Kevin Smith - Matlab Second Order Equation.
\%\%The following phase portraits depict the behavior of the second order $\% \% d i f f e r e n t i a l ~ e q u a t i o n ~(D 2 x / D 2 t)+b(d x / d t) \wedge 3-x^{\wedge}{ }^{2}+x=0$. The sequence of \%\%pictures are a result of changing the variable " b " from $0-1$, and even \%\%beyond. The behavior of the fucntion changes drastically immediately \%\%after "b" becomes non-zero. The stability of the origin becomes $\% \%$ immediately affected however it remains stable. The saddle point at $(1,0)$ that \%\%originally existed when $b=0$ has now drastically changed to create an \%\%almost inverted version of the previous picture. As "b" goes to infinity \%\%these points become increasingly less stable until nearly becoming \%\%unstable. One can see this in the last picture where "b" is increased to $\% \% 5$ and then 100. The stationary point $(1,0)$ has now been taken over $\% \%$ and $(0,0)$ has now taken the shape of an unstable saddle point. However, $\% \%$ it is interesting to note that even though these points appear to become \%\%unstable, the linearization (as shown in the handwritten \%\%derivations) shows that even as "b" becomes non negative the matrices of \%\%the stationary points stay the same because " y " is still 0 . Therefore, $\% \%$ the stationary points $(0,0)$ and $(1,0)$ should remain as a stable center and \%\%an unstable saddle point. The shape of the graph outside of the stationary points drastically changes after " b " becomes non-zero because of the y dependent cubic function that now exists. The tangent lines which the level curves approach as " t " decreases are no longer linear because the derivative of the function " y ^3"
becomes " $\mathrm{y} \wedge 2$." This is clearly seen as the tangent lines are parabolic arcs rather than straight lines when " b " is non-zero.

Kevin Smith

$$
\begin{aligned}
& \frac{d x^{2}}{d t^{2}}+b\left(\frac{d x}{d t}\right)^{3}-x^{2}+x=0 \\
& f(x, y): \frac{d x}{d t}=y \\
& g(x, y)=\frac{d y}{d t}=-b\left(\frac{d x}{d t}\right)^{3}+x^{2}-x=-b\left(y^{3}\right)+x^{2}-x
\end{aligned}
$$

Level Curves

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-6 y^{3}+x^{2}-x}{y} \\
& H(x, y)=\frac{y^{2}}{2}+b y^{3} x+\frac{x^{2}}{2}-\frac{x^{3}}{3}
\end{aligned}
$$

statimory Points

$$
\begin{aligned}
& 0=y \\
& 0=b(0)^{3}+x^{2}-x \\
& x(1-x)=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Linearizotion } \\
& \begin{array}{r}
\text { Linearizotion } \\
\left(\begin{array}{ll}
d_{x} f & d_{y} f \\
d_{y} g & d_{y} g
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
2 x-1 & -3 y^{2}(b)
\end{array}\right) \quad \begin{array}{r}
\text { at station pint } \\
(0,0) \\
\mathbb{A}=
\end{array}
\end{array} \\
& \begin{array}{r}
\left(\begin{array}{ll}
d_{x} f & d_{y} f \\
d_{y} g & d_{y} g
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
2 x-1 & -3 y^{2}(b)
\end{array}\right) \quad \begin{array}{r}
\text { at station+y pint } \\
(0,0) \\
A=
\end{array}
\end{array} \\
& A=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& p(z)=z^{2}-1 \quad p(z)=z^{2}+1 \\
& (1,0) \\
& A=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& \text { saddle, unstable } \\
& \text { center } \\
& \text { stable } \\
& \text { rods }(2+1)(2-1) \pm i \\
& \lambda=-1,1 \\
& \text { stable }
\end{aligned}
$$

$$
\begin{array}{r}
P_{\text {tints }}=(0,0) \\
(1,0)
\end{array}
$$ repelling eigen vector (l)

b=0
$f=@(x, y)\left(\left(y .^{\wedge} 2\right) / 2\right)+\left(b^{*}\left(y .^{\wedge} 3\right) * x\right)+\left(x .^{\wedge} 2\right) / 2-\left(x .^{\wedge} 3\right) / 3 ;$
$\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;$
level=-.5:.005:.5;
contour(X,Y,Z,level)
$\operatorname{axis}\left(\left[\begin{array}{llll}-2 & 2 & -2 & 2\end{array}\right]\right)$
grid on
$b=$

0

$\mathrm{b}=.1$
$f=@(x, y)((y . \wedge 2) / 2)+\left(b^{*}\left(y .^{\wedge} 3\right) * x\right)+\left(x .^{\wedge} 2\right) / 2-(x . \wedge 3) / 3 ;$
$\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;$
level=-.3:.009:.3;
contour(X,Y,Z,level)
$\operatorname{axis}\left(\left[\begin{array}{llll}-2 & 2 & -1 & 1\end{array}\right]\right)$
grid on
$b=$
0.1000

$b=.2$
$f=@(x, y)\left(\left(y .{ }^{\wedge} 2\right) / 2\right)+\left(b^{*}\left(y .^{\wedge} 3\right) * x\right)+\left(x .^{\wedge} 2\right) / 2-\left(x .^{\wedge} 3\right) / 3 ;$
$\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;$
level=-.3:.009:.3;
contour(X,Y,Z,level)
$\operatorname{axis}\left(\left[\begin{array}{llll}-2 & 2 & -1 & 1\end{array}\right]\right)$
grid on
$b=$
0.2000

