\%Rosemond Boateng Extra Credit
\%problem 5 on 9.4
syms x y
sys1 $=x *(1-x-y) ;$
$\operatorname{sys} 2=y^{*}(1.5-y-x) ;$
$[\mathrm{xc}, \mathrm{yc}]=$ solve(sys1, sys2, $\mathrm{x}, \mathrm{y})$;
disp ('Critical Points:'); disp ([xc yc])
warning off all
$\mathrm{fl}=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2)) ; \mathrm{x}(2)^{*}(1.5-\mathrm{x}(2)-\mathrm{x}(1))\right] ;$
figure; hold on
for $\mathrm{a}=-5: 0.5: 2.5$
for $b=0.25: 0.25: 2.5$
$[t, x a]=\operatorname{ode} 45(f 1,[010],[a b]) ;$
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 1,[0-10],[\mathrm{ab}])$;
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
end
end
title 'Problem 5'
axis ([lllll $\left.\left.\begin{array}{llll}0 & 0 & 2\end{array}\right]\right)$
$[\mathrm{X} \mathrm{Y}]=\operatorname{meshgrid}(0: 0.25: 2,0: 0.25: 2) ;$
$\mathrm{F} 1=\mathrm{X} . *(1-\mathrm{X}-\mathrm{Y}) ;$
$\mathrm{F} 2=\mathrm{Y} . *(1.5-\mathrm{Y}-\mathrm{X}) ;$
$\mathrm{L}=\operatorname{sqrt}\left((\mathrm{F} 1 / 3) .^{\wedge} 2+(\mathrm{F} 2 / 6) .^{\wedge} 2\right) ;$
quiver(X, Y, F1./L, F2./L, 0.5);
hold off
\% The critical points are:
$\%(0,0)$ is a nodal source.
$\%(0,1.5)$ is a nodal sink
$\%(1,0)$ is a saddle point.
\% This is a rabbit-squirrel competition relationship. Nither species likes
\% seeing the other species nor themselves because they are competing for $\%$ the same food supply. At $(0,0)$, the population of both species is $\%$ increasing and approaching $(1.5,0)$. If either species gets above the line $\% y=-1.5 * x+1.5$, the population of both species will decrease, then try to $\%$ increase and approach $(1.5,0)$.

Critical Points:

$\left[\begin{array}{ll}0, & 0\end{array}\right]$
[$0,3 / 2]$
$[1,0]$

problem 6
syms x y
$\operatorname{sys} 1=x *\left(1-x+0.5^{*} y\right) ;$
$\operatorname{sys} 2=y^{*}\left(2.5-1.5 * y+0.25^{*} x\right) ;$
$[\mathrm{xc}, \mathrm{yc}]=\operatorname{solve}(\operatorname{sys} 1$, sys2, $\mathrm{x}, \mathrm{y})$;
disp ('Critical Points:'); disp ([xc yc])
warning off all
$\mathrm{f} 2=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)+0.5 * \mathrm{x}(2)) ; \mathrm{x}(2) *(2.5-1.5 * \mathrm{x}(2)+0.25 * \mathrm{x}(1))\right]$;
figure; hold on
for $\mathrm{a}=0.25: 0.75: 2.5$
for $b=0.25: 0.25: 2.5$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45\left(\mathrm{f} 2,\left[\begin{array}{ll}0 & 10],[\mathrm{ab}]) ;\end{array}\right.\right.$
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 2,[0-10],[\mathrm{ab}])$;
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
end
end
title 'Problem 6'
axis ([lllll $\left.\begin{array}{lll}4 & 0 & 4\end{array}\right]$
$[\mathrm{X} \mathrm{Y}]=$ meshgrid ($0: 0.25: 4,0: 0.25: 4$);
$\mathrm{F} 1=\mathrm{X} . *(1-\mathrm{X}+0.5 . * \mathrm{Y}) ;$
$\mathrm{F} 2=\mathrm{Y} . *(2.5-1.5 . * \mathrm{Y}+0.25 . * \mathrm{X}) ;$
$\mathrm{L}=\operatorname{sqrt}\left((\mathrm{F} 1 / 3) .^{\wedge} 2+(\mathrm{F} 2 / 6) .^{\wedge} 2\right) ;$
quiver(X, Y, F1./L, F2./L, 0.5);
hold off
$\%(0,0)$ is a nodal source.
$\%(0,5 / 3)$ is a saddle
$\%(1,0)$ is a also a saddle
$\%(2,2)$ is a nodal sink

