Please Click on the Following Shortcuts for Easier Navigation:

Problem 9.4 \#1 From the Book

Problem 9.5 \#1 From the Book

PhaseLine Portraits for Combined Model

Direction Fields for Combined Model

Critical Points and Eigenvalues for Combined Model

Code for Phaseline Portraits for Combined Model
Code for Direction Fields for Combined Model
Code for Eigenvalues for Combined Model

When Competition Turns Nasty...

We combine the models 9.4 \#1 and 9.5 \#1, by adding the right-hand side of both equations. The sum is weighted by Alfa, in such a way that if the Competing Species model (9.4) has a weight of Alfa, then the Predator-Prey model (9.5) has a weight of (1-Alfa). The Alfa coefficient is then modified on a scale 0 to 1 . As a result, the Competing Species model gradually morphs into Predator-Prey model. This document analysis behavior of this system as Alfa is increased by 0.2 intervals. It is interesting to observe how the behavior around the stable critical point changes from asymptotic node, to twist, to spiral, and finally center. Here you will find Phase Portraits for all 6 systems, as well as all direction fields, as well as critical values and eigenvectors. Varying values of eigenvectors are particularly instructive, and can be easily observed through appropriate hyperlinks. The document also presents the code that was used to produce charts, as well as to find critical points and eigenvalues. While you can find more detailed information about Competing Species Model in Chapter 9.4, and about Predator-Prey Model in chapter 9.5, this document is meant primarily for illustrative purposes. Enjoy.

Competing Species Model (Problem 9.4 \#1)

Go Back to Contents

```
close all
clear all
warning off all
```

```
figure; hold on
f = @(t,x) [x(1)*(1.5-x(1)-0.5* x(2));...
                x(2)*(2-x(2)-0.75*x(1))];
for a = 0.25:0.25:1.75
    for b = 0.5:0.5:4
        [t,xa] = ode45(f, [0 10], [a,b]);
        plot(xa(:,1), xa(:,2))
        [t,xa] = ode45(f, [0 -5], [a,b]);
        plot(xa(:,1), xa(:,2))
        title (['Phaseline Chart for 9.4 #1'])
        xlabel x
        ylabel y
    end
end
axis ([0,2,0,4.5])
```


Predator-Prey Model (Problem 9.5 \#1)

Go Back to Contents

```
close all
clear all
% This is Problem 9.5 #1
warning off all
figure; hold on
f = @(t,x) [x(1)*(1.5-0.5* x(2));...
        x(2)*(-0.5+x(1))];
for a = 0.25:0.25:1.75
        for b = 0.5:0.5:4
        [t,xa] = ode45(f, [0 10], [a,b]);
        plot(xa(:,1), xa(:,2))
        [t,xa] = ode45(f, [0-5], [a,b]);
        plot(xa(:,1), xa(:,2))
        title (['Phaseline Chart for 9.5 #1'])
```

```
        xlabel x
        ylabel y
    end
end
axis ([0,2,0,4.5])
```


Phaseline Portraits for the Combined Model

Go Back to Contents

```
close all
clear all
warning off all
for a = 0:0.20:1
    f = @(t,x) [(1-a)*(x(1)*(1.5-x(1)-0.5*x(2)))+a*(x(1)*(1.5-0.5*
x(2)));..
    (1-a)*(x(2)*(2-x(2)-0.75*x(1)))+a*(x(2)*(-0.5+x(1)))];
        figure; hold on
        for c = 0.25:0.25:1.75
            for d = 0.5:0.5:4
            [t,xa] = ode45(f, [0 10], [c,d]);
            plot(xa(:,1), xa(:,2))
            [t,xa] = ode45(f, [0-5], [c,d]);
            plot(xa(:,1), xa(:,2))
            title (['Phaseline Chart for Alfa = ' num2str(a)])
            xlabel x
            ylabel y
        end
    end
    axis ([0,2,0,4.5])
end
Go Back to Contents
```


Direction Field for Alfa = 0
View Critical Points and Eigenvalues for Alfa $=0$

Direction Field for Alfa $=0.4$
View Critical Points and Eigenvalues for Alfa $=0.4$

Direction Field for Alfa $=0.8$
View Critical Points and Eigenvalues for Alfa $=0.8$

Direction Field for Alfa $=0.2$
View Critical Points and Eigenvalues for Alfa $=0.2$

Direction Field for Alfa $=0.6$
View Critical Points and Eigenvalues for Alfa $=0.6$

Direction Field for Alfa = 1
View Critical Points and Eigenvalues for Alfa $=1$

Direction Field for the Combined Model

Go Back to Contents

```
clear all
%syms a y x
for a = 0:0.2:1
    figure
    [X, Y] = meshgrid(0:0.1:3, 0:0.3:4);
    U = (1-a)*(X.*(1.5-X-0.5*Y))+a*(X.*(1.5-0.5* Y));
    V = (1-a)*(Y.*(2-Y-0.75*X))+a*(Y.*(-0.5+X));
    L = sqrt((U/2).^2+(V/4.5).^2);
    quiver(X, Y, U./L, V./L, 0.4);
    axis tight
    title (['Direction Field for Alfa = ' num2str(a)])
    xlabel x
    ylabel y
end
```

