```
_Anh-Duc Van_matlab project_equation 5 and 11 from 9.2
warning off all
for a=0:.1:1
figure; hold on
axis tight
f=@(t,x) [(1-a)*(x(1)-x(1)*x(2))+(a)*(-x(1)+2*x(1)*x(2)); (1-
a)* (x(2)+2*x(1)*x(2))+a*(x(2)-(x(1))^2-(x(2))^2)];
for c=-2:5
        for b=-2:5
            [t,xa]=ode45(f,[0 2],[c,b]);
            plot (xa(:,1),xa(:,2),'r')
            [t,xa]=ode45(f,[0 -2],[c b]);
            plot(xa(:,1),xa(:,2),'r')
        end
        axis([-5 5 -5 5])
    end
end
a=0
```



```
Critical points for a=0
[ 0, 0]
[ -1/2, 1]
A =
[ 1-y, -x]
[ 2*y, 1+2*x]
evals =
            1
    1+2*x-y
Eigenvalues for (0,0)
1,1
Eigenvalues for (-1/2,1)
1,-1
```

When $a=0$, there are two critical points. At (0,0) it is a node source and it is unstable. At $(-1 / 2,1)$ it is a node sink and it is asymptotically stable.

For $a=.1000$

Critical points for $a=0.1000$

$[$	0,	$0]$
$[$	0,	$10]$
$\left[72 / 7-4 / 7 * 355^{\wedge}(1 / 2)\right.$,	$8 / 7]$	
$\left[72 / 7+4 / 7 * 355^{\wedge}(1 / 2)\right.$,	$8 / 7]$	

$\mathrm{A}=$
[4/5-7/10*y, -7/10*x]
[$\left.9 / 5^{*} y-1 / 5^{*} x, 1+9 / 5 * x-1 / 5 * y\right]$
evals =
9/10-9/20* $\mathrm{y}+9 / 10 * \mathrm{x}+1 / 20 *\left(4+20 * \mathrm{y}+72 * \mathrm{x}+25 * \mathrm{y}^{\wedge} 2-324 \mathrm{*}^{*} \mathrm{x} \mathrm{y}+380 * \mathrm{x}^{\wedge} 2\right)^{\wedge}(1 / 2)$

Eigenvalues for $(0,0)$
1,. 800
Eigenvalues for $(0,10)$
$-1,-6.2000$
Eigenvalues for ([72/7-4/7*355^(1/2), 8/7])
0.8056,-0.8997
$\frac{\text { Eigenvalues for }\left(\left[72 / 7+4 / 7 * 355^{\wedge}(1 / 2), 8 / 7\right]\right)}{39.4695,-0.8040}$
At $a=.1000$ there now appears to be 4 critical point. The critical point (0,0) is still there but the critical point $(-1 / 2,1)$ has disappear and 3 new one has appear. At $(0,0)$ it is still a node source, and it is unstable. At $(0,10)$ it is node sink and it is stable. At ([72/7-4/7*355^(1/2),8/7]) it is a saddle point and it is unstable. At ([72/7+4/7*355^(1/2),8/7]) it is also a saddle point, and it is unstable. At $a=.100$ the node point is still there but now there appear to be two saddle point.

Critical points for $\mathrm{a}=0.2000$

Eigenvalue for $(0,0)$
1, . 600
Eigenvalue for $(0,5)$
$-1,-1.400$
Eigenvalue for ([6-1/2*165^(1/2), 3/2])
0.5352,-0.8114

Eigenvalue for ([6+1/2*165^(1/2),3/2])
20.8874, -0.6112

At $a=.200$ there are still 4 critical point, the critical point have all changed excepted $(0,0)$. At $(0,0)$ it is still a node source and it is unstable. At $(0,5)$ it is a node sink and it is sable. The other two are saddle point.
$a=.3000$

