c one of the eigen values is negative and the other is positive

% and finally at the point (0,3/2) we have a nodel sink (stable) b/c both eigen values are

% real and negative.

clear

clc

% when alpha = 0.2

syms x y

alph = 0.2;

Sl = x*(1 - x - y);

S2 = (l-alph)*y*(3 - x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[%c, yc] = solve(Sl, S2, x, y);

disp('Critical points:'); disp([xc ycl);

A = jacobian([S1 S2]1, [x y]);
evals = eig(A)

disp('Eigenvalues at (0,0);");
disp(double(subs(evals, {x, y}, {0, 0})))
disp('Eigenvalues at (1,0);"');
disp(double(subs(evals, {x, y}, {1, 0})))
disp('Eigenvalues at (0,50/33);');
disp(double(subs(evals, {x, y}, {0, 50/33})))
disp('Eigenvalues at (-17/14,31/14);"');
disp(double(subs(evals, {x, y}, {-17/14, 31/14})))

Critical points:

[ 0, 0]
[ 1, 0]
[ 0, 50/33]

[ -17/14, 31/14)

evals =
7/4 - (43*y)/20 - ((441*x"2)/400 - (103*x*y)/100 + (63*x)/20 + (529*y"2)/100 - (69*y)/10 + 9/4)~(1/2)/2 - (59*x)/40
((441%x72)/400 - (103*x*y)/100 + (63*x)/20 + (529*y"2)/100 - (69*y)/10 + 9/4)"(1/2)/2 - (43*y)/20 - (59*x)/40 + 7/4

Eigenvalues at (0,0);
1.0000
2.5000

Eigenvalues at (1,0);
-1.0000
1.5500

Eigenvalues at (0,50/33);
-2.5000
-0.5152

Eigenvalues at (-17/14,31/14);
-3.0553
0.6160

% When we see the aigen values of the systems when alpha = 0.2

% we see that thier stability havent changed, where

% (0,0),(1,0) and (-17/14,31/14) are unstabel and (0,50/33) is stable ,so
% thier locations only have changed .

clear

clc



% when alpha = 0.4

syms x y

alph = 0.4;

S1 = x*(1 - x - y);

S2 = (l-alph)*y*(3 - x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[xc, yc] = solve(Sl, S2, x, y);

disp('Critical points:'); disp([xc yc]);

A = jacobian([S1 Ss2],
evals = eig(A)

[x y1);

disp('Eigenvalues at (0,0);');
disp(double(subs(evals, {x, y},
disp('Eigenvalues at (1,0);');
disp(double(subs(evals, {x, y}, {1,
disp('Eigenvalues at (0,20/13);');
disp(double(subs(evals, {x, y}, {0, 20/13})))
disp('Eigenvalues at (-7/4,11/4);"');
disp(double(subs(evals, {x, y}, {-7/4,

{0, 0})))

0})))

11/4})))

Critical points:
[ 0, 0]
[ 1, 0]
[ 0, 20/13]
[ -7/4, 11/4]

evals =

3/2 - (9%y)/5 - ((121%x"2)/100 + (2*x*y)/25 +
((121%x"2)/100 + (2*x*y)/25 + (11*x)/5 + (64*y"2)/25 -

Eigenvalues at
1
2

(0,0);

Eigenvalues at
-1.0000
1.1000

(1,0);

Eigenvalues at
-2.0000
-0.5385

(0,20/13);

Eigenvalues at
-2.5731
0.7481

(-7/4,11/4);

also when we see the aigen values of the systems when alpha = 0.4
we see that thier stability havent changed, where
(0,0),(1,0) and (-7/4,11/4) are unstabel and (0,20/13)
thier locations only have changed

is stable ,so
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clear

cle

% when alpha = 0.6

syms x y

alph = 0.6;

S1 = x*(1 - x - y);

S2 = (l-alph)*y*(3 - x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[xc, yc] = solve(Sl, S2, x, y);

disp('Critical points:'); disp([xc yc]);

A = jacobian([S1l s2],
evals = eig(A)

[x y1);

disp('Eigenvalues at (0,0);"');
disp(double(subs(evals, {x, y},
disp('Eigenvalues at (1,0);");
disp(double(subs(evals, {x, y}, {1,
disp('Eigenvalues at (0,30/19);"');
disp(double(subs(evals, {x, y}, {0, 30/19})))
disp('Eigenvalues at (-11/2,13/2);');
disp(double(subs(evals, {x, y}, {-11/2,13/2})))

{0, 0})))

0})))

Critical points:
[ 0, 0]
[ 1, 0]
[ 0, 30/19]

