Kelley Stanka MATH246

Matlab Source Code

```
%%
%Extra Credit MATH246
global AA
AA = [-2 -3;-1 -2];
tspan = [0 -5];
Va=[-1 1-1 1 1]; axis(Va), axis equal, hold on, grid
u0 = [1;1];
[t,u] = ode23(@lin, tspan, u0); plot(u(:,1),u(:,2))
n=7
st = exp(i*2*pi*(1:n)/n);
for s = st
    u0 = [real(s);imag(s)];
    [t,u] = ode23(@lin, tspan, u0); plot(u(:,1) ,u(:,2));
end
title 'Phase Portrait'
```

In this case, mu is equivalent to -2 . The following graphs show how the portraits change as mu goes from -2 to 2 .
$\mathrm{a}_{-}\{11\}=\mathrm{mu}, \mathrm{a}_{-}\{12\}=\mathrm{mu}-1, \mathrm{a}_{-}\{21\}=\mathrm{mu}+1, \mathrm{a}_{-}\{22\}=\mathrm{mu}$

Graphs

$\mathbf{M u}=-\mathbf{2}$

$\mathrm{Mu}=\mathbf{- 1 . 7 5}$

$\mathrm{Mu}=\mathbf{- 1 . 5}$

$\mathrm{Mu}=\mathbf{- 1 . 2 5}$

$\mathbf{M u}=\mathbf{- 1}$

$\mathbf{M u}=\mathbf{- 0 . 7 5}$

$\mathbf{M u}=\mathbf{- 0 . 5}$

$\mathbf{M u}=\mathbf{- 0 . 2 5}$

$\mathbf{M u}=\mathbf{0}$

$\mathbf{M u}=\mathbf{0 . 2 5}$

$\mathrm{Mu}=0.5$

$\mathbf{M u}=\mathbf{0 . 7 5}$

$\mathbf{M u}=1$

$\mathbf{M u}=1.25$

$\mathrm{Mu}=1.5$

$\mathbf{M u}=1.75$

$\mathbf{M u}=\mathbf{2}$

Explanation of Graphs -

From $\mathrm{Mu}=-2$ to $\mathrm{Mu}=-1.5$, the graphs represent a nodal source. From $\mathrm{Mu}=-1.25$ to $\mathrm{Mu}=$ -0.5 , the graphs represent an improper node (twist). At $\mathbf{M u}=0$, the graph represents a center. From $\mathrm{Mu}=\mathbf{0 . 2 5}$ to $\mathrm{Mu}=\mathbf{1 . 2 5}$, the graphs represent an improper node (twist) once again. From $M u=1.5$ to $M u=2$, the graphs represent a nodal source.

