Transition from \#2 to \#3 from chapter 9.5 - Chris Palm (Bossard 11am)Transition from \#2 to \#3 from chapter 9.5-Chris Palm (Bossard 11am)1
Z $=0$. 1
Z $=0.25$ 2
Z $=0.5$ 4
Z $=0.75$ 5
Z = 1 7

```
\(\mathrm{Z}=0\)
    warning off all
        syms \(x\) y \(q\) Z; \(Z=0\);
        \(\mathrm{q}=5\);
        figure; hold on
        \(f=@(t, x)[x(1) *(1-(1 / 2) * x(2)-(z / 2) * x(1)) ; x(2) *((-1 / 4)+(1 / 2) * x(1))] ;\)
        for \(a=-q: q\)
        for \(b=-q: q\)
            [t, xa] = ode45(f, [0 5], [a b]);
            plot \(x a(:, 1)\), xa(: , 2) \()\)
            [t, xa] = ode45(f, [0-5], [a b]);
            plot(xa(:,1), xa(:,2))
        end
end
    title 'z = 0'
    [X, Y] \(=\) meshgrid \((-10: 0.75: 10,-15: 0.75: 15)\);
    \(U=X . *\left(1-(1 / 2) * Y-(Z / 2)^{*} X\right)\);
    \(V=Y . *((-1 / 4)+(1 / 2) * X)\);
    \(L=\operatorname{sqrt}(U) . \wedge 2+(V) . \wedge 2)\)
    quiver ( \(\mathrm{X}, \mathrm{Y}, \mathrm{U} . / \mathrm{L}, \mathrm{V} . / \mathrm{L}, 0.4\) ) ;
    axis([-10 10 -i5 i5])
    sys1 \(=x^{*}(1-(1 / 2) * y-(z / 2) * x)\);
    sys2 \(=y^{*}((-1 / 4)+(1 / 2) * x)\);
```



```
    \(\mathrm{A}=\) jacobian([sys1 sys2], [x y])
    evals = eig(A);
    disp('Eigenvalues at \((0,0): ')\);
    disp(double(subs(evals, \(\{x, y\} ;\{0,0\})\) ))
    disp('Eigenvalues at (1/2,2):');
    disp(double(subs(evals, \{x y\}, \{(1/2), 2\})))
    \% ( 0,0 ) is saddle point and is unstable.
    \(\%\) ( \(1 / 2,2\) ) is a centers and is in the cow direction and stable.
    \% As there becomes more predators (y becomes larger)
    \% the prey decreases (x becomes smaller). This is a continuous cycle. once
\% there becomes more prey, the predators become abundant and so therefore
\% the prey deminishes.
```

```
Critical points for z = 0:
[ 0, 0]
A =
[ 1-1/2*y,
```

```
Eigenvalues at (0,0):
    1.0000
```

 -0. 2500
 Eigenvalues at (1/2,2): $0.0000+0.50007$ -0.0000 - $0.5000 i$


```
Z = 0.25
warning off all
syms x y z; z = 0.25;
f=@(t, x) [x(1)*(1 - (1/2)*x(2) - (z/2)*x(1)); x(2)*((-1/4) + (1/2)*x(1))];
for a = -5:5
        for b = -5:5
            [t, xa] = ode45(f, [0 5], [a b]);
                    plot(xa(:,1), xa(:,2))
                    [t, xa] = ode45(f,'[0-5], [a b]);
        end
    end
    title 'z = 0.25'
    [X,Y] = meshgrid(-10:0.75:10, -15:0.75:15);
    U = X.*(1 - (1/2)*Y - (Z/2)*X);
    V = Y.* ( (-1/4) + (1/2)*X);
    L = sqrt((u).^2 + (v).^2);
    quiver(x, Y, U./L, v./L, 0.4);
    sys1 = x*(1 - (1/2)*y - (z/2)*x);
    sys2 = y*((-1/4)+ (1/2)*x);
    [xc, yc] = solve(syss1, sys2, x, y);'); disp([xc yc])
    A = jacobian([sys1 sys2], [x y])
```

```
evals = eig(A);
disp('Eigenvalues at (0,0):');
disp(double(subs(evals,'{x.y}, {0, 0})))
disp('Eigenvalues at (8,0):');
disp(double(subs(evals, {x y}, {8, 0})))
disp('Eigenvalues at (i/2,15/8):'};
disp(double(subs(evals, {x y}, {(1/2), (15/8)})))
% (0,0) continues to be an unstable saddle point
% (8,0) is also an unstable saddle point.
% (1/2, 15/8) is stili a centers and in the ccw direction and stable.
% The predator still depends on the prey, but has a slightly more difficult
time
% reproducing because of the saddle point at ( }8,0\mathrm{ ). This difficulty is
% only present for larger values of y.