Critical Points:
$\left[\begin{array}{ll}0 & 0\end{array}\right.$
[$0,5 / 3]$
$[1,0]$
$[2,2]$

combining prob 5 and 6 with alpha $=c=0$
warning off all
$\mathrm{c}=0$
syms x y
sys1 $=\left(\left((1-c) *\left(x^{*}(1-x-y)\right)\right)+\left((c) *\left(x^{*}(1-x+0.5 * y)\right)\right)\right) ;$
$\operatorname{sys} 2=\left(\left((1-\mathrm{c})^{*}\left(\mathrm{y}^{*}(1.5-\mathrm{y}-\mathrm{x})\right)\right)+\left((\mathrm{c})^{*}\left(\mathrm{y}^{*}\left(2.5-1.5 * \mathrm{y}+0.25^{*} \mathrm{x}\right)\right)\right)\right) ;$
[xc, yc] = solve(sys1, sys2, x, y);
disp ('Critical Points:'); disp ([xc yc])

$$
\begin{aligned}
& \mathrm{f} 1=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2)) ; \mathrm{x}(2)^{*}(1.5-\mathrm{x}(2)-\mathrm{x}(1))\right] ; \\
& \mathrm{f} 2=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}\left(1-\mathrm{x}(1)+0.5^{*} \mathrm{x}(2)\right) ; \mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right] ; \\
& \mathrm{f} 3=@(\mathrm{t}, \mathrm{x})\left[\left(\left((1-\mathrm{c})^{*}\left(\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2))\right)\right)^{\left.+\left(\mathrm{c}^{*}\left(\mathrm{x}(1)^{*}\left(1-\mathrm{x}(1)+0.5^{*} \mathrm{x}(2)\right)\right)\right)\right) ;\left(\left((1 - \mathrm { c }) ^ { * } \left(\mathrm{x}(2)^{*}\right.\right.\right.}\right.\right. \\
& \left.\left.(1.5-\mathrm{x}(2)-\mathrm{x}(1))))^{*}\left((\mathrm{c})^{*}\left(\mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right)\right)\right)\right]
\end{aligned}
$$

figure; hold on
for $\mathrm{a}=-5: 0.5: 2.5$
for $b=0.25: 0.25: 2.5$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45\left(\mathrm{f} 3,\left[\begin{array}{ll}0 & 10]\end{array}\right]\right.$ [a b]);
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 3,[0-10],[\mathrm{ab}])$;
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
end
end
title 'Problem 5 and 6 with $\mathrm{c}=0$ '
axis ([lllll $\left.\begin{array}{llll}2 & 0 & 2\end{array}\right]$
$[\mathrm{X} \mathrm{Y}]=\operatorname{meshgrid}(0: 0.25: 2,0: 0.25: 2) ;$
$\mathrm{F} 1=\left(\left((1-\mathrm{c}) .{ }^{*}(\mathrm{X} . *(1-\mathrm{X}-\mathrm{Y}))\right)+\left((\mathrm{c}) .{ }^{*}(\mathrm{X} . *(1-\mathrm{X}+0.5 . * \mathrm{Y}))\right)\right) ;$
$\mathrm{F} 2=\left(((1-\mathrm{c}) . *(\mathrm{Y} . *(1.5-\mathrm{Y}-\mathrm{X})))+\left((\mathrm{c}) .{ }^{*}(\mathrm{Y} . *(2.5-1.5 . * \mathrm{Y}+0.25 . * \mathrm{X}))\right)\right) ;$
$\mathrm{L}=\operatorname{sqrt}\left((\mathrm{F} 1 / 3) . \wedge 2+(\mathrm{F} 2 / 6) .^{\wedge} 2\right) ;$
quiver(X, Y, F1./L, F2./L, 0.5);
hold off
\% The critical points are:
$\%(0,0)$ is a nodal source.
$\%(0,1.5)$ is a nodal sink
$\%(1,0)$ is a saddle point.
\% This is a rabbit-squirrel competition relationship. Nither species likes
$\%$ seeing the other species nor themselves because they are competing for $\%$ the same food supply. At $(0,0)$, the population of both species is
$\%$ increasing and approaching $(1.5,0)$. If either species gets above the line
$\% y=-1.5^{*} x+1.5$, the population of both species will decrease, then try to \% increase and approach (1.5,0).
$\mathrm{c}=$

