Contents

- Extra credit project
- delta = 1
- delta $=0.8$
- delta $=0.6$
- delta $=0.4$
- delta $=0.2$
- delta = 0
- Observations

Extra credit project

\% Investigation of $H(x, y)=(1 / 2) * y^{\wedge} 2+1+\cos (x)$
\% d/dt(x; y) = (Hy; $-H x-(d e l t a) * H y)$ as delta moves from 1 to 0
delta = 1

```
f = @(t, x) [x(2); sin(x(1)) - x(2)];
figure, hold on
for a = -3:.7:3
    for b = -3:.7:3
            [t, xa] = ode45(f, [0 4], [a b]);
            plot(xa(:,1), xa(:,2))
            [t, xa] = ode45(f, [0 -4], [a b]);
            plot(xa(:,1), xa(:,2))
        end
end
axis ([-4.5 4.5 -4 4])
[X,Y] = meshgrid(-4.5:.5:4.5, -4:.5:4);
U = Y;
V = sin(X) - Y;
L = sqrt(U.^2 + V.^2);
quiver(X, Y, U./L, V./L, .5)
xlabel 'x'
ylabel 'y'
title 'Phase portrait and direction field when delta = 1'
```


delta $=0.8$

```
f = @(t, x) [x(2); sin(x(1)) - . 8*x(2)];
figure, hold on
for a = -3:.7:3
    for b = -3:.7:3
        [t, xa] = ode45(f, [0 4], [a b]);
            plot(xa(:,1), xa(:,2))
            [t, xa] = ode45(f, [0 -4], [a b]);
            plot(xa(:,1), xa(:,2))
    end
end
axis ([-4.5 4.5 -4 4])
[X,Y] = meshgrid(-4.5:.5:4.5, -4:.5:4);
U = Y;
V = sin(X) - . 8*Y;
L = sqrt(U.^2 + V.^2);
quiver(X, Y, U./L, V./L, .5)
xlabel 'x'
ylabel 'y'
title 'Phase portrait and direction field when delta = 0.8'
```


delta $=0.6$

```
f = @(t, x) [x(2); sin(x(1)) - .6*x(2)];
figure, hold on
for a = -3:.7:3
    for b = -3:.7:3
            [t, xa] = ode45(f, [0 4], [a b]);
            plot(xa(:,1), xa(:,2))
            [t, xa] = ode45(f, [0 -4], [a b]);
            plot(xa(:,1), xa(:,2))
    end
end
axis ([-4.5 4.5 -4 4])
[X,Y] = meshgrid(-4.5:.5:4.5, -4:.5:4);
U = Y;
V = sin(X) - . 6*Y;
L = sqrt(U.^2 + V.^2);
quiver(X, Y, U./L, V./L, . 5)
xlabel 'x'
ylabel 'y'
title 'Phase portrait and direction field when delta = 0.6'
```


delta $=0.4$

```
f = @(t, x) [x(2); sin(x(1)) - .4*x(2)];
figure, hold on
for a = -3:.7:3
    for b = -3:.7:3
            [t, xa] = ode45(f, [0 4], [a b]);
            plot(xa(:,1), xa(:,2))
            [t, xa] = ode45(f, [0 -4], [a b]);
            plot(xa(:,1), xa(:,2))
    end
end
axis ([-4.5 4.5 -4 4])
[X,Y] = meshgrid(-4.5:.5:4.5, -4:.5:4);
U = Y;
V = sin(X) - . 4*Y;
L = sqrt(U.^^2 + V.^2);
quiver(X, Y, U./L, V./L, . 5)
xlabel 'x'
ylabel 'y'
title 'Phase portrait and direction field when delta = 0.4'
```


delta $=0.2$

```
f = @(t, x) [x(2); sin(x(1)) - . 2*x(2)];
figure, hold on
for a = -3:.7:3
    for b = -3:.7:3
            [t, xa] = ode45(f, [0 4], [a b]);
            plot(xa(:,1), xa(:,2))
            [t, xa] = ode45(f, [0 -4], [a b]);
            plot(xa(:,1), xa(:,2))
        end
end
axis ([[-4.5 4.5 -4 4])
[X,Y] = meshgrid(-4.5:.5:4.5, -4:.5:4);
U = Y;
V = sin(X) - . 2*Y;
L = sqrt(U.^^2 + V.^2);
quiver(X, Y, U./L, V./L, . 5)
xlabel 'x'
ylabel 'y'
title 'Phase portrait and direction field when delta = 0.2'
```


delta $=0$

```
f = @(t, x) [x(2); sin(x(1))];
figure, hold on
for a = -3:.7:3
    for b = -3:.7:3
            [t, xa] = ode45(f, [0 4], [a b]);
            plot(xa(:,1), xa(:,2))
            [t, xa] = ode45(f, [0 -4], [a b]);
            plot(xa(:,1), xa(:,2))
        end
end
axis ([-4.5 4.5 -4 4])
[X,Y] = meshgrid(-4.5:.5:4.5, -4:.5:4);
U = Y;
V = sin(X);
L = sqrt(U.^^2 + V.^2);
quiver(X, Y, U./L, V./L, . 5)
xlabel 'x'
ylabel 'y'
title 'Phase portrait and direction field when delta = 0'
```


Observations

\% There is a very interesting progression in the phase portraits for the \% system as delta goes to 0 . For delta $=1$, the origin is an unstable \% saddle point and as the solution curves move away, they are attracted to \% the critical points $(-3.14,0)$ and (3.14, 0), as they are clockwise \% spiral sinks.
\% When delta $=0.8$, the saddle point, and spiral sinks remain the same, but \% the sinks are more attracting and there are more solution curves drawn \% in.
\% When delta $=0.6$, the saddle point begins to appear more horizontal, as \% does the whole phase portrait. Again, more solution curves are being \% directed about the clockwise spiral sink point.
\% When delta $=0.4$, the phase portrait is even more horizontal, and the \% slopes far away from the critical points are shifting away from the \% saddle point and more towards the sinks.
\% When delta $=0.2$, the phase portrait is almost completely horizontal, and \% the spiral sinks are becoming more like centers.
\% When delta $=0$, the origin is still a saddle point, and the points $\%(-3.14,0)$ and (3.14, 0) are stable clockwise centers. The system \% is closed and as a whole moves in the clockwise direction.

