Homework Problems on the Green Function Method II Spring 2009, Math 246, Professor David Levermore

1. Compute the Green function $G(t, s)$ for the differential operator $\mathrm{L}(t)$ defined by

$$
\mathrm{L}(t) y=\mathrm{D}^{2} y-2 t \mathrm{D} y+\left(t^{2}-1\right) y
$$

given that $e^{\frac{1}{2} t^{2}}$ and $t e^{\frac{1}{2} t^{2}}$ solve the homogeneous equation $\mathrm{L}(t) y=0$. Use the result to solve the initial-value problem

$$
y^{\prime \prime}-2 t y^{\prime}+\left(t^{2}-1\right) y=t^{2} e^{\frac{1}{2} t^{2}}, \quad y(0)=y^{\prime}(0)=0 .
$$

2. Compute the Green function $G(t, s)$ for the differential operator $\mathrm{L}(t)$ defined by

$$
\mathrm{L}(t) y=t \mathrm{D}^{2} y+(t-1) \mathrm{D} y-y
$$

given that $t-1$ and e^{-t} solve the homogeneous equation $\mathrm{L}(t) y=0$. Use the result to solve the initial-value problem

$$
t y^{\prime \prime}+(t-1) y^{\prime}-y=2 t^{3}, \quad y(1)=y^{\prime}(1)=0 .
$$

Remark: You can also solve these problems using variation of parameters.