```

```
Critical points for \(z=0.25\) :
\(\begin{array}{rrr}{[ } & 0, & 0] \\ {[ } & 8, & 0]\end{array}\)
\(A=\)
\(\begin{array}{rr}{[1-1 / 2 * y-1 / 4 * x,} & -1 / 2 * x] \\ {[1 / 2 * y,} & -1 / 4+1 / 2 * x]\end{array}\)
Eigenvalues at (0,0):
    1.0000
    \(-0.2500\)
Eigenvalues at \((8,0)\) :
    3.7500
    \(-1.0000\)
Eigenvalues at (1/2,15/8):
    \(-0.0312+0.4831 i\)
    \(-0.0313-0.4831 i\)
```



```
Z = 0.5
warning off all
syms x y z; z = 0.5;
figure; hold on
f = @(t,x) [x(1)*(1 - (1/2)*x(2) - (z/2)*x(1)); x(2)*((-1/4) + (1/2)*x(1))];
        for b = -5:5
                [t, xa] = ode45(f, [0 5], [a b]);
            plot(xa(:,1), xa(:,2))
            [t, xa] = ode45(f,'[0-5], [a b]);
            plot(xa(:,1), xa(:,2))
        end
end
    title 'z = 0.5'
    [X,Y] = meshgrid(-10:0.75:10, -15:0.75:15);
    U = X.*(1 - (1/2)*Y - (Z/2)*X);
    V = Y.*( (-1/4) + (1/2)*X);
    L = sqrt((U).^2 + (V).^2)
    quiver(x, Y, U./L, V./LL, 0.4);
    sys1 = x*(1 - (1/2)*y - (z/2)*x);
    sys2 = y*((-1/4)+(1/2)*x);
    [xc, yc] = solve(sys1, sys2,' x, y);'); disp([xc yc])
    A = jacobian([sys1 sys2], [x y])
evals = eig(A);
disp('Eigenvalues at (0,0):');
disp(double(subs(evals,'{x
disp('Eigenvalues at (4,0):');
disp(double(subs(evals,{{xyy, {4, 0})))
disp(double(subs(evals, {x y}, {(i/2), (7/4)})))
% (0,0) is still an unstable saddle point.
```

```
% (4,0) is also an unstable saddle point.
% (1/2, 7/4) is a ccw centers and is stable.
% In the predator prey mode1, the predator(y) depends on x. It is a
% continuous cycle and the prey does not have a difficult time reproducing
% for smaller values of y.
```

```
Critical points for \(z=0.5\) :
\(\begin{array}{rrr}{[0,} & 0] \\ {\left[\begin{array}{rr}4 & 0] \\ {[1 / 2,} & 7 / 4]\end{array}\right]}\end{array}\)
\(A=\)
\(\begin{array}{rr}{[1-1 / 2 * y-1 / 2 * x,} & -1 / 2 * x] \\ {\left[\begin{array}{rl}1 / 2 * y, & -1 / 4+1 / 2 * x]\end{array}\right]}\end{array}\)
```

Eigenvalues at (0,0):
1.0000
-0.2500
Eigenvalues at $(4,0)$:
1.7500
-1.0000
Eigenvalues at (1/2,7/4):
$-0.0625+0.4635 i$
-0.0625 - $0.4635 i$


```
Z = 0.75
    warning off all
    syms x y Z; Z = 0.75;
```

```
figure; hold on
f=@(t, x) [x(1)*(1 - (1/2)*x(2) - (z/2)*x(1)); x(2)*((-1/4) + (1/2)*x(1))];
for a = -5:5
        for b}=-5:
            b= -5:5
            plot(xa(:,1), xa(:,2))
            [t, xa] = ode45(f, [0-5], [a b]);
            plot(xa(:,1), xa(:,2))
        end
end
title 'z = 0.75'
[X,Y] = meshgrid(-10:0.75:10, -15:0.75:15);
U = X.*(1 - (1/2)*Y - (Z/2)*X);
V = Y.*((-1/4) + (1/2)*X);
L = sqrt((U).^2+(V).^2);
quiver(X, Y,U./L, V.iL, O.4);
axis([-10 10 -is i5])
sys1 = x*(1 - (1/2)*y - (z/2)*x);
sys2 = y*((-1/4)+(1/2)*x);
[xc,yc] = solve(sys1, sys2, x, y);'); disp([xc yc])
A = jacobian([sys1 sys2], [x y])
evals = eig(A);
disp('Eigenvalues at (0,0):');
disp(double(subs(evals, {x y}; {0, 0})))
disp('Eigenvalues at (8/3,0) '');
disp(double(subs(evals,{x y}, {(8/3), 0})))
disp(double(subs(evals, {x y}, {(1/2), (13/8)})))
% (0,0) is an unstable saddle point.
% (8/3,0) is an unstable saddle point.
% (1/2, 13/8) is a stable, ccw centers.