[^0]```
a=.4000
```



```
Critical points for a=0.4000
[0, 0]
[0, 5/2]
[-3/2-1/2*i*5^(1/2), -1]
[-3/2+1/2*i*5^(1/2), -1]
A =
[1/5+1/5*y, 1/5*x]
[6/5*y-4/5*x, 1+6/5*x-4/5*y]
evals =
3/5-3/10*y+3/5*x+1/10*(16-40*y+48*x+25*y^2-36*x*y+20*x^2)^(1/2)
3/5-3/10*y+3/5*x-1/10*(16-40*y+48*x+25*y^2-36*x*y+20*x^2)^(1/2)
Eigenvalue for (0,0)
1,. 200
Eigenvalue for (0,5/2)
0.7000,-1
Eigenvalue for ([-3/2-1/2*i*5^(1/2),-1])
Eigenvalues for ([-3/2+1/2*i*5^(1/2),-1])
0.2416 + 1.2261i,-0.2416 + 0.1155i
At \(a=.4\) there are 4 critical point. At (0,0) it a node source. At (0,5/2) it is a saddle point. The other two critical point \(I\) am not sure what is happening there. There are two imaginary value so I assume it is becoming a spiral but the eigenvalues are not the same so I am not sure what is happening. It could be that at these 2 critical points it is changing to be a center or a spiral.
```



Critical points for $a=0.5000$
[ 0, 0]
$[0,0]$
[ 0, 2]
A $=$
[ 1/2*y, 1/2*x]
[ $\quad y-x, 1+x-y$ ]
evals =
$1 / 2-1 / 4 * y+1 / 2 * x+1 / 4 *\left(4-12 * y+8 * x+9 * y^{\wedge} 2-4 * x^{*} y-4 * x^{\wedge} 2\right)^{\wedge}(1 / 2)$
$1 / 2-1 / 4 * y+1 / 2 * x-1 / 4 *\left(4-12 * y+8 * x+9 * y^{\wedge} 2-4 * x^{*} y-4 * x^{\wedge} 2\right)^{\wedge}(1 / 2)$

| Eigenvalue for $(0,0)$ |
| :--- |
| 1,0 |
| $\frac{\text { Eigenvalue for }(0,0)}{1,0}$ |
| $\frac{\text { Eigenvalue for }(0,2)}{1,-1}$ |

At $a=.500$ there are only 3 critical point. It may be that the two weird critical point at $a=.400$ is merging or somehow making the picture change so that there are only 3 critical points now. This picture is also weird because there are two critical point at the same location. At (0,0) I am not sure what it is but the book said it is a nonisolated critical points. Every point on the line through the eigenvalue is a critical point. At (0,2) it is a saddle point.

```
a=.600
4,
Critical points for a=0.6000
[0, 0]
[0, 5/3]
[1/6-1/12*55^(1/2), 1/4]
[1/6+1/12*55^(1/2), 1/4]
A =
[-1/5+4/5*y, 4/5*x]
[4/5*y-6/5*x, 1+4/5*x-6/5*y]
evals =
2/5-1/5*y+2/5*x+1/5*(9-30*y+12*x+25*y^2-4*x*y-20*x^2)^(1/2)
2/5-1/5* y+2/5*x-1/5*(9-30*y+12*x+25*y^2-4*x*y-20* x^2)^(1/2)
Eigenvalues for (0,0)
1,-.200
Eigenvalues for (0,5/3)
1.1333,-1.0000
Eigenvalues for ([1/6-1/12*55^(1/2),1/4])
0.1695 + 0.4889i,0.1695 - 0.4889i
Eigenvalues for ([1/6+1/12*55^(1/2),1/4])
0.6639 + 0.1575i,0.6639 - 0.1575i
```

At $a=.600$ it is now back to 4 critical point. At (0,0) it is not a saddle point. At $(0,5 / 3)$ it is saddle point. At $\left(\left[1 / 6-1 / 12 * 55^{\wedge}(1 / 2), 1 / 4\right]\right)$ it is a spiral and is unstable. At $\left(\left[1 / 6+1 / 12 * 55^{\wedge}(1 / 2), 1 / 4\right]\right)$ it is also a spiral and it is unstable. It seem all the node are now gone and it is just saddle point and spiral.

```
a=.7000
M,
Critical points for a=0.7000
[0, 0]
[0, 10/7]
[12/77-2/77*610^(1/2), 4/11]
[12/77+2/77*610^(1/2), 4/11]
A =
[-2/5+11/10*y, 11/10*x]
[3/5*y-7/5*x, 1+3/5*x-7/5*y]
evals =
3/10-3/20*y+3/10*x+1/20*(196-700* y+168*x+625*y^2-36*x*y-580*x^2)^(1/2)
3/10-3/20*y+3/10*x-1/20*(196-700*y+168*x+625*y^2-36*x*y-580*x^2)^(1/2)
Eigenvalue for (0,0)
1,-.4000
Eigenvalue for (0,10/7)
1.1714,-1.0000
Eigenvalue for ([12/77-2/77*610^(1/2), 4/11])
0.0998 + 0.6855i,0.0998 - 0.6855i
Eigenvalue for ([12/77+2/77*610^(1/2),4/11])
0.4847 + 0.7435i,0.4847 - 0.7435i
At a=.700 there are 4 critical point. At (0,0) it is a saddle point. At
(0,10/7) it is a saddle point. The other two are spiral source and they are
both are unstable. It seems like they are beginning to start forming a
circle.
```



