First-Order Ordinary Differntial Equations:
Classification and Linear Equations

David Levermore
Department of Mathematics
University of Maryland

1 February 2009

These notes cover some of the material that we covered in class on first-order ordinary
differential equations. As the presentation of this material in class was somewhat different
from that in the book, I felt that a written review closely following the class presentation
might be appreciated.



1. Introduction, Classification, and Overview

1.1. Introduction. A differential equation is an algebraic relation involving derivatives
of one or more unknown functions with respect to one or more independent variables, and
possibly either the unknown functions themselves or their independent variables, that hold
at each point in the domain of those functions.

For example, an unknown function p(¢) might satisfy the relation

dp
— =5p. 1.1
o =P (1.1)
This is a differential equation because it involves the derivative of the unknown function
p. It also involves the value of p, but not the independent variable ¢. It is understood that
this relation should hold every point ¢ where p(t) and its derivative are defined.

Similarly, unknown functions u(x,y) and v(x,y) might satisfy the relation
O,u+ 0yv =10, (1.2)

where d,u and Oyv denote partial derivatives. This is a differential equation because it
involves derivatives of the unknown functions u and v. It does not involve either the values
of u and v or the independent variables x and y. It is understood that this relation should
hold every point (x,y) where u(z, y), v(x,y) and their partial derivatives appearing in (1.2)
are defined.

Here are other examples of differential equations that involve derivatives of a single
unkown function:
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In all of these examples except k and 1 the unknown function itself also appears in the
equation. In examplesd, e, g, i, and j the independent variable also appears in the equation.



1.2. Classification. A differential equation is called an ordinary differential equation
(ODE) if it invloves derivatives with respect to only one independent variable. Otherwise,
it is called a partial differential equation (PDE). Example (1.1) is an ordinary differential
equation. Example (1.2) is a partial differential equation. Of the examples in (1.3):

a —j are ordinary differential equations;

k —n are partial differential equations.

The order of a differential equation is the order of the highest derivative that appears
in it. An n*"-order differential equation is one whose order is n. Examples (1.1) and (1.2)
are both first-order differential equations. Of the examples in (1.3):

a, ¢, d, j are first-order differential equations;
b, e, g, h. i, k, 1, m, n are second-order differential equations;

f is a third-order differential equation .

A differential equation is said to be linear if each side of the equation is a sum of
terms, each of which either

e is a derivative of an unknown function times a factor that is independent of the
unknown functions,

e is an unknown function times a factor that is independent of the unknown fuctions,
e or is entirely independent of the unknown fuctions.

Otherwise it is said to be nonlinear. Examples (1.1) and (1.2) are both linear differential
equations. Of the examples in (1.3):

e, g, 1, k, 1 are linear differential equations;

a—d, f, h, j, m, n are nonlinear differential equations.

Every n!" order linear ordinary differential equation for a single unknown function y(t)
can be brought into the form

d”y dn—ly dy
t)—2 e et a1 ()2 + p(t)y = (1),
pO()dt” +p1(>dt”—1+ +p 1(>dt+p (t)y =r(t)
where po(t), p2(t), - -+, pn(t), and 7(t) are given functions of ¢ such that pg(t) # 0. Linear

differential equations are important because much more can be said about them than for
general nonlinear differential equations.

In applications one is often faced with a system of coupled differential equations —
typically a system of m equations for m unknown functions. For example, two unknown
functions p(t) and ¢(t) might satisfy the system

dp dq

= 6=2p—q)p,  —=EB-4p—aqp. (1.4)
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Similarly, two unknown functions u(z,y) and v(x,y) might satisfy the system
Ozu = Oyv, Oyt + 0;v = 0. (1.5)

The order of a system of differential equations is the order of the highest derivatrive
appearing in the entire system. Example (1.4) is a first-order system of ordinary differential
equations, while (1.5) is a first-order system of partial differential equations. The size of
the systems that arise in applications can be extremely large. Systems of 10® ordinary
differential equations are being solved every day.

1.3. Course Overview. Differential equations arise in mathematics, physics, chem-
istry, biology, medicine, pharmacology, communications, electronics, finance, economics,
areospace, meteorology, climatology, oil recovery, hydrology, ecology, combustion, image
processing, and in many other fields. Partial differential equations are at the heart of most
of these applications. You need to know something about ordinary differential equations
before you study partial differential equations. This course will serve as your introduction
to ordinary differential equations. More specifically, we will study four classes of ordinary
differential equations. We illustrate these four classes below denoting the independent
variable by t.

(I) We will begin with single first-order ODEs that can be brought into the form

dy
o =&y (1.6)

These will be covered before the first in-class exam. You may have seen some of the
material in your calculus courses.

