
Keith Burghardt

Damping a Pendulum

Equation: D2y+b*Dy+y=0

For the matrix:

x’=y

y’=-b*y-sin(x) where b is the damping constant

I used ODE45 to approximate the graph because there is no explicit solution

Code for pendulum pictures

for i=1:numframes

c=(i-1)*0.15; xlabel 'x'; ylabel 'y'

axis ([-8 8 -8 8])

hold on;

f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 50], [-9 10]);

plot(xa(:,1),xa(:,2))

f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 50], [9 -10]);

plot(xa(:,1),xa(:,2))

f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 50], [pi 0.01]);

plot(xa(:,1),xa(:,2))

f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 50], [pi -0.05]);

plot(xa(:,1),xa(:,2))

f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 50], [-pi -0.05]);

plot(xa(:,1),xa(:,2))

f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 50], [-pi 0.05]);

plot(xa(:,1),xa(:,2))

f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 -50], [-pi 0.05]);

 plot(xa(:,1),xa(:,2))



 f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 -50], [-pi -0.05]);

 plot(xa(:,1),xa(:,2))

 f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 -50], [pi -0.05]);

 plot(xa(:,1),xa(:,2))

 f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 -50], [pi 0.05]);

 plot(xa(:,1),xa(:,2))

 f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 50], [-3*pi 0.05]);

 plot(xa(:,1),xa(:,2))

 f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 50], [-3*pi -0.05]);

 plot(xa(:,1),xa(:,2))

 f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 50], [3*pi 0.05]);

 plot(xa(:,1),xa(:,2))

 f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 -50], [3*pi -0.05]);

 plot(xa(:,1),xa(:,2))

 f=@(t,x) [x(2); -sin(x(1))-c*x(2)];[t,xa]=ode45(f,[0 50], [3*pi -0.05]);

 plot(xa(:,1),xa(:,2))

hold off

figure

end



-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

x

y

b=0

Here b=0, so the differential equation becomes D2y+y=0, which produces sinusoidal motion. 
This unlikely case is the only one which can be solved explicitly. It has critical points at n*pi , 
where n is any whole number.
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b=0.15

Here b is just a little bigger than 0, but one can easily see that, because b>0, spiral sinks , 
and saddles form. This is because the pendulum is under damped. The saddle points are 
where the pendulum is at the very top of the swing, so it is in an unstable equilibrium. The 
spiral sinks, whose critical points represent the bottom of the swing, are where the pendulum 
is oscillating less and less approaching the critical points.
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b=0.3

This portrait is again showing the phase portrait with spiral sinks at 2*n*pi, and saddle 
points at (n-1)*2*pi, where n is any whole number. This portrait solves the differential 
equation D2y+0.3*Dy+sin(y)=0 Here b is only slightly greater than 0, but now the oscillation is 
getting less and less, as b approaches the critical damping.
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b=0.45

This portrait solves the differential equation D2y+0.45*Dy+sin(y)=0. It still keeps its 
critical points at n*pi, because sin(y)=0 at n*pi.  Here b is getting even larger, and so the 
swing of the pendulum (the rate that the spiral sinks fall inward) is further increasing.
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b=0.6

Now, the initial values are falling inward to the center, because b is increasing. The critical 
points are at n*pi, where all even Ns are spiral sinks (where the pendulum approaches the 
bottom of the swing) and all odd Ns are saddle points (where  the pendulum is at the top of 
the swing)
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b=0.875

Here b is almost 1, so the portrait is almost like a real valued portrait, because the complex 
part of the eigen values are very nearly 0. The critical points are again at n*pi, with the spiral 
sinks at the odd n whole numbers.
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Now, we have exceeded the critical damping point, so the eigen values now have no complex 
part. This means that the pendulum doesn’t swing anymore. Instead it slowly approaches the 
critical points 2*n*pi, or stays at the top of the pendulum swing (at (n-1)*2*pi)
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b>>1

This is what the pendulum is like if b is very large. There is not even a hint of swinging, and 
the points that approach the bottom of the pendulum swing (2*n*pi) are not essentially 
parallel to the lines coming out of the saddle points.

At first, when b=0 (i.e. pendulum is “frictionless”), there are no spiral sinks. Instead 
the phase portrait is positive and negative cosine graphs superimposed on each other, with 
critical points at (y=0, x=n*pi), where n is any whole number. The critical points are where 
the pendulum is on the bottom (at n*2*pi) or is balancing at the top of the circle (at (n-
1)*2*pi). As b increases, the pendulum falls into the “wells,” which are the spiral sinks, at a 
faster and faster pace (i.e. the slope at the initial points gets steeper and steeper). When the 
graph reaches critical damping, i.e. when sqrt(b^2-1) =0 at points very close to the critical 
points, than the plot looses the spiral sinks, because the eigen values only have real roots. 
From there, we can see that the equilibrium points at n*2*pi become nodal points, and the 
phase portrait of the areas around them become nodal sinks, because there is no oscillation. 
The areas around the “top of the pendulum” stay saddle points because a slight nudge pushes 
them to one n*2*pi valued critical points.


	Damping a Pendulum