```
[0, 0]
[0, 5/4]
[3/28-1/28*285^(1/2), 3/7]
[3/28+1/28*285^(1/2), 3/7]
A =
[-3/5+7/5*y, 7/5*x]
[2/5*y-8/5*x, 1+2/5*x-8/5*y]
evals =
 1/5-1/10* y+1/5*x+1/10*(64-240* y+32*x+225* y^2-4* x* y-220* x^2)^(1/2)
 1/5-1/10* y+1/5*x-1/10*(64-240* y+32*x+225* y^2-4*x* y-220* ^^ 2)^(1/2)
```

Eigenvalue for $(0,0)$
1,-. 6000
Eigenvalue for (0,5/4)
1.1500,-1
Eigenvalue for ([ 3/28-1/28*285^(1/2), 3/7])
$0.0580+0.8162 i, 0.0580-0.8162 i$
Eigenvalue for ([ 3/28+1/28*285^(1/2), 3/7])
$0.2992+0.9325 i, 0.2992-0.9325 i$
At $a=.8000$ there are 4 critical points. At $(0,0)$ and $(0,5 / 4)$ it is a saddle.
The other two is a spiral source, but it seems that the real part of the
eigenvalue is getting smaller and the complex part is approaching 1.


## Critical points for $\mathrm{a}=0.9000$



Eigenvalue for $(0,0)$
1,-. 8000
Eigenvalue for ( $0,10 / 9$ )
1.0889,-1.0000

Eigenvalue for ([ 8/153-4/153*445^(1/2), 8/17])
$0.0265+0.9175 i, 0.0265-0.9175 i$
Eigenvalue for ([ 8/153+4/153*445^(1/2), 8/17])
$0.1368+1.0001 i, 0.1368$ - 1.0001i
At $a=.9000$ there are 4 critical points. At $(0,0)$ and $(0,10 / 9)$ it is a saddle, but the value seems to approaching 1 and -1 . The other two critical points are spiral source, and are unstable. The real parts are approaching 0 and the complex is approaching 1 or -1 .

```
a=1.000
-3
Critical points for a=1
[0, 0]
[0, 1]
[-1/2, 1/2]
[1/2, 1/2]
A =
```



```
evals =
(1-4* y+4* y^2-4* x^2) ^(1/2)
-(1-4* y+4* y^2-4* *^2)^(1/2)
Eigenvalue for \((0,0)\)
1,-1
Eigenvalue for (0,1)
1,-1
Eigenvalue for (-1/2,1/2)
0.0 + 1.0000i,-0.0000 - 1.0000i
Eigenvalue for (1/2,1/2)
0.0000 + 1.0000i,-0.0000 - 1.0000i
At \(a=1\) there are 4 critical points now. At \((0,0)\) and \((0,1)\) it is a saddle point and the value are 1 and -1 respectively. The other two are now center because the real part are now 0, and the complex has approach -1 or 1 . If you set the value of a from 0 to 1 , it changes the number of critical point and seems to make it a saddle and center picture. At the beginning it used to be a node and saddle, and then it begins to change until the node is completely gone and a spiral appear. Even then the spiral begins to change until it becomes a center.
```


[^0]:    Critical points for $a=0.3000$

    | $[$ | 0, | $0]$ |
    | :--- | ---: | ---: |
    | $[$ | 0, | $10 / 3]$ |
    | $\left[28 / 3-2 / 3 * 190^{\wedge}(1 / 2)\right.$, | $4]$ |  |
    | $\left[28 / 3+2 / 3 * 190^{\wedge}(1 / 2)\right.$, | $4]$ |  |

    A =
    [ 2/5-1/10*y, $-1 / 10 * x]$
    [ $7 / 5 * y-3 / 5 * x, 1+7 / 5 * x-3 / 5 * y]$
    evals =
    $7 / 10-7 / 20 * y+7 / 10 * x+1 / 20 *\left(36-60 * y+168 * x+25 * y^{\wedge} 2-196 * x^{*} y+220 * x^{\wedge} 2\right)^{\wedge}(1 / 2)$
    $7 / 10-7 / 20 * y+7 / 10 * x-1 / 20 *\left(36-60 * y+168 * x+25 * y^{\wedge} 2-196 *^{*} \mathrm{x}^{*} \mathrm{y}+220{ }^{*} \mathrm{x}^{\wedge} 2\right)^{\wedge}(1 / 2)$
    Eigenvalue at $(0,0)$
    1, 0.4000
    Eigenvalue at $(0,10 / 3)$
    0.0667,-1.0000
    Eigenvalue at ([28/3-2/3*190^(1/2), 4])
    -0.0704,-1.1281
    Eigenvalue at ([ $\left.\left.28 / 3+2 / 3 * 190^{\wedge}(1 / 2), 4\right]\right)$
    24.9412, -0.4095
    At $a=.300$ there are still 4 critical points. At $a=0$ it is still a node
    source. At (0,10/3) it is a saddle point. At ([28/3-2/3*190^(1/2),4]) it is a
    node sink. At $\left[28 / 3+2 / 3 * 190^{\wedge}(1 / 2), 4\right]$ it is a node saddle point. It appears
    that the saddle point is getting closer to the center.

