```
A = -2 \le \mu \le 2
\mu \quad 1 - \mu \quad 1 + \mu \quad \mu
```

Figure 1

```
\mu = -2
EDU >> A = [-2 \ 3; -1 \ -2]
A =
  -1 -2
EDU>> eig(A)
ans =
 -2.0000 + 1.7321i
 -2.0000 - 1.7321i
EDU>> figure, hold on
for j=1:8
  [t, y] = ode45(@(t, y) A*y, [0, 4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
  [t, y] = ode45(@(t, y) A*y, [0, -4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
axis([-3,3,-3,3]), hold off
EDU>> title 'Spiral Sink, CW, in'
```


Mu=-2. The phase plane is a Spiral Sink. Since mu is positive, the origin is attracting. The spiral has clockwise rotation because a_21 is negative. The similar behavior of the phase plane occurs from mu=-2 to mu=-1.

```
\mu = -1
EDU>> A = [-1 \ 2;0 \ -1]
A =
  -1
      2
   0 -1
EDU>> eig(A)
ans =
  -1
  -1
EDU>> figure, hold on
for j=1:8
  [t, y] = ode45(@(t, y) A*y, [0, 4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
  [t, y] = ode45(@(t, y) A*y, [0, -4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
end
axis([-3,3,-3,3]), hold off
EDU>> title 'Twist Sink, CW, in'
```


When mu=-1 the phase plane changes to a Twist Sink. Just to check, there are two Eigen values = -1 (multiplicity=2) and since $A\neq\mu I$ the graph is a Twist Sink. Since mu is negative, the origin is attracting. The spiral has clockwise rotation because a_12 is positive.

```
\mu = -0.9
EDU >> A = [-0.9 \ 1.9; 0.1 \ -0.9]
A =
 -0.9000 1.9000
  0.1000 -0.9000
EDU >> [v,d] = eig(A)
  0.9747 -0.9747
  0.2236 \quad 0.2236
d =
 -0.4641
     0 -1.3359
EDU>> figure, hold on
for j=1:8
  [t, y] = ode45(@(t, y) A*y, [0, 4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
  [t, y] = ode45(@(t, y) A*y, [0, -4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
end
axis([-3,3,-3,3]), hold off
EDU>> title 'Noddal sink'
```


From mu=-1 to mu =-1/sqrt(2) the phase plane will look like a Nodal Sink (why mu goes to -1/sqrt(2) is explained in Figure 4). In this figure mu=-0.9 shows a typical behavior of the system. Since $\lambda_2 \le \lambda_1 \le 0$, the orbits will approach the origin tangent to the line λ_1 . The origin is attracting because every orbit that starts near it will approach it as time goes to infinity.

```
\mu = -1/sqrt(2) = -0.7071
EDU>> A=[-0.7071 1.7071;1-0.7071 -0.7071]
A =
 -0.7071 1.7071
  0.2929 -0.7071
EDU >> [v,d] = eig(A)
  0.9239 -0.9239
  0.3827 0.3827
d =
  0.0000
     0 -1.4142
EDU>> figure, hold on
for j=1:8
  [t, y] = ode45(@(t, y) A*y, [0, 4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
  [t, y] = ode45(@(t, y) A*y, [0, -4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
end
axis([-3,3,-3,3]), hold off
EDU>> title 'Linear Sink'
```


A Linear Sink occurs then $\det(A)=0$. From matrix A, $\det(A)=\mu^2-(1+\mu)^*(1-\mu)=0$; $2^*\mu^2=1$; $\mu=\pm 1/\text{sqrt}(2)$. Therefore, the phase portrait transforms from Nodal Sink to Linear Sink. One Eigen value is -1.4142. The other is 0 and it is a line of stationary points. As time increases the solution will approach one of those stationary points as along a line that is parallel to the line λ_2 . All orbits not on the line of stationary points will approach that line parallel λ_2 . The origin is stable but not attracting.

```
\mu = 0
EDU>> A=[0 1;1 0]
A =
   0
       1
       0
\mathbf{v} =
 -0.7071 0.7071
  0.7071 \quad 0.7071
d =
  -1
       0
   0
EDU>> figure, hold on
for j=1:8
  [t, y] = ode45(@(t, y) A*y, [0, 4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  [t, y] = ode45(@(t, y) A*y, [0, -4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
end
axis([-3,3,-3,3]), hold off
EDU>> title 'Saddle'
```


