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 %Marek Buda-Ortins  %Math 246, Differential Equations - Extra Credit Project  %Tuesday, May 12, 2009    %Assigned Problem:  %d/dt[x; y] = [Hy; -Hx - gamma Hy]  %H(x, y) = 1/2*y^2 + 1/2*x^2 - 1/3*x^3      syms x y  %Setting H, and calculating its partials.  
H = 1/2*y^2 + 1/2*x^2 - 1/3*x^3  diff(H,y)  diff(H,x)  %Additionally, I am finding the critical points (assuming gamma=1). Later  %on, at the end of my M-file, I note that the critical points remain the  %same regardless of what gamma is set to.  [x, y] = solve(y, x^2-x-y); [x y]  %Therefore the critical points are (0, 0) and (1, 0).  clear all  %Now setting up the matrix to find the eigenvalues, which in turn will tell  %us if it is a sink, source, saddle, spiral, twist, etc.  syms x y  f = y;  g = x^2-x-y;  A = [diff(f,x) diff(f,y); diff(g,x) diff(g,y)]  %Plugging (0, 0) into A and calculating its eigenvalues.  A = [0 1; -1 -1]  [xi, R] = eig(sym(A))  %When (0, 0) is plugged into matrix A and the eigenvalues are calculated,  %we learn that both eigenvalues are negative and conjugate pairs, thus a  %spiral sink surrounding (0, 0). By the A21 rule, it is clockwise.    %Plugging (1, 0) into A and calculating its eigenvalues.  A = [0 1; 1 -1]  
[xi, R] = eig(sym(A))  %Since both eigenvalues are real, with 1 eigenvalue negative and 1 
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 %positive, we have a saddle surrounding the point (1, 0). By the A21 rule,  %it is counterclockwise (since A21=1>0).    %Below I am plotting a family of solutions/trajectories when gamma=1, using  %ode45.  warning off all  figure, hold on  f = @(t, x) [x(2); x(1)^2-x(1)-x(2)];  for a = -2:2      for b = -2:2          [t, xa] = ode45(f, [0 3], [a b]);  
        plot(xa(:,1), xa(:,2))          [t, xa] = ode45(f, [0 -3], [a b]);          plot(xa(:,1), xa(:,2))      end  end  axis([-4 8 -15 10])  xlabel 'x'  ylabel 'y'  title 'Solutions when gamma=1 of dx/dt=Hy and dy/dt=-Hx - gamma Hy'  %Conclusion: As previously described above when the eigenvalues were  %calculated, around (0, 0) we see a clockwise spiral sink, and it is stable.  %Slightly to the right, at the point (1, 0), there is a saddle (unstable).    %Now plotting a family of solutions/trajectories when gamma=.7.  warning off all  figure, hold on  f = @(t, x) [x(2); x(1)^2-x(1)-.7*x(2)];  for a = -2:2      for b = -2:2          [t, xa] = ode45(f, [0 3], [a b]);          plot(xa(:,1), xa(:,2))          [t, xa] = ode45(f, [0 -3], [a b]);          plot(xa(:,1), xa(:,2))      end  
end  axis([-4 8 -15 10]) 
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 xlabel 'x'  ylabel 'y'  title 'Solutions when gamma=.7 of dx/dt=Hy and dy/dt=-Hx - gamma Hy'  %This illustration shows, when gamma gets slightly less than 1, a  %slight counterclockwise rotation occurs.    %Now plotting a family of solutions/trajectories when gamma=.3.  warning off all  figure, hold on  f = @(t, x) [x(2); x(1)^2-x(1)-.3*x(2)];  for a = -2:2  
    for b = -2:2          [t, xa] = ode45(f, [0 3], [a b]);          plot(xa(:,1), xa(:,2))          [t, xa] = ode45(f, [0 -3], [a b]);          plot(xa(:,1), xa(:,2))      end  end  axis([-4 8 -15 10])  xlabel 'x'  ylabel 'y'  title 'Solutions when gamma=.3 of dx/dt=Hy and dy/dt=-Hx - gamma Hy'  %This shows the trajectories, maintaining their critical points (and still  %their directions due to gamma being positive), are turning more and more  %counterclockwise as gamma gets closer and closer to 0.    %Now plotting a family of solutions/trajectories when gamma=0.  warning off all  figure, hold on  f = @(t, x) [x(2); x(1)^2-x(1)];  for a = -2:2      for b = -2:2          [t, xa] = ode45(f, [0 3], [a b]);          plot(xa(:,1), xa(:,2))          [t, xa] = ode45(f, [0 -3], [a b]);  
        plot(xa(:,1), xa(:,2))      end 
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 end  axis([-4 8 -15 10])  xlabel 'x'  ylabel 'y'  title 'Solutions when gamma=0 of dx/dt=Hy and dy/dt=-Hx - gamma Hy'  %As we have seen in all the previous graphs up to this one, gamma has been  %going from 1 towards 0. As gamma has been approaching 0 (from the right,  %or positive side), the trajectories would rotate more and more  %counterclockwise. Once gamma=0, the trajectories lie symmetric across the  %'y' axis! We now have a part of a clockwise center (only imaginary eigenvalues). As  %depicted in the graph, the top, left and bottom surrounding (0, 0) appear as a center,  
