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Eigenpairs. Let A be a real n×n matrix. A number λ (possibly complex) is an eigenvalue

of A if there exists a nonzero vector v (possibly complex) such that

(1) Av = λv .

Each such vector is an eigenvector associated with λ, and (λ,v) is an eigenpair of A.

Fact 1: If (λ,v) is an eigenpair of A then so is (λ, αv) for every complex α 6= 0. In
other words, if v is an eigenvector associated with an eigenvalue λ of A then so is αv

for every complex α 6= 0. In particular, eigenvectors are not unique.

Reason. Because (λ,v) is an eigenpair of A you know that (1) holds. It follows that

A(αv) = αAv = αλv = λ(αv) .

Because the scalar α and vector v are nonzero, the vector αv is also nonzero. Therefore
(λ, αv) is also an eigenpair of A. �

Recall that the characteristic polynomial of A is defined by

(2) pA(z) = det(zI − A) .

It has the form

pA(z) = zn + π1z
n−1 + π2z

n−2 + · · · + πn−1z + πn ,

where the coefficients π1, π2, · · · , πn are real. In other words, it is a real monic polynomial
of degree n. One can show that in general

π1 = − tr(A) , πn = (−1)n det(A) .

In particular, when n = 2 one has

pA(z) = z2 − tr(A)z + det(A) .

Because det(zI−A) = (−1)n det(A− zI), this definition of pA(z) coincides with the book’s
definition when n is even, and is its negative when n is odd. Both conventions are common.
We have chosen the convention that makes pA(z) monic. What matters most about pA(z)
is its roots and their multiplicity, which are the same for both conventions.

Fact 2: A number λ is an eigenvalue of A if and only if pA(λ) = 0. In other words, the
eigenvalues of A are the roots of pA(z).

Reason. If λ is an eigenvalue of A then by (1) there exists a nonzero vector v such that

(λI − A)v = λv − Av = 0 .

It follows that pA(λ) = det(λI −A) = 0.
Conversely, if pA(λ) = det(λI − A) = 0 then there exists a nonzero vector v such that

(λI −A)v = 0. It follows that

λv − Av = (λI − A)v = 0 ,

whereby λ and v satisfy (1), which implies λ is an eigenvalue of A. �

Fact 2 shows that the eigenvalues of a n×n matrix A can be found if you can find all the
roots of the characteristic polynomial of A. You can then find all the eigenvectors associated
with each eigenvalue by finding a general nonzero solution of (1).
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You can quickly find the eigenvectors for any 2×2 matrix A with help from the Cayley-
Hamilton Theorem, which states that pA(A) = 0. The eigenvalues λ1 and λ2 are the roots
of pA(z), so pA(z) = (z − λ1)(z − λ2). Hence, by the Cayley-Hamilton Theorem

(3) 0 = pA(A) = (A − λ1I)(A− λ2I) = (A − λ2I)(A − λ1I) .

It follows that every nonzero column of A − λ2I is an eigenvector associated with λ1, and
that every nonzero column of A − λ1I is an eigenvector associated with λ2.

Example. Find the eigenpairs of A =

(

3 2
2 3

)

.

Solution. The characteristic polynomial of A is

pA(z) = z2 − 6z + 5 = (z − 1)(z − 5) .

By Fact 2 the eigenvalues of A are 1 and 5. Because

A − I =

(

2 2
2 2

)

, A − 5I =

(

−2 2
2 −2

)

,

Every column of A − 5I has the form

α

(

1
−1

)

for some α 6= 0 ,

while every column of A− I has the form

α

(

1
1

)

for some α 6= 0 .

It follows from (3) that the eigenpairs of A are
(

1 ,

(

1
−1

))

,

(

5 ,

(

1
1

))

.

Example. Find the eigenpairs of A =

(

3 2
−2 3

)

.

Solution. The characteristic polynomial of A is

pA(z) = z2 − 6z + 13 = (z − 3)2 + 4 = (z − 3)2 + 22 .

By Fact 2 the eigenvalues of A are 3 + i2 and 3 − i2. Because

A − (3 + i2)I =

(

−i2 2
−2 −i2

)

, A − (3 − i2)I =

(

i2 2
−2 i2

)

.

Every column of A − (3 − i2)I has the form

α

(

1
i

)

for some α 6= 0 ,

while every column of A− (3 + i2)I has the form

α

(

1
−i

)

for some α 6= 0 .

It follows from (3) that the eigenpairs of A are
(

3 + i2 ,

(

1
i

))

,

(

3 − i2 ,

(

1
−i

))

.
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Notice that in the above example the eigenvectors associated with 3 − i2 are complex
conjugates to those associated with 3 + i2. This illustrates is a particular instance of the
following general fact.