0

Critical Points:
$[0,0]$
[$0,3 / 2]$
$[1,0]$

combining prob 5 and 6 with alpha $=c=1 / 6$
warning off all
$\mathrm{c}=1 / 6$
syms x y
sys1 $=\left(\left((1-c) *\left(x^{*}(1-x-y)\right)\right)+\left((c) *\left(x^{*}(1-x+0.5 * y)\right)\right)\right) ;$
$\operatorname{sys} 2=\left(\left((1-c)^{*}\left(y^{*}(1.5-y-x)\right)\right)+\left((c) *\left(y^{*}\left(2.5-1.5^{*} y+0.25^{*} x\right)\right)\right)\right) ;$
$[\mathrm{xc}, \mathrm{yc}]=$ solve(sys1, sys2, $\mathrm{x}, \mathrm{y})$;
disp ('Critical Points:'); disp ([xc yc])
$\mathrm{f} 1=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2)) ; \mathrm{x}(2)^{*}(1.5-\mathrm{x}(2)-\mathrm{x}(1))\right]$;

$$
\begin{aligned}
& \mathrm{f} 2=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}\left(1-\mathrm{x}(1)+0.5^{*} \mathrm{x}(2)\right) ; \mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right] ; \\
& \mathrm{f} 3=@(\mathrm{t}, \mathrm{x})\left[\left(\left((1-\mathrm{c})^{*}\left(\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2))\right)\right)+\left(\mathrm{c}^{*}\left(\mathrm{x}(1)^{*}\left(1-\mathrm{x}(1)+0.5^{*} \mathrm{x}(2)\right)\right)\right)\right) ;\left(\left((1 - \mathrm { c }) ^ { * } \left(\mathrm{x}(2)^{*}\right.\right.\right.\right. \\
& \left.\left.(1.5-\mathrm{x}(2)-\mathrm{x}(1))))+\left((\mathrm{c})^{*}\left(\mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right)\right)\right)\right] ;
\end{aligned}
$$

figure; hold on
for $\mathrm{a}=-0.25: 0.75: 2$
for $b=-0.25: 0.25: 2$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode45(f3,[-510],[\mathrm {ab}]);~}$
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
$[t, x a]=\operatorname{ode} 45(f 3,[-5-10],[\mathrm{ab}])$;
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
end
end
title 'Problem 5 and 6 with $c=1 / 6^{\prime}$
axis ([-0.5 24020$])$
$[\mathrm{X} \mathrm{Y}]=\operatorname{meshgrid}(-0.5: 0.25: 2,0: 0.25: 2) ;$
$\mathrm{F} 1=(((1-\mathrm{c}) . *(\mathrm{X} . *(1-\mathrm{X}-\mathrm{Y})))+((\mathrm{c}) . *(\mathrm{X} . *(1-\mathrm{X}+0.5 . * \mathrm{Y})))) ;$
$\mathrm{F} 2=\left(((1-\mathrm{c}) . *(\mathrm{Y} . *(1.5-\mathrm{Y}-\mathrm{X})))+\left((\mathrm{c}) . *\left(\mathrm{Y} .{ }^{*}\left(2.5-1.5 .{ }^{*} \mathrm{Y}+0.25 . * \mathrm{X}\right)\right)\right)\right) ;$
$\mathrm{L}=\operatorname{sqrt}\left((\mathrm{F} 1 / 3) .^{\wedge} 2+(\mathrm{F} 2 / 6) .^{\wedge} 2\right) ;$
quiver(X, Y, F1./L, F2./L, 0.5);
hold off
\% The critical points are:
$\%(0,0)$ is a nodal source.
$\%(0,20 / 13)$ is a nodal sink
$\%(1,0)$ is a also a saddle
$\%(-16 / 47,84 / 47)$ is also saddle
\% It's still a rabbit-squirrel competition relationship but both species
$\%$ increase from $(0,0)$ until they get close to the curve going from 1.54 to
$\%$ approximately 1 , then they approach the point $(0,1.54)$. One of the
$\%$ species has started to evolve causing the line when $\mathrm{c}=0$ to change into a \% curve.
$\mathrm{c}=$
0.1667