$b=.3$
$f=@(x, y)\left(\left(y .{ }^{\wedge} 2\right) / 2\right)+\left(b^{*}(y . \wedge 3) * x\right)+\left(x .^{\wedge} 2\right) / 2-\left(x .{ }^{\wedge} 3\right) / 3 ;$
$\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;$
level=-.3:.009:.3;
contour(X,Y,Z,level)
$\operatorname{axis}\left(\left[\begin{array}{llll}-2 & 2 & -1 & 1\end{array}\right]\right)$
grid on
$b=$
0.3000

$b=.4$
$f=@(x, y)((y . \wedge 2) / 2)+\left(b^{*}\left(y .^{\wedge} 3\right) * x\right)+\left(x .^{\wedge} 2\right) / 2-\left(x .^{\wedge} 3\right) / 3 ;$
$\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;$
level=-.3:.009:.3;
contour(X,Y,Z,level)
$\operatorname{axis}\left(\left[\begin{array}{llll}-2 & 2 & -1 & 1\end{array}\right]\right)$
grid on
$b=$
0.4000

$b=.5$
$f=@(x, y)\left(y \cdot{ }^{\wedge} 2 / 2\right)+(b *(y \cdot \wedge 3) * x)+\left(x .^{\wedge} 2\right) / 2-\left(x .^{\wedge} 3\right) / 3 ;$
$\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;$
level=-.3:.009:.3;
contour(X,Y,Z,level)
$\operatorname{axis}\left(\left[\begin{array}{llll}-2 & 2 & -1 & 1\end{array}\right]\right)$
grid on
$b=$
0.5000

$b=.6$
$f=@(x, y)((y . \wedge 2) / 2)+\left(b^{*}\left(y .^{\wedge} 3\right) * x\right)+\left(x .^{\wedge} 2\right) / 2-(x . \wedge 3) / 3 ;$
$\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;$
level=-.3:.009:.3;
contour(X,Y,Z,level)
$\operatorname{axis}\left(\left[\begin{array}{llll}-2 & 2 & -1 & 1\end{array}\right]\right)$
grid on
$b=$
0.6000

$\mathrm{b}=.7$
$f=@(x, y)\left(\left(y . \wedge^{\wedge}\right) / 2\right)+\left(b^{*}(y . \wedge 3) * x\right)+\left(x .^{\wedge} 2\right) / 2-\left(x .^{\wedge} 3\right) / 3 ;$
$\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;$
level=-.3:.009:.3;
contour(X,Y,Z,level)
$\operatorname{axis}\left(\left[\begin{array}{llll}-2 & 2 & -1 & 1\end{array}\right]\right)$
grid on
$b=$
0.7000

$\mathrm{b}=.8$
$f=@(x, y)((y . \wedge 2) / 2)+\left(b *\left(y .^{\wedge} 3\right) * x\right)+\left(x .^{\wedge} 2\right) / 2-\left(x .^{\wedge} 3\right) / 3 ;$
$\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;$
level=-.3:.009:.3;
contour(X,Y,Z,level)
$\operatorname{axis}\left(\left[\begin{array}{lll}-2 & 2 & -1\end{array}\right]\right)$
grid on
$b=$
0.8000

$b=.9$
$f=@(x, y)\left(\left(y .^{\wedge} 2\right) / 2\right)+\left(b *\left(y .^{\wedge} 3\right) * x\right)+\left(x .^{\wedge} 2\right) / 2-\left(x .^{\wedge} 3\right) / 3 ;$
$\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;$
level=-.3:.009:.3;
contour(X,Y,Z,level)
$\operatorname{axis}\left(\left[\begin{array}{llll}-2 & 2 & -1 & 1\end{array}\right]\right)$
grid on
$b=$
0.9000

$b=1$
$f=@(x, y)((y . \wedge 2) / 2)+\left(b^{*}\left(y .^{\wedge} 3\right) * x\right)+\left(x .^{\wedge} 2\right) / 2-\left(x .^{\wedge} 3\right) / 3 ;$
$\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;$
level=-.3:.009:.3;
contour(X,Y,Z,level)
$\operatorname{axis}\left(\left[\begin{array}{llll}-2 & 2 & -1 & 1\end{array}\right]\right)$
grid on
$b=$


```
\(b=5\)
\(f=@(x, y)\left(\left(y .^{\wedge} 2\right) / 2\right)+\left(b^{*}\left(y .^{\wedge} 3\right) * x\right)+\left(x .^{\wedge} 2\right) / 2-\left(x .^{\wedge} 3\right) / 3 ;\)
\(\mathbf{Z}=\mathbf{f}(\mathbf{X}, \mathbf{Y}) ;\)
level=-.3:.009:.3;
contour(X,Y,Z,level)
axis([-. 6 1.5 -. 4 .4])
grid on
\(b=\)
5
```



```
b=100
f=@(x,y)((y.^2)/2)+(b*(y.^3)*x)+(x.^2)/2 -(x.^3)/3;
Z=f(X,Y);
level=-.3:.009:.3;
contour(X,Y,Z,level)
axis([-.5 1.5 -.7 .7])
grid on
b=
```