(IT) We will next study single n'*-order linear ODEs that can be brought into the form

bt a0t anty = 7). (L7)

These will be covered before the second in-class exam. This is the heart of the course.
Many students find this the most difficult part of the course.

(ITI) We will then turn towards systems of n first-order linear ODEs that can brought into

the form p
% = a11(t)yr +ar2(t)y2 + - - + arn(t)yn + f1(t)
dys .
% = a21(t)y1 + a22(t)y2 + -+ &Qn(t>yn + f2(t> ’
(1.8)
dyn
—= = a Oy + ana (2 + -+ ann(Dyn + fu(t)

These will be covered before the third in-class exam. This material builds upon the
material covered in part II.
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(IV) Finally, we will study systems of two first-order ODEs that can brought into the form

dx dy

B i— _— = . 1.
7 =f@y), =gy (1.9)
These will be covered before and immediately after the third in-class exam. This
material builds upon the material in parts I and III.

This is far from a complete treatment of the subject. It will however prepare you to learn
more about ordinary differential equations or to learn about partial differential equations.

2. First-Order Equations: Explict and Linear

2.1. Introduction. We now begin our study of first-order ordinary differential equations
that involve a single real-valued unknown function y(t). These can always be brought into

the form ;
Y
Flty —)=0.
( 7y7 dt)

If we try to solve this equation for dy/dt in terms of ¢ and y then there might be no solutions
or many solutions. For example, equation (c¢) of (1.3) clearly has no (real) solutions because
the sum of nonnegative terms cannot add to —1. On the other hand, equation (d) will be

satisfied if either p p
—y:\/1—4y2, or —y:—\/1—4y2.

dx dx

To avoid these complications we will restrict ourselves to equations that can be brought

into the form J
Y
_ - 2.1

Examples (1.1) and (a) of (1.3) are already in this form. Example (j) of (1.3) can easily
be brought into this form. And as we saw above, example (d) of (1.3) can be reduced to
two equations in this form.

We will say that y = Y (¢) is a solution of (2.1) over an interval (a,b) whenever

(i) the function Y is differentiable over (a,b),
(ii) f(¢,Y(t)) is defined for every ¢ in (a,b), (2.2)
(i) Y'(t) = f(¢,Y(t)) for every ¢ in (a,b).

Some basic questions we want to address are the following.
e When does (2.1) have solutions?
e Under what conditions is a solution unique?

e How can we find analytic expressions for solutions?



e How can we visualize solutions?
e How can we approximate solutions?

We will focus on the last three questions. They address practical skills that you can apply
when faced with a differential equation. The first two questions will be viewed through
the lens of the last three. They are important because differential equations that arise in
applications are supposed to model or predict something. If an equation either does not
have solutions or has more than one solution then it fails to meet this objective. Moreover,
in those situations the methods by which we will address the last three questions can give
misleading results. We will therefore study the first two questions with an eye towards
avoiding such pitfalls. Rather than addressing these questions for a general f(¢,y) in (2.1),
we will start by treating special forms f(¢,y) of increasing complexity.

2.2. Explicit Equations. The simplest form of (2.1) to treat is that of so-called explicit
equations,

dy
=7 (t). (2.3)

In this case the deriviative is given as an explicit function of £. This case is usually covered
in calculus courses, so we only review it here.

2.2.1. Recipe for Solving Explicit Equations. You should recall that a differentiable func-
tion F' is said to be a primitive or antiderivative of f if F/ = f. You thereby see that
y = Y (t) will be a solution of (2.3) if and only if Y is a primitive of f. You should also
recall that if you know one primitive F' of f then any other primitive Y of f must have the
form Y (t) = F(t) + ¢ for some constant c. We thereby see that if (2.3) has one solution
then it has a family of solutions given by the indefinite integral of f — namely, by

Y= /f(t) dt = F(t)+ ¢, where F'(t) = f(t) and ¢ is any constant . (2.4)

Moreover, there are no other solutions of (2.3). The family (2.4) is therefore called a
general solution of the differential equation (2.3).

2.2.2. Initial-Value Problems for Explicit Equations. In order to pick a unique solution
from the family (2.3) one must impose an additional condition that determines ¢. We do
this by imposing a so-called initial condition of the form

y(tr) =yr,

where t; is called the initial time and yy is called the initial value or initial datum. The
combination of the differential equation (2.2) with the above initial condition is

dy

—=f1t), yltr)=uyr. (2.5)

dt
This is a so-called an initial-value problem. By imposing the initial condition upon the
family (2.4) we see that

F(tI) +c=ys,
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which implies that ¢ = y; — F(t;). Therefore, if f has a primitive F' then the unique
solution of initial-value problem (2.5) is given by

y=yr+ F(t)— F(tr). (2.6)

The above arguments show that the problems of finding either a general solution of
(2.3) or the unique solution of the initial-value problem (2.5) reduce to the problem of
finding a primitive F' of f. Given such an F, a general solution of (2.3) is given by (2.4)
while the unique solition of initial-value problem (2.5) is given by (2.6). These arguments
however do not insure that such a primitive exists. Of course, for sufficiently simple f you
can find a primitive analytically.