Critical Points:
$\left[\begin{array}{ll}{[} & 0,\end{array}\right]$
[$0,20 / 13]$
$\left[\begin{array}{ll}{[1,} & 0\end{array}\right]$
[-16/47, 84/47]

combining prob 5 and 6 with alpha $=c=1 / 3$
warning off all
$\mathrm{c}=1 / 3$
syms x y
sys1 $=\left(\left((1-c) *\left(x^{*}(1-x-y)\right)\right)+\left((c) *\left(x^{*}(1-x+0.5 * y)\right)\right)\right) ;$
sys2 $=\left(\left((1-c)^{*}\left(y^{*}(1.5-y-x)\right)\right)+\left((c) *\left(y^{*}\left(2.5-1.5 * y+0.25^{*} x\right)\right)\right)\right) ;$
[xc, yc] = solve(sys1, sys2, x, y);
disp ('Critical Points:'); disp ([xc yc])
$\mathrm{f} 1=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2)) ; \mathrm{x}(2)^{*}(1.5-\mathrm{x}(2)-\mathrm{x}(1))\right]$;

$$
\begin{aligned}
& \mathrm{f} 2=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}\left(1-\mathrm{x}(1)+0.5^{*} \mathrm{x}(2)\right) ; \mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right] ; \\
& \mathrm{f} 3=@(\mathrm{t}, \mathrm{x})\left[\left(\left((1-\mathrm{c})^{*}\left(\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2))\right)\right)+\left(\mathrm{c}^{*}\left(\mathrm{x}(1)^{*}\left(1-\mathrm{x}(1)+0.5^{*} \mathrm{x}(2)\right)\right)\right)\right) ;\left(\left((1 - \mathrm { c }) ^ { * } \left(\mathrm{x}(2)^{*}\right.\right.\right.\right. \\
& \left.\left.(1.5-\mathrm{x}(2)-\mathrm{x}(1))))+\left((\mathrm{c})^{*}\left(\mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right)\right)\right)\right] ;
\end{aligned}
$$

figure; hold on
for $\mathrm{a}=0.25: 0.75: 2.5$
for $b=0.25: 0.25: 3$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 3,[010],[\mathrm{ab}]) ;$
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 3,[0-10],[\mathrm{ab}])$;
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
end
end
title 'Problem 5 and 6 with $c=1 / 3$ '
axis ([lllll $\left.02 \begin{array}{lll}0 & 2\end{array}\right]$
$[\mathrm{X} \mathrm{Y}]=$ meshgrid ($0: 0.1: 2,0: 0.25: 2$);
$\mathrm{F} 1=\left(\left((1-\mathrm{c}) .{ }^{*}(\mathrm{X} . *(1-\mathrm{X}-\mathrm{Y}))\right)+\left((\mathrm{c}) .{ }^{*}(\mathrm{X} . *(1-\mathrm{X}+0.5 . * \mathrm{Y}))\right)\right) ;$
$\mathrm{F} 2=\left(((1-\mathrm{c}) . *(\mathrm{Y} . *(1.5-\mathrm{Y}-\mathrm{X})))+\left((\mathrm{c}) . *\left(\mathrm{Y} .{ }^{*}\left(2.5-1.5 .{ }^{*} \mathrm{Y}+0.25 . * \mathrm{X}\right)\right)\right)\right) ;$
$\mathrm{L}=\operatorname{sqrt}\left((\mathrm{F} 1 / 3) .^{\wedge} 2+(\mathrm{F} 2 / 6) .^{\wedge} 2\right) ;$
quiver(X, Y, F1./L, F2./L, 0.5);
hold off
\% The critical points are:
$\%(0,0)$ is a nodal source
$\%(0,11 / 7)$ is a saddle
$\%(1,0)$ is a also a saddle
$\%(2 / 7,10 / 7)$ is a nodal sink
\% It's still a rabbit-squirrel competition relationship. One of the species \% has evolved some more causing the curve to widen at the base. Both $\%$ species increase from $(0,0)$ and approach $(2 / 7,10 / 7)$. If any of the $\%$ species get above the curve, their population will decrease then increase $\%$ and approach (2/7, 10/7).
$\mathrm{c}=$
0.3333