Fact 3: If (λ,v) is an eigenpair of the real matrix A then so is (λ,v).

Reason. Because (λ,v) is an eigenpair of A you know by (1) that Av = λv. Because A is
real, the complex conjugate of this equation is

Av = λv ,

where v is nonzero because v is nonzero. It follows that (λ,v) is an eigenpair of A. �

Both examples given above illustrate particular instances of the following general facts.

Fact 4: Let λ be an eigenvalue of the real matrix A. If λ is real then it has a real
eigenvector. If λ is not real then none of its eigenvectors are real.

Reason. Let v be any eigenvector associated with λ, so that (λ,v) is an eigenpair of A. Let
λ = µ + iν and v = u + iw where µ and ν are real numbers and u and w are real vectors.
One then has

Au + iAw = Av = λv = (µ + iν)(u + iw) = (µu− νw) + i(µw + νu) ,

which is equivalent to

Au− µu = −νw , and Aw − µw = νu .

If ν = 0 then u and w will be real eigenvectors associated with λ whenever they are nonzero.
But at least one of u and w must be nonzero because v = u + iw is nonzero. Conversely, if
ν 6= 0 and w = 0 then the second equation above implies u = 0 too, which contradicts the
fact that at least one of u and w must be nonzero. Hence, if ν 6= 0 then w 6= 0. �

Solutions of First-Order Systems. We are now ready to use eigenvalues and eigenvectors
to construct solutions of first-order differential systems with a constant coefficient matrix.
The system we study is

(4)
dx

dt
= Ax ,

where x(t) is a vector and A is a real n×n matrix. We begin with the following basic fact.

Fact 5: If (λ,v) is an eigenpair of A then a solution of (4) is

(5) x(t) = eλtv .

Reason. By direct calculation we see that

dx

dt
=

d

dt

(

eλtv
)

= eλtλv = eλtAv = A
(

eλtv
)

= Ax ,

whereby x(t) given by (5) solves (4). �

If (λ,v) is a real eigenpair of A then recipe (5) will yield a real solution of (4). But if λ is
an eigenvalue of A that is not real then recipe (5) will not yield a real solution. However, if
we also use the solution associated with the conjugate eigenpair (λ,v) then we can construct
two real solutions.
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Fact 6: Let (λ,v) be an eigenpair of A with λ = µ + iν and v = u + iw where µ and
ν are real numbers while u and w are real vectors. Then two real solutions of (4) are

(6)
x1(t) = Re

(

eλtv
)

= eµt
(

u cos(νt) −w sin(νt)
)

,

x2(t) = Im
(

eλtv
)

= eµt
(

w cos(νt) + u sin(νt)
)

.

Reason. Because (λ,v) is an eigenpair of A, by Fact 3 so is (λ,v). By recipe (5) two

solutions of (4) are eλtv and eλtv, which are complex conjugates of each other. Because
equation (4) is linear, it follows that two real solutions of (4) are given by

x1(t) = Re
(

eλtv
)

=
eλtv + eλtv

2
, x2(t) = Im

(

eλtv
)

=
eλtv − eλtv

i2
.

Because λ = µ + iν and v = u + iw we see that

eλtv = eµt
(

cos(νt) + i sin(νt)
)

(u + iv)

= eµt
[(

u cos(νt) − w sin(νt)
)

+ i
(

w cos(νt) + u sin(νt)
)]

,

whereby x1(t) and x2(t) are read off from the real and imaginary parts, yielding (6). �

Example. Find two linearly independent real solutions of

dx

dt
= Ax , where A =

(

3 2
2 3

)

.

Solution. By a previous example we know that A has the real eigenpairs
(

1 ,

(

1
−1

))

,

(

5 ,

(

1
1

))

.

By recipe (5) the equation has the real solutions

x1(t) = et

(

1
−1

)

, x2(t) = e5t

(

1
1

)

.

These solutions are linearly independent because

W [x1,x2](0) = det

(

1 −1
1 1

)

= 2 6= 0 .

Example. Find two linearly independent real solutions of

dx

dt
= Ax , where A =

(

3 2
−2 3

)

.

Solution. By a previous example we know that A has the conjugate eigenpairs
(

3 + i2 ,

(

1
i

))

,

(

3 − i2 ,

(

1
−i

))

.