%however the critical point (1, 0) still holds the form of a saddle, which  %deflects the full elliptical continuation of the center at (0, 0). Therefore, since it is not  %a fully revolving center, it technically is not a center, and is unstable  %(the saddle ʻpullsʼ the right side of the ʻcenterʼ to y=infinity and y=-infinity).    %Now plotting a family of solutions/trajectories when gamma=-1.  warning off all  figure, hold on  f = @(t, x) [x(2); x(1)^2-x(1)+x(2)];  for a = -2:2      for b = -2:2          [t, xa] = ode45(f, [0 3], [a b]);          plot(xa(:,1), xa(:,2))          [t, xa] = ode45(f, [0 -3], [a b]);          plot(xa(:,1), xa(:,2))      end  end  axis([-4 8 -15 10])  xlabel 'x'  ylabel 'y'  title 'Solutions when gamma=-1 of dx/dt=Hy and dy/dt=-Hx - gamma Hy'  %Here we see a rotation of 180 degrees about the y axis when compared to the graph of  %gamma=1.    
%Conclusion: It is important to note that gamma can be anything and still not  %affect the critical points. I believe that this is most likely 
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 %due to the fact that gamma is a constant. Therefore it changes the  %magnitude and direction of the trajectories, but it does not move the critical  %points around; they stay still. Interestingly enough, even when gamma=0 causing a  %'y' variable to be lost (changing from dy/dt=x^2-x-y to dy/dt=x^2-x), this  %still does not change the critical points. What is fascinating is  %how even when gamma is set to -1, the whole image ʻappearsʼ to be rotated 180 degrees   around the y axis - and the critical points remain the same. Although everything looks the  %same, the direction is now spiraling outward, indicative of a source. I know the critical points  %remain the same regardless of gamma because when I use the 'solve' command with  %gamma=-1, 1, or 0 it still gives me the same critical points. Additionally, it could not be simply   %flipped across the y axis neither, because it would it would still remain a sink and then yield a   
%counterclockwise spiral. The A21 rule tells us the spiral remains clockwise, and the   %eigenvalues further the logic of affirming the spiral is now a source.     %Although the critical points will never change, the eigenvalues will,  %meaning the trajectories surrounding the critical points have the potential to change direction   %(depending on whether gamma is positive or negative). Only when gamma is positive, the   %critical point (0, 0) will always be a stable sink. However, when gamma is negative there   %exists a source instead. When gamma is 0 there lies a portion of a ʻcenterʼ surrounding (0,0)   %except on the side of the other critical point (1, 0), which is where the saddle deflects part of   %the ʻcenterʼ and shoots the top part of it towards positive infinity and the bottom part towards   %negative infinity.   %For example, when gamma=-1, it yields a positive conjugate pair of  %eigenvalues for the critical point (0, 0), indicating  %a clockwise unstable spiral source instead! (This makes sense; it is impossible  %to have the same clockwise spiral sink reflected across the y-axis; it logically  %cannot be drawn.) When gamma=-1 for the critical point (1, 0), we still get a saddle  %(both real, 1 positive and 1 negative eigenvalue), however the signs are  %switched on the eigenvalues corresponding to similar eigenvectors. In other words,  %the eigenvalue attracting when gamma=1 is now repelling when gamma=-1, and  %vise versa for the switching of the other eigenvalue as well. This is consistant with the  %source switching to a sink. The code to find the eigenvalues for both critical points  %when gamma=-1 is listed below.    clear all 
 syms x y  
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f = y;  %When gamma=-1, this makes 'y' positive below, as opposed to 'y' being  %negative when gamma was positive.  g = x^2-x+y;  A = [diff(f,x) diff(f,y); diff(g,x) diff(g,y)]  %Plugging (0, 0) into A and calculating its eigenvalues.  A = [0 1; -1 1]  [xi, R] = eig(sym(A))  %Now plugging the critical point (1, 0) into A and calculating its  %eigenvalues.  A = [0 1; 1 1]  [xi, R] = eig(sym(A)) 
  

Graphs 
(Please zoom in to decipher the text of the titles) 
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