Critical Points:
$\left[\begin{array}{ll}0, & 0\end{array}\right]$
[$0,11 / 7$]
$\left[\begin{array}{ll}{[1,} & 0\end{array}\right]$
[2/7, 10/7]

combining prob 5 and 6 with alpha $=c=1 / 2$
warning off all
$\mathrm{c}=1 / 2$
syms x y
sys1 $=\left(\left((1-c) *\left(x^{*}(1-x-y)\right)\right)+\left((c) *\left(x^{*}(1-x+0.5 * y)\right)\right)\right) ;$
sys2 $=\left(\left((1-c)^{*}\left(y^{*}(1.5-y-x)\right)\right)+\left((c)^{*}\left(y^{*}\left(2.5-1.5^{*} y+0.25^{*} x\right)\right)\right)\right) ;$
[xc, yc] = solve(sys1, sys2, x, y);
disp ('Critical Points:'); disp ([xc yc])
$\mathrm{f} 1=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2)) ; \mathrm{x}(2)^{*}(1.5-\mathrm{x}(2)-\mathrm{x}(1))\right]$;

$$
\begin{aligned}
& \mathrm{f} 2=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)+0.5 * \mathrm{x}(2)) ; \mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right] ; \\
& \mathrm{f} 3=@(\mathrm{t}, \mathrm{x})\left[\left(\left((1-\mathrm{c})^{*}\left(\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2))\right)\right)+\left(\mathrm{c}^{*}\left(\mathrm{x}(1)^{*}\left(1-\mathrm{x}(1)+0.5^{*} \mathrm{x}(2)\right)\right)\right)\right) ;\left(\left((1 - \mathrm { c }) ^ { * } \left(\mathrm{x}(2)^{*}\right.\right.\right.\right. \\
& \left.\left.(1.5-\mathrm{x}(2)-\mathrm{x}(1))))+\left((\mathrm{c})^{*}\left(\mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right)\right)\right)\right] ;
\end{aligned}
$$

figure; hold on
for $\mathrm{a}=0.25: 0.75: 3$
for $b=0.25: 0.25: 3$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 3,[010],[\mathrm{ab}]) ;$
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 3,[0-10],[\mathrm{ab}])$;
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
end
end
title 'Problem 5 and 6 with $c=1 / 2^{\prime}$
axis ([lllll $\left.\left.\begin{array}{llll}0 & 0 & 2\end{array}\right]\right)$
$[\mathrm{X} \mathrm{Y}]=$ meshgrid ($0: 0.2: 2,0: 0.25: 2$);
$\mathrm{F} 1=\left(\left((1-\mathrm{c}) .{ }^{*}(\mathrm{X} . *(1-\mathrm{X}-\mathrm{Y}))\right)+\left((\mathrm{c}) .{ }^{*}(\mathrm{X} . *(1-\mathrm{X}+0.5 . * \mathrm{Y}))\right)\right) ;$
$\mathrm{F} 2=\left(((1-\mathrm{c}) . *(\mathrm{Y} . *(1.5-\mathrm{Y}-\mathrm{X})))+\left((\mathrm{c}) . *\left(\mathrm{Y} .{ }^{*}\left(2.5-1.5 .{ }^{*} \mathrm{Y}+0.25 . * \mathrm{X}\right)\right)\right)\right) ;$
$\mathrm{L}=\operatorname{sqrt}\left((\mathrm{F} 1 / 3) .^{\wedge} 2+(\mathrm{F} 2 / 6) .^{\wedge} 2\right) ;$
quiver(X, Y, F1./L, F2./L, 0.5);
hold off
\% The critical points are:
$\%(0,0)$ is a nodal source.
$\%(0,8 / 5)$ is a saddle
$\%(1,0)$ is a also a saddle
$\%(24 / 37,52 / 37)$ is a nodal sink
\% One of the species has evolved more than the other one causing the curve $\%$ from $c=1 / 3$ to widen more at the base. The more evolved species increases $\%$ from $(0,0)$ at a faster rate but their growth is limited because they
\% eventually approach ($24 / 37,52 / 37$) just like the other species.
$\mathrm{c}=$
0.5000