Go Back to Contents

Back to Phaseline for Alfa $=0$

Back to Phaseline for Alfa $=0.4$
Direction Field for Alfa $=0.4$

Back to Phaseline for Alfa $=0.2$

Back to Phaseline for Alfa $=0.6$

Back to Phaseline for Alfa $=0.8$

Back to Phaseline for Alfa $=1$

Critical Points and Eigenvalues for the Combined Model

```
Go Back to Contents
syms x y a
for a = 0:0.20:1
    sys1 = (1-a)* (x*(1.5-x-0.5*y))+a* (x*(1.5-0.5* y));
    sys2 = (1-a)*(y*(2-y-0.75*x))+a* (y* (-0.5+x));
    disp(['THE FOLLOWING IS FOR THE VALUE OF ALFA '])
    a
    [xc, yc] = solve(sys1, sys2, x, y);
    disp('Critical points:'); disp([xc yc])
    A = jacobian([sys1 sys2], [x y]);
    evals = eig(A);
    s = numel([xc]);
        for n = 1:s
        disp(['Eigenvalues at the following stationary point'])
            x_ = xc(n,1)
            y_ = yc(n,1)
            disp(['are displayed below'])
            disp(double(subs(evals, {x,y}, {x_,y_})))
    end
end
```


Go Back to Contents

Back to Phaseline for Alfa $=0$
THE FOLLOWING IS FOR THE VALUE OF ALFA
$\mathrm{a}=$

0

Critical points:
[0, 0]
[0,2 2]
$[3 / 2,0]$
[4/5, 7/5]
Eigenvalues at the following stationary point
$x_{-}=$
0
$y_{-}=$
0
are displayed below
1.5000
2.0000

Eigenvalues at the following stationary point
$x_{-}=$
0
$y_{-}=$

2
are displayed below
-2.0000
0.5000

Eigenvalues at the following stationary point
$x_{-}=$
3/2
$y_{-}=$

0
are displayed below

- 1.5000
0.8750

Eigenvalues at the following stationary point
$x_{-}=$
4/5
$y_{-}=$

7/5
are displayed below -1.8141
-0.3859

Back to Phaseline for Alfa $=0.2$

THE FOLLOWING IS FOR THE VALUE OF ALFA
$\mathrm{a}=$
0.2000

Critical points:
[0, 0]
$\left[\begin{array}{ll}{[15 / 8,} & 0\end{array}\right]$
[$0,15 / 8]$
[45/44, 15/11]
Eigenvalues at the following stationary point
x_ =
0
$y_{-}=$

0
are displayed below
1.5000
1.5000

Eigenvalues at the following stationary point
$x_{-}=$
15/8
$y_{-}=$
0
are displayed below
-1.5000
0.7500

Eigenvalues at the following stationary point
$x_{-}=$
0
$y_{-}=$
15/8
are displayed below -1.5000 0.5625

Eigenvalues at the following stationary point
$x_{-}=$
45/44
$y_{-}=$
15/11
are displayed below
-1.5000
-0.4091

Back to Phaseline for Alfa $=0.4$

THE FOLLOWING IS FOR THE VALUE OF ALFA
$\mathrm{a}=$
0.4000

Critical points:

Eigenvalues at the following stationary point
$x_{-}=$
0
$y_{-}=$

0
are displayed below
1.0000
1.5000

Eigenvalues at the following stationary point
$x_{-}=$
5/2
$y_{-}=$
0
are displayed below
-1.5000
0.8750

Eigenvalues at the following stationary point
$x_{-}=$
0
$y_{-}=$
5/3

```
are displayed below
    -1.0000
    0.6667
Eigenvalues at the following stationary point
X_ =
80/67
y_ =
105/67
are displayed below
    -1.0719
    -0.5848
```

Back to Phaseline for Alfa $=0.6$
THE FOLLOWING IS FOR THE VALUE OF ALFA
a =
0.6000
Critical points:
$\left[\begin{array}{rrr}{[} & 0, & 0] \\ {[} & 0, & 5 / 4]\end{array}\right.$
[15/4, 0]
[35/31, 65/31]
Eigenvalues at the following stationary point
$x_{-}=$
0
$y_{-}=$
0
are displayed below
0.5000
1.5000
Eigenvalues at the following stationary point
$x_{-}=$
0
$y_{-}=$

```
5/4
are displayed below
    -0.5000
    0.8750
Eigenvalues at the following stationary point
x_ =
15/4
y_ =
0
are displayed below
    -1.5000
    1.6250
Eigenvalues at the following stationary point
x_ =
35/31
y_ =
65/31
are displayed below
        -0.6452 - 0.5636i
        -0.6452 + 0.5636i
```

```
Back to Phaseline for Alfa = 0.8
THE FOLLOWING IS FOR THE VALUE OF ALFA
a =
        0.8000
Critical points:
[ 0, 0]
[ 15/2, 0]
[ 60/73, 195/73]
Eigenvalues at the following stationary point
X_ =
0
y_ =
0
are displayed below
    1.5000
Eigenvalues at the following stationary point
x_ =
15/2
y_ =
0
are displayed below
    -1.5000
    4.8750
Eigenvalues at the following stationary point
x_ =
60/73
y_ =
195/73
are displayed below
    -0.3493 - 0.8242i
```


Back to Phaseline for Alfa $=1$

THE FOLLOWING IS FOR THE VALUE OF ALFA
$\mathrm{a}=$
1
Critical points:
[0, 0]
$[1 / 2,3]$
Eigenvalues at the following stationary point
$x_{-}=$
0
$y_{-}=$
0
are displayed below
-0.5000
1.5000

Eigenvalues at the following stationary point
$x_{-}=$
1/2
$y_{-}=$
3
are displayed below
0-0.8660i
0 + 0.8660i

