Harsh Mishra
Section - 0222
TA - Cynthia Bossard
5/11/09

MATH 246 EXTRA CREDIT MATLAB Assignment

Eq-Dx^2/Dt^2 $+\mathbf{x}^{\wedge} \mathbf{3}+\mathbf{c}^{*} \mathbf{x}=\mathbf{0}$
from $c=-1$ to $c=1$

[^0]```
rhs = @(t, x) [x(2); -x(1)^3 - c*x(1)];
[xa, ya] = ode45(rhs, [0 2], [-1 1]);
hold on
for x0 = -2:2
 for xp0 = -.5:0.1:.5
 [tfor, xfor] = ode45(rhs, [-2 2], [x0 xp0]);
 [tbak, xbak] = ode45(rhs, [-2 2], [x0 xp0]);
 plot(tfor, xfor(:,1))
 plot(tbak, xbak(:,1))
 end
end
hold off
title 'c=-1';
```



For $c=-1$, the curves from $y=2 \& y=-2$ have an anti-node at $x=-1$ and then the next one at $x=1.5$, reaching max amplitude of 2 at $x=0.4$. The curves from $y-1 \& y=1$ curve across horizontally almost linearly. The curve from $\mathrm{y}=0$ opens up conically, is at its widest position at $\mathrm{x}=0.5$ with an amplitude of 1.5 , and then starts converging.

```
figure
c = -. 5
rhs = @(t, x) [x(2); -x(1)^3 - c*x(1)];
[xa, ya] = ode45(rhs, [0 2], [-1 1]);
hold on
```

```
for x0 = -2:2
 for xp0 = -.5:0.1:.5
 [tfor, xfor] = ode45(rhs, [-2 2], [x0 xp0]);
 [tbak, xbak] = ode45(rhs, [-2 2], [x0 xp0]);
 plot(tfor, xfor(:,1))
 plot(t.bak, xbak(:,1))
 end
end
hold off
title 'c=-.5';
```



For $\mathrm{c}=-0.5$, the curves from $\mathrm{y}=2 \& \mathrm{y}=-2$ have the second anti-node a little earlier at $x=1.1$. The curves from $\mathrm{y}-1 \& \mathrm{y}=1$ start converging and almost cross at $\mathrm{x}=2$. The curve from $y=0$ opens up conically, and is at its widest a little earlier at $x=0.4$ with a decreased amplitude of 1.4, before starting to converge.

```
figure
c = -. 1
rhs = @(t, x) [x(2); -x(1)^3 - c*x(1)];
[xa, ya] = ode45(rhs, [0 2], [-1 1]);
hold on
for x0 = -2:2
 for xp0 = -.5:0.1:.5
```

```
 [tfor, xfor] = ode45(rhs, [-2 2], [x0 xp0]);
 [t.bak, xbak] = ode45(rhs, [-2 2], [x0 xp0]);
 plot(tfor, xfor(:,1))
 plot(tbak, xbak(:,1))
 end
 end
 hold off
 title 'c=-.1';
```



For $\mathrm{c}=-0.1$, the curves from $\mathrm{y}=2 \& \mathrm{y}=-2$ have the second anti-node much earlier at $x=0.9$. The curves from $y-1 \& y=1$ start converging much faster and cross at $x=0$. The curve from $y=0$ opens up conically, is at its widest even earlier at $x=0.3$ with a decreased amplitude of 1 .

```
figure
c = 0
rhs = @(t, x) [x(2); -x(1)^3 - c*x(1)];
[xa, ya] = ode45(rhs, [0 2], [-1 1]);
hold on
for x0 = -2:2
 for xp0 = -.5:0.1:.5
 [tfor, xfor] = ode45(rhs, [-2 2], [x0 xp0]);
 [tbak, xbak] = ode45(rhs, [-2 2], [x0 xp0]);
```

```
 plot(tfor, xfor(:,1))
 plot(tbak, xbak(:,1))
 end
end
hold off
title 'c=0';
```



For $\mathrm{c}=0.0$, the curves from $\mathrm{y}=2 \& \mathrm{y}=-2$ have the second anti-node just a little before $\mathrm{x}=0.9$. The curves from $\mathrm{y}-1 \& \mathrm{y}=1$ start converging a little faster and cross right before $x=0$. The curve from $y=0$ opens up conically, is at its widest even earlier at $x=0.3$ with a decreased amplitude of 0.9 .