Critical Points:
$\left[\begin{array}{ll}0, & 0\end{array}\right]$
[$0,8 / 5]$
$\left[\begin{array}{ll}{[1,} & 0\end{array}\right]$
[24/37, 52/37]

combining prob 5 and 6 with alpha $=c=4 / 6$
warning off all
$c=4 / 6$
syms x y
sys1 $=\left(\left((1-c) *\left(x^{*}(1-x-y)\right)\right)+\left((c) *\left(x^{*}(1-x+0.5 * y)\right)\right)\right) ;$
sys2 $=\left(\left((1-c)^{*}\left(y^{*}(1.5-y-x)\right)\right)+\left((c)^{*}\left(y^{*}\left(2.5-1.5 * y+0.25^{*} x\right)\right)\right)\right) ;$
[xc, yc] = solve(sys1, sys2, x, y);
disp ('Critical Points:'); disp ([xc yc])
$\mathrm{f} 1=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2)) ; \mathrm{x}(2)^{*}(1.5-\mathrm{x}(2)-\mathrm{x}(1))\right]$;

$$
\begin{aligned}
& \mathrm{f} 2=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}\left(1-\mathrm{x}(1)+0.5^{*} \mathrm{x}(2)\right) ; \mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right] ; \\
& \mathrm{f} 3=@(\mathrm{t}, \mathrm{x})\left[\left(\left((1-\mathrm{c})^{*}\left(\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2))\right)\right)+\left(\mathrm{c}^{*}\left(\mathrm{x}(1)^{*}\left(1-\mathrm{x}(1)+0.5^{*} \mathrm{x}(2)\right)\right)\right)\right) ;\left(\left((1 - \mathrm { c }) ^ { * } \left(\mathrm{x}(2)^{*}\right.\right.\right.\right. \\
& \left.\left.(1.5-\mathrm{x}(2)-\mathrm{x}(1))))+\left((\mathrm{c})^{*}\left(\mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right)\right)\right)\right] ;
\end{aligned}
$$

figure; hold on
for $\mathrm{a}=0.25: 0.75: 3$
for $b=0.25: 0.25: 3$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 3,[010],[\mathrm{ab}]) ;$
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 3,[0-10],[\mathrm{ab}])$;
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
end
end
title 'Problem 5 and 6 with $c=4 / 6$ '
axis ([lllll $\left.\left.\begin{array}{llll}0 & 0 & 2\end{array}\right]\right)$
$[\mathrm{X} \mathrm{Y}]=$ meshgrid ($0: 0.2: 2,0: 0.25: 2$);
$\mathrm{F} 1=(((1-\mathrm{c}) . *(\mathrm{X} . *(1-\mathrm{X}-\mathrm{Y})))+((\mathrm{c}) . *(\mathrm{X} . *(1-\mathrm{X}+0.5 . * \mathrm{Y})))) ;$
$\mathrm{F} 2=\left(((1-\mathrm{c}) . *(\mathrm{Y} . *(1.5-\mathrm{Y}-\mathrm{X})))+\left((\mathrm{c}) . *\left(\mathrm{Y} .{ }^{*}\left(2.5-1.5 .{ }^{*} \mathrm{Y}+0.25 . * \mathrm{X}\right)\right)\right)\right) ;$
$\mathrm{L}=\operatorname{sqrt}\left((\mathrm{F} 1 / 3) .^{\wedge} 2+(\mathrm{F} 2 / 6) .^{\wedge} 2\right) ;$
quiver(X, Y, F1./L, F2./L, 0.5);
hold off
\% The critical points are:
$\%(0,0)$ is a nodal source.
$\%(0,13 / 8)$ is a saddle
$\%(1,0)$ is a also a saddle
$\%(1,1.5)$ is a nodal sink
\% Both species have evolevd a lot. They are getting close to a mutually $\%$ benefiting relationship. They increase from $(0,0)$ and approach $(1,1.5)$. \% Both species also cannot keep increasing if they increase too much they $\%$ decrease and approach $(1,1.5)$
$\mathrm{c}=$
0.6667

