Contents

- Extra Credit Project
- <u>u = -2</u>
- <u>u = -1</u>
- <u>u = 0</u>
- <u>u = 1</u>
- <u>u = 2</u>

Extra Credit Project

```
%By Ian Hall, Math 246, Section 0221 (9:00 Peng Gao), Due May 12
clear all
syms t x u
for u = -2:2
    u
    A = [2*u u-1; u+1 0]
    [xi, R] = (eig(sym(A)))
    %The trace is zero, so it can be ignored below
    p_z = x^2+det(A)
    d = -det(A)
    disp('------')
end
%The following ivp's are of the form ivp = 'Dx=(2*u)*x+(u-1)*y, Dy=(u+
%Matlab will not let me put all the following in one for loop defing u
%I had to split it up into 5 graphs.
```

```
u =
```

-2

```
A =

-4 -3

-1 0

xi =

[ 2-7^(1/2), 2+7^(1/2)]

[ 1, 1]
```

$[-2+7^{(1/2)}, 0]$
[0, -2-7^(1/2)]
p_z =
1 <u> </u>
x^2-3
d –
<i>u</i> –
2
3
<i>u</i> =
-1
A =
-2 -2
0 0
xi =
[-1, 1]
[1, 0]
R =
[0, 0]
[0, -2]
$p_Z =$
<u> </u>
x^2

d =					
	0				
	0				
u =					
	0				
A =					
	0	-1			
	1	0			
xi =					
Г		7		7	7
[-sq	[rt (−1	_,),	sqrt	(-1)]
R =					
Г		ź		0	17
[0, -	sqrt	(-1)]
p_z =	=				
x^2+1					
d =					
	7				
_	Ĺ				
u =					
	7				

1	
A =	
2	0
2	0
xi =	
[1, 0] [1, 1]	
L — , — J	
R =	
[2,0]	
[0, 0]	
p_z -	
x^2	
d =	
0	
u =	
2	
A =	
	1
4 3	 О
xi =	

```
[ 2/3+1/3*7^(1/2), 2/3-1/3*7^(1/2)]
Γ
    1,
                     1]
R =
[ 2+7^(1/2),
             01
[ 0, 2-7^(1/2)]
p_z =
x^2-3
d =
    3
  _____
u = -2
   ivp = 'Dx=(-4) *x+(-3) *y, Dy=(-1) *x, x(0)=a, y(0)=b';
   [x, y]=dsolve(ivp, 't');
   xf=@(t, a, b) eval(vectorize(x));
   yf=@(t, a, b) eval(vectorize(y));
   figure; hold on
   t = -4:0.1:4;
   for a = -2:2
       for b = -2:2
          plot(xf(t, a, b), yf(t, a, b))
       end
   end
   hold off
   xlabel 'x'
   ylabel 'y'
   title 'u = -2'
   axis([-10 10 -5 5])
```

%The characteristic of this graph is x^2-3 . This has two simple real r %(-3 and 3), which are on opposite sides of 0, so it is a saddle. Als %is 0 and d is positive (3), so it is a saddle.


```
ivp = 'Dx=(-2)*x+(-2)*y, Dy=(0)*x, x(0)=a, y(0)=b';
[x, y]=dsolve(ivp, 't');
xf=@(t, a, b) eval(vectorize(x));
yf=@(t, a, b) eval(vectorize(y));
figure; hold on
t = -4:0.1:4;
for a = -2:2
    for b = -2:2
        plot(xf(t, a, b), yf(t, a, b))
    end
end
hold off
xlabel 'x'
ylabel 'y'
title 'u = -1'
axis([-10 10 -5 5])
%To get the graph, we are computing Dy/Dx, which in this case turns ou
%be 0. Thus, we have a series of horizontal lines for a graph. The
characteristic of this graph is x^2 so d is 0. This has double real 1
%(0 \text{ and } 0), so u is 0, and a_{12} is negative (-2), so it is a
%counter-clockwise shear.
```


u = 0

```
ivp = 'Dx=(0) *x+(-1) *y, Dy=(1) *x, x(0) =a, y(0) =b';
[x, y]=dsolve(ivp, 't');
xf=@(t, a, b) eval(vectorize(x));
yf=@(t, a, b) eval(vectorize(y));
figure; hold on
t = -4:0.1:4;
for a = -2:2
    for b = -2:2
       plot(xf(t, a, b), yf(t, a, b))
    end
end
hold off
xlabel 'x'
ylabel 'y'
title 'u = 0'
axis([-10 10 -5 5])
%The characteristic of this graph is x^2+1 which has a conjugate pair
%roots. u is 0 and d is negative so it is a center and a_{21} is posit
%counter-clockwise center.
```



```
ivp = 'Dx=(2) *x+(0) *y, Dy=(2) *x, x(0)=a, y(0)=b';
[x, y]=dsolve(ivp, 't');
xf=@(t, a, b) eval(vectorize(x));
yf=@(t, a, b) eval(vectorize(y));
figure; hold on
t = -4:0.1:4;
for a = -2:2
    for b = -2:2
        plot(xf(t, a, b), yf(t, a, b))
    end
end
hold off
xlabel 'x'
ylabel 'y'
title 'u = 1'
axis([-10 10 -5 5])
%To get the graph, we are computing Dy/Dx, which in this case turns ou
%be 1. Thus, we have a series of lines with a slope of 1 for a graph.]
%characteristic of this graph is x^2 so d is 0. This has double real 1
(0 \mbox{ and } 0) , so u is 0, and a_{21} is positive (2), so it is a
%counter-clockwise shear.
```


u = 2

```
ivp = 'Dx=(4) *x+(1) *y, Dy=(3) *x, x(0)=a, y(0)=b';
[x, y]=dsolve(ivp, 't');
xf=@(t, a, b) eval(vectorize(x));
yf=@(t, a, b) eval(vectorize(y));
figure; hold on
t = -4:0.1:4;
for a = -2:2
    for b = -2:2
        plot(xf(t, a, b), yf(t, a, b))
    end
end
hold off
xlabel 'x'
ylabel 'y'
title 'u = 2'
axis([-10 10 -5 5])
%The characteristic of this graph is x^2-3. This has two simple real {\bf r}
(-3 \text{ and } 3), which are on opposite sides of 0, so it is a saddle. Also
%is 0 and d is positive (3), so it is a saddle.
```


Published with MATLAB