Example: Find a general solution to the differential equation

dw 9
— = 1.
e 6z° +

Solution: By (2.4) a general solution is

w:/(6x2—|—1)d1’:2x3+x+c.

Example: Find a solution to the initial-value problem

d
d—j:6x2+1, w(l)=5.

Solution: The previous example shows the solution has the form w = 223+ z + ¢ for some
constant c¢. Imposing the initial condition gives 2 - 1% + 1 4+ ¢ = 5, which implies ¢ = 2.
Hence, the solution is w = 223 + z + 2.
Alternative Solution: By (2.6) with x; = 1, w; = 5, and the primitive F(z) = 223 + x
we find

w=wr+ F(z)— F(zr;) =5+ F(x) — F(1)

=5+ (22°+2) — (2-1°+1) =22° + x + 2.

Remark. As the solutions to previous example illustrate, when solving an initial-value
problem it is often easier to first find a general solution and then evaluate the ¢ from the
initial condition rather than to directly apply formula (2.6). With that approach you do
not have to memorize formula (2.6).

2.2.3. Emistence of Solutions for Explicit Equations. Finally, even when you cannot find
a primitive analytically, you can show that a solution exists by appealing to the Second
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Fundamental Theorem of Calculus. It states that if f is continuous over an interval (a, b)
then for every ¢, in (a,b) one has

d t
aLﬂ@wzmy

In other words, f has a primitive over (a,b) that can be expressed as a definite integral.
Here s is the “dummy” variable of integration in the above definite integral. If t; is in
(a,b) then the First Fundamental Theorem of Calculus implies that formula (2.6) can be
expressed as

y=w+[f®%- (27)

This shows that if f is continuous over an interval (a,b) that contains ¢; then the initial-
value problem (2.5) has a unique solution over (a, b), which is given by formula (2.7). This
formula can be approximated by numerical quadrature for any such f.

Definition: The largest interval over which a solution exists is called its interval
of existence or interval of definition.

For explicit equations one can usually identify the interval of existence for the solution of
the initial-value problem (2.5) by simply looking at f(t). Specifically, if Y () is the solution
of the initial value problem (2.5) then its interval of existence will be (¢, tr) whenever:

e f(t) is continuous over (tr,tg),

e the initial time ¢; is in (t1,tR),

e f(t) is not defined at both t = ¢y, and t = ty.

This is because the first two bullets along with the formula (2.7) imply that the interval
of existence will be at least (t1,tr), while the last two bullets along with our definition
(2.2) of solution imply that the interval of existence can be no bigger than (¢1,tr). This
argument works when t;, = —oo or tg = 0.

2.3. Linear Equations. The next simplest form of (2.1) to treat is that of so-called
linear equations,

dy

— = f(t) —a(t)y.

= f(0) - alt)y
In this case the derivative of y is given as a linear function of y whose coefficients are
functions of ¢. It contains the explicit case when a(t) = 0.

More generally, every linear first-order ODE for a single unknown function y(¢) can
be brought into the form
dy

PO+ at)y = (o), (23)

where p(t), q(t), and r(t) are given functions of ¢ such that p(t) # 0 for those t over which
the equation is considered. The functions p(t) and ¢(t) are called coefficients while the
function r(t) is called the forcing or driving.
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A linear equation may not be given to you in the form (2.8). However, you can put it
into this form by simply grouping all the terms involving either the unkown function or its
derivative on the left-hand side, while grouping all the other terms on the right-hand side.

Example. Consider the equation

dz 2t + z
t 2
4= :
edt 142

You should be able to see that this equation is linear and to bring it into the form (2.8).

Solution. By grouping all the terms involving either the z or its derivative on the left-hand
side, while grouping all the other terms on the right-hand side, we obtain

et%-i- ! z= 2t —t?
dt  1+t27 142

This is in the form (2.8). O

2.3.1. Recipe for Solving Linear Equations. The following is a straightforward recipe
that reduces the problem of generating an analytic solution of (2.8) to that of finding two
primitives. One first brings (2.8) into the normal form by dividing by p(¢). This yields

dy q(t) r(t)
— +a(t)y = f(t), where a(t) = —=, f(t)=—=. 2.9
Y aty = 10 =25, F0=10 (29)
Below we will show that this is equivalent to the so-called integrating factor form
A (A0, AW ') =
ley) =e JAGE where A'(t) = a(t) . (2.10)

This is an explicit equation for the derivative of eA(*)y that can be integrated to obtain

ety = /eA(t)f(t) dt = B(t) + ¢, where B'(t) = e*() f(t) and c is any constant .
(2.11)
A general solution of (2.8) is therefore given by the family
y=e AOB(t) + e 4Wc. (2.12)

If you are solving an initial-value problem then you can evaluate c from the initial condition.