Critical Points:
$\left[\begin{array}{ll}0, & 0\end{array}\right]$
[$0,13 / 8$]
$\left[\begin{array}{ll}{[1,} & 0\end{array}\right]$
[$1,3 / 2$]

combining prob 5 and 6 with alpha $=c=5 / 6$
warning off all
$\mathrm{c}=5 / 6$
syms x y
sys1 $=\left(\left((1-c) *\left(x^{*}(1-x-y)\right)\right)+\left((c) *\left(x^{*}(1-x+0.5 * y)\right)\right)\right) ;$
sys2 $=\left(\left((1-c)^{*}\left(y^{*}(1.5-y-x)\right)\right)+\left((c)^{*}\left(y^{*}\left(2.5-1.5^{*} y+0.25^{*} x\right)\right)\right)\right) ;$
$[\mathrm{xc}, \mathrm{yc}]=$ solve(sys1, sys2, $\mathrm{x}, \mathrm{y})$;
disp ('Critical Points:'); disp ([xc yc])
$\mathrm{f} 1=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2)) ; \mathrm{x}(2)^{*}(1.5-\mathrm{x}(2)-\mathrm{x}(1))\right]$;

$$
\begin{aligned}
& \mathrm{f} 2=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)+0.5 * \mathrm{x}(2)) ; \mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right] ; \\
& \mathrm{f} 3=@(\mathrm{t}, \mathrm{x})\left[\left(\left((1-\mathrm{c})^{*}\left(\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2))\right)\right)+\left(\mathrm{c}^{*}\left(\mathrm{x}(1)^{*}\left(1-\mathrm{x}(1)+0.5^{*} \mathrm{x}(2)\right)\right)\right)\right) ;\left(\left((1 - \mathrm { c }) ^ { * } \left(\mathrm{x}(2)^{*}\right.\right.\right.\right. \\
& \left.\left.(1.5-\mathrm{x}(2)-\mathrm{x}(1))))+\left((\mathrm{c})^{*}\left(\mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right)\right)\right)\right] ;
\end{aligned}
$$

figure; hold on
for $\mathrm{a}=0.25: 0.75: 3$
for $b=0.25: 0.25: 3$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 3,[010],[\mathrm{ab}]) ;$
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 3,[0-10],[\mathrm{ab}])$;
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
end
end
title 'Problem 5 and 6 with $c=5 / 6$ '
axis ([0 2.5102 .5$])$
$[\mathrm{X} \mathrm{Y}]=$ meshgrid (0:0.25:2.5, 0:0.5:2.5);
$\mathrm{F} 1=(((1-\mathrm{c}) . *(\mathrm{X} . *(1-\mathrm{X}-\mathrm{Y})))+((\mathrm{c}) . *(\mathrm{X} . *(1-\mathrm{X}+0.5 . * \mathrm{Y})))) ;$
$\mathrm{F} 2=\left(((1-\mathrm{c}) . *(\mathrm{Y} . *(1.5-\mathrm{Y}-\mathrm{X})))+\left((\mathrm{c}) . *\left(\mathrm{Y} .{ }^{*}\left(2.5-1.5 .{ }^{*} \mathrm{Y}+0.25 . * \mathrm{X}\right)\right)\right)\right) ;$
$\mathrm{L}=\operatorname{sqrt}\left((\mathrm{F} 1 / 3) .^{\wedge} 2+(\mathrm{F} 2 / 6) .^{\wedge} 2\right) ;$
quiver(X, Y, F1./L, F2./L, 0.5);
hold off
\% The critical points are:
$\%(0,0)$ is a nodal source.
$\%(0,28 / 17)$ is a saddle
$\%(1,0)$ is a also a saddle
$\%(64 / 45,76 / 45)$ is a nodal sink
\% The relationship is evolving into a mutually benefiting one. They both $\%$ increase from $(0,0)$.Both species have evolved to a point of almost \% tollerating one another without competing for resources. However, they $\%$ always grow or decrease to approach (64/45, 76/45).
$\mathrm{c}=$
0.8333

