Contents

- Extra Credit Project
- $u=-2$
- $u=-1$
- $u=0$
- $u=1$
- $\underline{u=2}$

Extra Credit Project

```
    %By Ian Hall, Math 246, Section 0221 (9:00 Peng Gao), Due May 12
    clear all
    syms t x u
    for u = -2:2
        u
        A = [2*u u-1; u+1 0]
        [xi, R] = (eig(sym(A)))
        %The trace is zero, so it can be ignored below
        p_z = x^2+det(A)
        d = - det(A)
        disp('------------------------------
    end
    %The following ivp's are of the form ivp = 'Dx=(2*u)*x+(u-1)*y, Dy=(ut
    %Matlab will not let me put all the following in one for loop defing l
    %I had to split it up into 5 graphs.
    -2
```

$u=$
$A=$

-4	-3
-1	0

$x i=$
[2-7^(1/2), 2+7^(1/2)]
[1, 1]

```
[-2+7^(1/2), 0]
[ 0, -2-7^(1/2)]
p_z =
x^2-3
d =
    3
-------------------------------
u =
    -1
    A =
        -2 -2
    xi =
    [ -1, 1]
    [ 1, 0]
    R=
    [ 0, 0]
    [ 0, -2]
    p_z =
    x^2
```

```
d =
    0
----------------------------
u =
0
A =
            0 -1
            1 0
xi =
[ 1, 1]
[-sqrt(-1), sqrt(-1)]
R =
[ i, 0]
[ 0, -sqrt (-1)]
p_z =
x^2+1
    d =
    -1
```

 \(u=\)
    ```
A =
                2 0
xi =
[ 1, 0]
[ 1, 1]
R =
[ 2, 0]
[ 0, 0]
p_z =
x^2
d =
            0
    u =
            2
\(A=\)
\begin{tabular}{ll}
4 & 1 \\
3 & 0
\end{tabular}
    xi =
```

```
[2/3+1/3*7^(1/2), 2/3-1/3*7^(1/2)]
[ 1, 1]
R =
[ 2+7^(1/2), 0]
[ 0, 2-7^(1/2)]
p_z =
x^2-3
d =
    3
```

$u=-2$
ivp $=$ ' $D x=(-4) * x+(-3) * y, \quad D y=(-1) * x, \quad x(0)=a, \quad y(0)=b^{\prime} ;$
[x, y]=dsolve(ivp, 't');
$x f=@(t, a, b)$ eval(vectorize(x));
yf=@(t, a, b) eval(vectorize(y));
figure; hold on
$\mathrm{t}=-4: 0.1: 4 ;$
for $a=-2: 2$
for $b=-2: 2$
plot(xf(t, $a, b), y f(t, a, b))$
end
end
hold off
xlabel 'x'
ylabel 'y'
title 'u = -2'
axis([-10 10 -5 5])
\%The characteristic of this graph is $x^{\wedge} 2-3$. This has two simple real r
\%(-3 and 3), which are on opposite sides of 0 , so it is a saddle. Als
\%is 0 and d is positive (3), so it is a saddle.

$u=-1$

```
ivp = 'Dx=(-2)*x+(-2)*y, Dy=(0)*x, x(0)=a, y(0)=b';
[x, y]=dsolve(ivp, 't');
xf=@(t, a, b) eval(vectorize(x));
yf=@(t, a, b) eval(vectorize(y));
figure; hold on
t = -4:0.1:4;
for a = -2:2
    for b = -2:2
        plot(xf(t, a, b), yf(t, a, b))
    end
end
hold off
xlabel 'x'
ylabel 'y'
title 'u = -1'
axis([-10 10 -5 5])
```

\%To get the graph, we are computing Dy/Dx, which in this case turns or
$\%$ be 0 . Thus, we have a series of horizontal lines for a graph. The
\%characteristic of this graph is $x^{\wedge} 2$ so d is 0 . This has double real r
\%(0 and 0), so u is 0 , and $a^{2}\{12\}$ is negative (-2), so it is a
\%counter-clockwise shear.

$\mathbf{u}=0$

```
ivp = 'Dx=(0)*x+(-1)*y, Dy=(1)*x, x(0)=a, y(0)=b';
[x, y]=dsolve(ivp, 't');
xf=@(t, a, b) eval(vectorize(x));
yf=@(t, a, b) eval(vectorize(y));
figure; hold on
t = -4:0.1:4;
for a = -2:2
        for b = -2:2
            plot(xf(t, a, b), yf(t, a, b))
        end
end
hold off
xlabel 'x'
ylabel 'y'
title 'u = 0'
axis([-10 10 -5 5])
%The characteristic of this graph is x^2+1 which has a conjugate pair
%roots. u is 0 and d is negative so it is a center and a_{21} is posit
%counter-clockwise center.
```


$u=1$

```
ivp = 'Dx=(2)*x+(0)*y, Dy=(2)*x, x(0)=a, y(0)=b';
[x, y]=dsolve(ivp, 't');
xf=@(t, a, b) eval(vectorize(x));
yf=@(t, a, b) eval(vectorize(y));
figure; hold on
t = -4:0.1:4;
for a = -2:2
    for b = -2:2
        plot(xf(t, a, b), yf(t, a, b))
    end
end
hold off
xlabel 'x'
ylabel 'y'
title 'u = 1'
axis([-10 10 -5 5])
%To get the graph, we are computing Dy/Dx, which in this case turns or
%be 1. Thus, we have a series of lines with a slope of 1 for a graph.]
%characteristic of this graph is x^2 so d is 0. This has double real r
%(0 and 0), so u is 0, and a_{21} is positive (2), so it is a
%counter-clockwise shear.
```


$u=2$

```
ivp = 'Dx=(4)*x+(1)*y, Dy=(3)*x, x(0)=a, y(0)=b';
[x, y]=dsolve(ivp, 't');
xf=@(t, a, b) eval(vectorize(x));
yf=@(t, a, b) eval(vectorize(y));
figure; hold on
t = -4:0.1:4;
for a = -2:2
    for b = -2:2
        plot(xf(t, a, b), yf(t, a, b))
        end
end
hold off
xlabel 'x'
ylabel 'y'
title 'u = 2'
axis([-10 10 -5 5])
%The characteristic of this graph is x^2-3. This has two simple real r
%(-3 and 3), which are on opposite sides of 0, so it is a saddle. Alsc
%is 0 and d is positive (3), so it is a saddle.
```