```
figure
c = . 1
rhs = @(t, x) [x(2); -x(1)^3 - c*x(1)];
[xa, ya] = ode45(rhs, [0 2], [-1 1]);
hold on
for x0 = -2:2
 for xp0 = -.5:0.1:.5
 [tfor, xfor] = ode45(rhs, [-2 2], [x0 xp0]);
 [t.bak, xbak] = ode45(rhs, [-2 2], [x0 xp0]);
 plot(tfor, xfor(:,1))
 plot(tbak, xbak(:,1))
```

```
 end
end
hold off
title 'c=.1';
```



For $\mathrm{c}=0.1$, the curves from $\mathrm{y}=2 \& \mathrm{y}=-2$ have the second anti-node just a little before at $x=0.8$. The curves from $y-1 \& y=1$ start converging a little faster and cross right before $x=-0.2$. The curve from $y=0$ opens up conically, even more narrowly, being at its widest even earlier at $x=0.1$ with an amplitude of only 0.7 , and almost has an anti-node at $x=2$.

```
figure
c = . }
rhs = @(t, x) [x(2); -x(1)^3 - c*x(1)];
[xa, ya] = ode45(rhs, [0 2], [-1 1]);
hold on
for x0 = -2:2
 for xp0 = -.5:0.1:.5
 [tfor, xfor] = ode45(rhs, [-2 2], [x0 xp0]);
 [t.bak, xbak] = ode45(rhs, [-2 2], [x0 xp0]);
 plot(tfor, xfor(:,1))
 plot(tbak, xbak(:,1))
 end
end
```

hold off
title 'c=.5';


For $c=0.5$, the curves from $y=2 \& y=-2$ have the second anti-node even earlier at $x=0.5$. The first anti-node also came earlier at $\mathrm{x}=-1.2$ but the wavelength is still smaller than when $\mathrm{c}<0.5$. The curves from $\mathrm{y}-1 \& \mathrm{y}=1$ start converging way faster and cross at $\mathrm{x}=-0.6$. The curve from $y=0$ opens up conically, very narrowly, being at its widest even earlier at $x=-0.2$, with an amplitude of 0.5 , and has an anti-node at $x=2.0$

```
figure
c = 1
rhs = @(t, x) [x(2); -x(1)^3 - c*x(1)];
[xa, ya] = ode45(rhs, [0 2], [-1 1]);
hold on
for x0 = -2:2
 for xp0 = -.5:0.1:.5
 [tfor, xfor] = ode45(rhs, [-2 2], [x0 xp0]);
 [tbak, xbak] = ode45(rhs, [-2 2], [x0 xp0]);
 plot(tfor, xfor(:,1))
 plot(tbak, xbak(:,1))
 end
end
hold off
title 'c=1';
```



For $\mathrm{c}=1.0$, the curves from $\mathrm{y}=2 \& \mathrm{y}=-2$ create the first and the second anti-node at the earliest yet at $x=-1.3$ and $x=0.4$ respectively. Both the curves have the smallest wavelength also. The curves from $\mathrm{y}-1 \& \mathrm{y}=1$ start converge the fast yet also, crossing each other at $x=-0.8$. The curve from $\mathrm{y}=0$ opens up conically, most narrowly, being at its widest even earlier at $x=-0.5$, with an amplitude of lower than 0.5 . It has an anti-node even before $\mathrm{x}=1$, therefore having the smallest wavelength yet.


[^0]:    syms c
    figure $c=-1$