Critical Points:
[0,0]
[0, 28/17]
$\left[\begin{array}{ll}{[1,} & 0\end{array}\right]$
[64/45, 76/45]

combining prob 5 and 6 with alpha $=c=1$
warning off all
$\mathrm{c}=1$
syms x y
sys1 $=\left(\left((1-c) *\left(x^{*}(1-x-y)\right)\right)+\left((c) *\left(x^{*}(1-x+0.5 * y)\right)\right)\right) ;$
$\operatorname{sys} 2=\left(\left((1-c)^{*}\left(y^{*}(1.5-y-x)\right)\right)+\left((c) *\left(y^{*}\left(2.5-1.5^{*} y+0.25^{*} x\right)\right)\right)\right) ;$
[xc, yc] = solve(sys1, sys2, x, y);
disp ('Critical Points:'); disp ([xc yc])
$\mathrm{f} 1=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2)) ; \mathrm{x}(2)^{*}(1.5-\mathrm{x}(2)-\mathrm{x}(1))\right]$;

$$
\begin{aligned}
& \mathrm{f} 2=@(\mathrm{t}, \mathrm{x})\left[\mathrm{x}(1)^{*}(1-\mathrm{x}(1)+0.5 * \mathrm{x}(2)) ; \mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right] ; \\
& \mathrm{f} 3=@(\mathrm{t}, \mathrm{x})\left[\left(\left((1-\mathrm{c})^{*}\left(\mathrm{x}(1)^{*}(1-\mathrm{x}(1)-\mathrm{x}(2))\right)\right)+\left(\mathrm{c}^{*}\left(\mathrm{x}(1)^{*}\left(1-\mathrm{x}(1)+0.5^{*} \mathrm{x}(2)\right)\right)\right)\right) ;\left(\left((1 - \mathrm { c }) ^ { * } \left(\mathrm{x}(2)^{*}\right.\right.\right.\right. \\
& \left.\left.(1.5-\mathrm{x}(2)-\mathrm{x}(1))))+\left((\mathrm{c})^{*}\left(\mathrm{x}(2)^{*}\left(2.5-1.5^{*} \mathrm{x}(2)+0.25^{*} \mathrm{x}(1)\right)\right)\right)\right)\right] ;
\end{aligned}
$$

figure; hold on
for $\mathrm{a}=0.25: 0.75: 3$
for $b=0.25: 0.25: 3$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 3,[010],[\mathrm{ab}]) ;$
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
$[\mathrm{t}, \mathrm{xa}]=\operatorname{ode} 45(\mathrm{f} 3,[0-10],[\mathrm{ab}])$;
$\operatorname{plot}(x a(:, 1), x a(:, 2))$
end
end
title 'Problem 5 and 6 with $\mathrm{c}=1$ '
axis ([04 404 4])
$[\mathrm{X} \mathrm{Y}]=$ meshgrid ($0: 0.25: 4,0: 0.5: 4$);
$\mathrm{F} 1=\left(\left((1-\mathrm{c}) .{ }^{*}(\mathrm{X} . *(1-\mathrm{X}-\mathrm{Y}))\right)+\left((\mathrm{c}) .{ }^{*}(\mathrm{X} . *(1-\mathrm{X}+0.5 . * \mathrm{Y}))\right)\right) ;$
$\mathrm{F} 2=\left(((1-\mathrm{c}) . *(\mathrm{Y} . *(1.5-\mathrm{Y}-\mathrm{X})))+\left((\mathrm{c}) . *\left(\mathrm{Y} .{ }^{*}\left(2.5-1.5 .{ }^{*} \mathrm{Y}+0.25 . * \mathrm{X}\right)\right)\right)\right) ;$
$\mathrm{L}=\operatorname{sqrt}\left((\mathrm{F} 1 / 3) .^{\wedge} 2+(\mathrm{F} 2 / 6) .^{\wedge} 2\right) ;$
quiver(X, Y, F1./L, F2./L, 0.5);
hold off
\% The critical points are:
$\%(0,0)$ is a nodal source.
$\%(0,5 / 3)$ is a saddle
$\%(1,0)$ is a also a saddle
$\%(2,2)$ is a nodal sink
\% The relationship between the species has evolved into a mutually $\%$ beneficial one but there is still competition between individual species.
$\%$ An example of this is the trees in a forest and underground bacteria $\%$ relationship. The trees compete for sunlight while the bacteria compete $\%$ for food and shelter among themselves. They both benefit because the \% bacteria gets shelter and the trees can use waste produced by the \% bacteria. The graph is now an attracting cw sprial sink approaching $(2,2)$ \% because there is still internal competition between the individual \% species.
$\mathrm{c}=$

1

Critical Points:
$\left[\begin{array}{ll}0, & 0\end{array}\right]$
[$0,5 / 3$]
$[1,0]$
[2, 2]

Problem 5 and 6 with $c=1$

Published with MATLAB® 7.6