As mu goes from =-1/sqrt(2) to 0 it is a saddle and continues to be a saddle, just on a tilt in the other direction until mu is =+1/sqrt(2). In this figure mu = 0, so it is not tilted. Since $\lambda_2 \le 0 \le \lambda_1$, the phase portrait is a Saddle. Eigen values are real. The origin is unstable but not repelling.

```
\mu = 1/\text{sqrt}(2) = 0.7071
EDU>> A=[0.7071 1-0.7071;1.7071 0.7071]
A =
  0.7071 0.2929
  1.7071 0.7071
EDU >> [v,d] = eig(A)
\mathbf{v} =
  0.3827 -0.3827
  0.9239 0.9239
d =
  1.4142
              0
     0 -0.0000
EDU>> figure, hold on
for j=1:8
  [t, y] = ode45(@(t, y) A*y, [0, 4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
  [t, y] = ode45(@(t, y) A*y, [0, -4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
end
axis([-3,3,-3,3]), hold off
EDU>> title 'Linear Source'
```


The phase portrait transforms from Saddle to Linear Source when mu = +1/sqrt(2). One Eigen value is 1.4142. The other is 0 and it is a line of stationary points. As time increases the solution will approach one of those stationary points as along a line that is parallel to the line λ_1 . All orbits not on the line of stationary points will approach that line parallel λ_1 . The origin is unstable but not repelling.

```
\mu = 0.9
EDU>> A=[0.9 0.1;1.9 0.9]
A =
  0.9000 \quad 0.1000
  1.9000 0.9000
EDU >> [v,d] = eig(A)
\mathbf{v} =
  0.2236 -0.2236
  0.9747 0.9747
d =
  1.3359
     0 0.4641
EDU>> figure, hold on
for j=1:8
  [t, y] = ode45(@(t, y) A*y, [0, 4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
  [t, y] = ode45(@(t, y) A*y, [0, -4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
end
axis([-3,3,-3,3]), hold off
EDU>> title 'Nodal Source'
```


From mu=+1/sqrt(2) to mu =1 the phase plane will look like a Nodal Source. In this figure mu=0.9 shows a typical behavior of the system. Since $0 \le \lambda_2 \le \lambda_1$, the orbits will approach the origin tangent to the line λ_2 . The origin is repelling because every orbit that starts near it will approach away from it as time goes to infinity.

```
\mu = 1
EDU>> A=[1 0;2 1]
A =
       0
   2
EDU>> eig(A)
ans =
EDU>> figure, hold on
for j=1:8
  [t, y] = ode45(@(t, y) A*y, [0, 4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
  [t, y] = ode45(@(t, y) A*y, [0, -4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
end
axis([-3,3,-3,3]), hold off
EDU>> title 'Twist Source, CCW, out'
```


When mu=1 the phase plane changes to a Twist Source. There are two Eigen values = 1 (multiplicity=2) and since $A\neq\mu I$ the graph is a Twist Source. Since mu is positive, the origin is repelling. The spiral has counterclockwise rotation because a_21 is positive.

```
\mu = 2
EDU>> A=[2 -1;3 2]
A =
   2
      -1
   3
      2
EDU>> eig(A)
ans =
 2.0000 + 1.7321i
 2.0000 - 1.7321i
EDU>> figure, hold on
for j=1:8
  [t, y] = ode45(@(t, y) A*y, [0, 4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
  [t, y] = ode45(@(t, y) A*y, [0, -4], [cos(2*j*pi/8), sin(2*j*pi/8)]);
  plot(y(:,1), y(:, 2))
end
axis([-3,3,-3,3]), hold off
EDU>> title 'Spiral Source, CCW, out'
```


From mu=1 to mu=2 the phase plane is a Spiral Source. Since mu is positive, the origin is repelling. The spiral has counterclockwise rotation because a_21 is positive.