Because

e(3+i2)t

(

1
i

)

= e3t
(

cos(2t) + i sin(2t)
)

(

1
i

)

= e3t

(

cos(2t) + i sin(2t)
− sin(2t) + i cos(2t)

)

,

by recipe (6) the equation has the real solutions

x1(t) = e3t

(

cos(2t)
− sin(2t)

)

, x2(t) = e3t

(

sin(2t)
cos(2t)

)

.
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These solutions are linearly independent because

W [x1,x2](0) = det

(

1 0
0 1

)

= 1 6= 0 .

Exponentials of Diagonalizable Matrices. If recipe (5) yields n linearly independent
solutions of the first-order system (4) then they can be used to construct the matrix expo-
nential etA. The key to this construction is the following fact from linear algebra.

Fact 7: If a real n×n matrix A has n eigenpairs, (λ1,v1), (λ2,v2), · · · , (λn,vn), such
that the eigenvectors v1, v2, · · · , vn are linearly independent then

(7) A = VDV−1 ,

where V is the n×n matrix whose columns are the vectors v1, v2, · · · , vn — i.e.

(8) V =
(

v1 v2 · · · vn

)

,

while D is the n×n diagonal matrix

(9) D =











λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn











.

Reason. Underlying this result is the fact that

(10)

AV = A
(

v1 v2 · · · vn

)

=
(

Av1 Av2 · · · Avn

)

=
(

λ1v1 λ2v2 · · · λnvn

)

=
(

v1 v2 · · · vn

)











λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn











= VD .

Once we show that V is inverible then (7) follows upon multiplying the above relation on
the left by V−1.

We claim that det(V) 6= 0 because the vectors v1, v2, · · · , vn are linearly independent.
Suppose otherwise. Because det(V) = 0 there exists a nonzero vector c such that Vc = 0.
This means that

0 = Vc =
(

v1 v2 · · · vn

)









c1

c2
...
cn









= c1v1 + c2v2 + · · ·+ cnvn .

Because vectors v1, v2, · · · , vn are linearly independent, this implies c1 = c2 = · · · = cn = 0,
which contradicts the fact c is nonzero. Therefore det(V) 6= 0. Hence, the matrix V is
invertible and (7) follows upon multiplying relation (10) on the left by V−1. �

We call a real n×n matrix A diagonalizable when there exists an invertible matrix V and
a diagonal matrix D such that A = VDV−1. To diagonalize A means to find such a V and
D. Fact 7 states that A is diagonalizable when it has n linearly independent eigenvectors.
The converse of this statement is also true.
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Fact 8: If a real n×n matrix A is diagonalizable then it has n linearly independent
eigenvectors.

Reason. Because A is diagonalizable it has the form A = VDV−1 where the matrix V is
invertible and the matrix D is diagonal.

Let the vectors v1, v2, · · · , vn be the columns of V. We claim these vectors are linearly
independent. Indeed, if 0 = c1v1 + c2v2 + · · · + cnvn then because V =

(

v1 v2 · · · vn

)

we see that

0 = c1v1 + c2v2 + · · ·+ cnvn =
(

v1 v2 · · · vn

)









c1

c2
...
cn









= Vc .

Because V is invertible, this implies that c = 0. The vectors v1, v2, · · · , vn are therefore
linearly independent.

Because V =
(

v1 v2 · · · vn

)

and because A = VDV−1 where D has the form (9), we
see that

(

Av1 Av2 · · · Avn

)

= A
(

v1 v2 · · · vn

)

= AV = VDV−1V = VD

=
(

v1 v2 · · · vn

)











λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn











=
(

λ1v1 λ2v2 · · · λnvn

)

.

Because the vectors v1, v2, · · · , vn are linearly independent, they are all nonzero. It then
follows from the above relation that (λ1,v1), (λ2,v2), · · · , (λn,vn) are eigenpairs of A, such
that the eigenvectors v1, v2, · · · , vn are linearly independent. �

Example. Show that A =

(

3 2
2 3

)

is diagonalizable, and diagonalize it.

Solution. By a previous example we know that A has the real eigenpairs
(

1 ,

(

1
−1

))

,

(

5 ,

(

1
1

))

.

Because we also know the eigenvectors are linearly independent, A is diagonalizable. Then
(8) and (9) yield

V =

(

1 1
−1 1

)

, D =

(

1 0
0 5

)

.

Because det(V) = 2, one has

V−1 =
1

2

(

1 −1
1 1

)

.

It follows from (7) that A is diagonalized as

A = VDV−1 =
1

2

(

1 1
−1 1

) (

1 0
0 5

) (

1 −1
1 1

)

.
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We are now ready to give a construction of the matrix exponential etA.

Fact 9: If the real n×n matrix A has n eigenpairs, (λ1,v1), (λ2,v2), · · · , (λn,vn), such
that the vectors v1, v2, · · · , vn are linearly independent then

(11) etA = VetDV−1 ,

where V and D are the n×n matrices given by (8) and (9).