(11%x)/5 + (64%y~2)/25 -
(l6*y)/5 + 1)~ (1/2)/2 -

(l6*y)/5 + 1)~ (1/2)/2 -

(9*y)/5 -

(29%x)/20
(29%x)/20 + 3/2



evals =

5/4 - (29%y)/20 - ((529%x°2)/400 + (133*x*y)/100 + (23%x)/20 + (81*y~2)/100 - (9*y)/10 + 1/4)"(1/2)/2 - (57*x)/40
((529%x"2)/400 + (133*x*y)/100 + (23%x)/20 + (81%y"2)/100 - (9%y)/10 + 1/4)"(1/2)/2 - (29%y)/20 - (57*x)/40 + 5/4

Eigenvalues at (0,0);
1.0000
1.5000

Eigenvalues at (1,0);
-1.0000
0.6500

Eigenvalues at (0,30/19);
-1.5000
-0.5789

Eigenvalues at (-11/2,13/2);
-2.2582
1.5832

% also when alpha = 0.6 the critical points stability dont change.

clear
clc

% when alpha = 0.8

syms x y

alph = 0.8;

Sl = x*(1 - x - y);

S2 = (l-alph)*y*(3 - x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[®c, yc] = solve(Sl, S2, x, y);

disp('Critical points:'); disp([xc ycl);

A = jacobian([S1 S2]1, [x y]);
evals = eig(A)

disp('Eigenvalues at (0,0);");
disp(double(subs(evals, {x, y}, {0, 0})))
disp('Eigenvalues at (1,0);"');
disp(double(subs(evals, {x, y}, {1, 0})))
disp('Eigenvalues at (0,5/3);');
disp(double(subs(evals, {x, y}, {0, 5/3})))
disp('Eigenvalues at (2,-1);');
disp(double(subs(evals, {x, y}, {2, -1})))

Critical points:
[ o, 0]
' 0]
, 5/31
ro-1]

N o =

[
[
[

evals =

1 - (11%y)/10 - ((36%x"2)/25 + (68*x*y)/25 + y"2/25)"(1/2)/2 - (7*x)/5
((36%x°2)/25 + (68%x*y)/25 + y*2/25)"(1/2)/2 - (11l*y)/10 - (7*x)/5 + 1

Eigenvalues at (0,0);
1
1

Eigenvalues at (1,0);
-1.0000
0.2000

Eigenvalues at (0,5/3);
-1.0000
-0.6667

Eigenvalues at (2,-1);
-1.0000
-0.4000

But when we look at the eigen values of the systems when alpha = 0.8 we
notice that the stability of the critical point that changes it location
from the second quadrant to the fourth qudrant also changes, which it
became stable and swiched to nodel sink. while nothing happens to the
stability of the other points.
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clear
cle

% when alpha =1

syms x y

alph = 1;

S1 = x*(1 - x - y);

S2 = (l-alph)*y*(3 - x - 2*y) + alph*y*(1/2 - (3/4)*x - (1/4)*y);
[xc, yc] = solve(Sl, S2, x, y);

disp('Critical points:'); disp([xc yc])

A = jacobian([S1 S21, [x y]);
evals = eig(A)

disp('Eigenvalues at (0,0);"');
disp(double(subs(evals, {x, y}, {0, 0})))
disp('Eigenvalues at (0,2);');
disp(double(subs(evals, {x, y}, {0, 2})))
disp('Eigenvalues at (1,0);"');
disp(double(subs(evals, {x, y}, {1, 0})))
disp('Eigenvalues at (1/2,1/2);');
disp(double(subs(evals, {x, y}, {1/2, 1/2})))

Critical points:

[ 0, 0]

[ 0, 2]

[ 1, 0]

[ 1/2, 1/2]

evals =

3/4 - (3*y)/4 - ((25*x"2)/16 + (l7*x*y)/4 - (5*x)/4 + y"2/4 - y/2 + 1/4)"(1/2)/2 - (11*x)/8
((25*x"2)/16 + (17*x*y)/4 - (5*x)/4 + y"2/4 - y/2 + 1/4)"(1/2)/2 - (3*y)/4 - (11*x)/8 + 3/4

Eigenvalues at (0,0);
0.5000
1.0000

Eigenvalues at (0,2);
-1.0000
-0.5000

Eigenvalues at (1,0);
-1.0000
-0.2500

Eigenvalues at (1/2,1/2);
-0.7844
0.1594

and when we look at the eigen values of the systems when alpha=1 we also
see that these changes countinue happening on some of the points. first,
we know that the point that changed its location from the second to the
fourth quadrant moves to the first quadrant when alpha = 1, however, what
we see here that its changes it stability while its moving so it return
to be unstable again. and another thing is the point (1,0) that havent
changed at all while alpha changed from 0 to 0.8 finally becomes stable
when alpha = 1 and i think this changes occuers b/c of the point that
comes close to it.
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