% Here the prey(x) has more difficulty in reproducing once the prey has
% deminished the prey's population. This is due to the fact that the
% centers point is nearing the unstable saddle at (0,0) and the saddle
% point at (8/3, 0)
Critical points for z = 0.75:
Critical point
A =
[ 1-1/2*y-3/4*x,
Eigenvalues at (0,0):
    1.0000
    -0.2500
Eigenvalues at (8/3,0):
    1.0833
    -1.0000
Eigenvalues at (1/2,13/8):
    -0.0938 - 0.4408i
```



```
Z = 1
warning off all
syms x y z; z = 1;
figure; hold on
f = @(t, x) [x(1)*(1 - (1/2)*x(2) - (z/2)*x(1)); x(2)*((-1/4) + (1/2)*x(1))];
        for b}=-5:
                [t, xa] = ode45(f, [0 5], [a b]);
                plot(xa(:,1), xa(:,2))
            [t, xa] == ode45(f,'[0-5], [a b]);
            plot(xa(:,1), xa(:,2))
        end
end
    title 'z = 1'
    [X, Y] = meshgrid(-10:0.75:10, -15:0.75:15);
    U = X.*(1 - (1/2)*Y - (z/2)*X);
    V = Y.*((-1/4) + (1/2)*X);
    L = sqrt((U).^2 + (V).^2)
    quiver(X, Y, U./L, V.i/L, 0.4);
    sys1 = x*(1 - (1/2)*y - (z/2)*x);
    sys2 = y*((-1/4)+(1/2)*x);
    [xc, yc] = solve(sys1, sys2, x, y); ( disp([xc yc])
    A = jacobian([sys1 sys2], [x y])
evals = eig(A);
disp('Eigenvalues at (0,0):');
disp(double(subs(evals,'{x y}; {0, 0})))
disp('Eigenvalues at (2,0):');
disp(double(subs(evals,{x y}, {2, 0})))
disp('Eigenvalues at (1/2,3/2):');
disp(double(subs(evals, {x y}, {(1/2), (3/2)})))
% (0,0) is an unstable saddle.
```

$\%(2,0)$ is an unstable sadd1e.
$\%(1 / 2,3 / 2)$ is a stable ccw centers.
\% In this mode1 the predator (y) stil1 depends on x. The prey (x) has a very \% difficult time reproducing once it nears 0 because of how close the \% centers is to the origin (an unstable saddle) and the saddle point at \% (2,0).
Critical points for $z=1$:
Critical points for $z=1$:
$\begin{array}{rrr}{\left[\begin{array}{rr}0 & 0] \\ 2 & 0\end{array}\right]} \\ 1 / 2, & 3 / 2]\end{array}$
$\begin{array}{rrr}{\left[\begin{array}{rr}0 & 0] \\ 2 & 0\end{array}\right]} \\ 1 / 2, & 3 / 2]\end{array}$
$A=$
$A=$
$\left[\begin{array}{rr}1-1 / 2 * y-x, & -1 / 2 * x] \\ {\left[\begin{array}{rr}1 / 2 * y, & -1 / 4+1 / 2 * x]\end{array}\right]\left[\begin{array}{rl} & \end{array}\right]}\end{array}\right.$
$\left[\begin{array}{rr}1-1 / 2 * y-x, & -1 / 2 * x] \\ {\left[\begin{array}{rr}1 / 2 * y, & -1 / 4+1 / 2 * x]\end{array}\right]\left[\begin{array}{rl} & \end{array}\right]}\end{array}\right.$
Eigenvalues at (0,0):
1.0000
-0.2500
Eigenva7ues at (2,0):
0.7500
-1.0000
Eigenvalues at (1/2,3/2) :
$-0.1250+0.4146 i$
$-0.1250-0.4146 i$

Analysis
\% (0,0) is a critical point for all graphs, and is a saddle point.

```
% Therefore the origin is unstable for all the graphs.
% When Z = 0, the other critical point is a ccw centers. Once Z > 0, this
% critical point becomes a spiral sink and continues to be stable and ccw. Its
% x-coordinate is 1/2 for 0=>Z=>1 and the y-coordinate decreases as Z --> 1.
% The third critical point appears once z > 0. It is a saddle point also,
% like (0,0) and has a constant y-coordinate of 0, while its x-coorindate
% decreases as Z --> 1.
% For 0=>Z=>1, a_21 > 0 so all critical points are in the ccw direction.
% y is the predator and x is the prey in this predator-prey system. For z
% = 0, as there becomes more predators(y becomes larger) and so therefore
% the'prey decreases(x becomes smaller). This is a continuous cycle. Once
% there becomes more prey, the predators become abundant and so therefore
% the prey deminishes.
% This pattern continues as z increases towards 1. when z = 1, y(the
% predator) stil1 depends on x(the prey), but now the prey(x) decreases as
% y increases along with when x increases. The addition of the saddle point
along the x-axis causes this.
% The predator(y) becomes larger
% when x becomes smaller because the predators are eating all of their
% food (x).
% The predator-prey model is a continuous loop of events(prey
% becomes abundant, predators eat most of prey, predators decrease in
% population until the prey becomes abundant again), while Z is closer to
% 0. As Z = 1, the prey do not reproduce for large values of y(predators).
```