Reason. Set Φ(t) = VetDV−1. It then follows that

d

dt
Φ(t) =

d

dt

(

VetDV−1
)

= V
d

dt
etDV−1 = VDetDV−1 = AVetDV−1 = AΦ(t) ,

whereby the matrix-valued function Φ(t) satisfies

d

dt
Φ(t) = AΦ(t) .

Moreover, because e0D = I we see that Φ(t) also satisfies the initial condition

Φ(0) = Ve0DV−1 = VIV−1 = VV−1 = I .

It follows that Φ(t) = etA, whereby (11) follows. �

Formula (11) is the book’s method for computing etA when A is diagonalizable. Because
not every matrix is diagonalizable, it cannot always be applied. When it can be applied,
most of the work needed to apply it goes into computing V and V−1. The matrix etD is
simply given by

(12) etD =











eλ1t 0 · · · 0

0 eλ2t . . .
...

...
. . .

. . . 0
0 · · · 0 eλnt











.

Once you have V, V−1, and etD, formula (11) requires two matrix multiplications.

Example. Compute etA for A =

(

3 2
2 3

)

.

Solution. By a previous example we know that A has the real eigenpairs
(

1 ,

(

1
−1

))

,

(

5 ,

(

1
1

))

,

and that A is diagonalizable. By (8) and (9) we also know that

V =

(

1 1
−1 1

)

, D =

(

1 0
0 5

)

, V−1 =
1

2

(

1 −1
1 1

)

.

By formulas (11) and (12) we therefore have

etA = VetDV−1 =
1

2

(

1 1
−1 1

) (

et 0
0 e5t

) (

1 −1
1 1

)

=
1

2

(

1 1
−1 1

) (

et −et

e5t e5t

)

=
1

2

(

e5t + et e5t − et

e5t − et e5t + et

)

.
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Example. Compute etA for A =

(

3 2
−2 3

)

.

Solution. By a previous example we know that A has the conjugate eigenpairs
(

3 + i2 ,

(

1
i

))

,

(

3 − i2 ,

(

1
−i

))

.

By (8) and (9) we know that

V =

(

1 1
i −i

)

, D =

(

3 + i2 0
0 3 − i2

)

.

Because det(V) = −i2, we have

V−1 =
1

−i2

(

−i −1
−i 1

)

=
1

2

(

1 −i

1 i

)

.

By formula (12) we have

etD =

(

e(3+i2)t 0
0 e(3−i2)t

)

= e3t

(

ei2t 0
0 e−i2t

)

.

By formula (11) we therefore have

etA = VetDV−1 =
e3t

2

(

1 1
i −i

) (

ei2t 0
0 e−i2t

) (

1 −i

1 i

)

=
e3t

2

(

1 1
i −i

) (

ei2t −iei2t

e−i2t ie−i2t

)

=
e3t

2

(

ei2t + e−i2t −iei2t + ie−i2t

iei2t − ie−i2t ei2t + e−i2t

)

=
e3t

2

(

2 cos(2t) 2 sin(2t)
−2 sin(2t) 2 cos(2t)

)

= e3t

(

cos(2t) sin(2t)
− sin(2t) cos(2t)

)

.

Remark. Because A is real, etA must be real. As the above example illustrates, the matrices
V and D may not be real, but will always combine in formula (11) to yield the real result.

Remark. While not every matrix is diagonalizable, most matrices are. Here we give four
criteria that insure a real n×n matrix A is diagonalizable.

• If A has n distinct eigenvalues then it is diagonalizable.
• If A is symmetric (AT = A) then its eigenvalues are real (λj = λj), and it will

have n real eigenvectors vj that can be normalized so that vT
j vk = δjk. With this

normalization V−1 = VT .
• If A is skew-symmetric (AT = −A) then its eigenvalues are imaginary (λj = −λj),

and it will have n eigenvectors vj that can be normalized so that v∗

jvk = δjk. With

this normalization V−1 = V∗.
• If A is normal (ATA = AAT ) then it will have n eigenvectors vj that can be

normalized so that v∗

jvk = δjk. With this normalization V−1 = V∗.

Matrices that are either symmetric or skew-symmetric are also normal. There are normal
matrices that are neither symmetric nor skew-symmetric. Because the normal criterion is
harder to verify than the symmetric and skew-symmetric criteria, it should be checked last.
Both of the examples we have given above have distinct eigenvalues. The first example is
symmetric. The second is normal, but is neither symmetric nor skew-symmetric.