The key to understanding the above recipe is to understand the equivalence of the
normal form (2.9) and integrating factor form (2.10). This equivalence follows from the

fact that p p p
(A, - A0 G (A
di (e y) “w T w (e )y

A Y A A dy
=e t—l—e Aty =e ( t—l—a(t)y).
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This calculation shows that equation (2.10) is simply equation (2.9) multiplied by e4®).

Because the factor eA®) is always positive, the equations are therefore equivalent. We call
eA®) an integrating factor of equation (2.9) because after multiplying both sides of (2.9)
by eA®) the left-hand side can be written as the derivative of e4(!)y. An integrating factor
thereby allows you to reduce the linear case to the explicit case.

Rather than memorizing formula (2.12), it is easier to approach first-order linear
ordinary differential equations by simply retracing the steps by which (2.12) was derived.
We illustrate this approach with the following examples.

Example. Find the general solution to

d
d—f:—5x+62t.

Solution. First bring the equation into the normal form

Z—f—f—Sx:ezt.

An integrating factor is eA®) where A’(t) = 5. Setting A(t) = 5t, we then bring the
equation into the integrating factor form

d
@ (eStx) — Bte2t _ Tt
dt

By integrating both sides of this equation we obtain
ety = /e” dt = %e” +c.

The general solution is therefore given by

= %6215 1Bt
Example. Find the general solution to

dz
(1+2)= 44tz = —.
dt (1+12)°

Solution. First bring the equation into the normal form

dz n 4t 1
— z= :
dt 1+ t2 (1 + t2)3
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An integrating factor is e(!) where A’(t) = 4t/(1 + t2). Setting A(t) = 2log(1 + t2), we
see that )
oA _ 2log(14+t7) _ <elog(1+t2)> _ (1 i t2)2.

We then bring the differential equation into the integrating factor form

%((1 + t2)22) — (141?)°

11
(1+2)° 1427

By integrating both sides of this equation we obtain

1
(1+t%)2z = / e dt = tan"'(t) + c.

The general solution is therefore given by

tan—1(¢) n c ‘
(1) (1+)°

z =

2.3.2. Homogeneous Linear Equations. The linear equation (2.8) is said to be homogeneous
when r(t) = 0 for every ¢, and is said to be inhomogeneous otherwise. When (2.8) is
homogeneous its normal form (2.9) is simply

d t
d—:z +a(t)y=0, where a(t) = % : (2.13)
By formula (2.12) its general solution is simply
y=e ¢, where A’(t) = a(t) and ¢ is any constant . (2.14)

Hence, for homogenous linear equations the recipe for solution only requires finding one
primitive — namely, a primitive of a(t). This means that for simply enough a(t) you
should be able to write down general solutions immediately.

Example. Find the general solution to

dp
L 5p.
at P
Solution. Because a(t) = —5, a general solution is given by

p=e’c, where ¢ is an arbitrary constant .
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Example. Find the general solution to

dz
— +t°2=0.
dt+ z

Solution. Because a(t) = t2, a general solution is given by

z=e€ 3" c, where c is an arbitrary constant .

2.83.3. Initial-Value Problems for Linear Equations. In order to pick a unique solution
from the family (2.12) one must impose an additional condition that determines c¢. We do
this by again imposing an initial condition of the form

y(tr) =yr,

where t; is called the initial time and yy is called the initial value or initial datum. The
combination of the differential equation (2.9) with the above initial condition is

dy

Tl a)yy=f(t),  yltr)=uyr. (2.15)
This is a so-called an initial-value problem. By imposing the initial condition upon the
family (2.12) we see that

e_A(tI)B(tI) +e At e =y,

which implies that ¢ = eA*1)y; — B(t;). Therefore, if the primitives A(t) and B(t) exist
then the unique solution of initial-value problem (2.15) is given by

y = e AOTAUD Y, 4 =AW (B(t) — B(tr)). (2.16)

2.83.4. Existence of Solutions for Linear Equations. Even when you cannot find primitives
A(t) and B(t) analytically, you can show that a solution exists by appealing to the Second
Fundamental Theorem of Calculus whenever a(t) and f(¢) are continuous over an interval
(tr,tr) that contains the initial time ¢;. In that case one can express A(t) and B(t) as
the definite integrals

A@:/a@@, B@:/ewv@@.

tr tr

For this choice of A(t) and B(t) one has A(t;) = B(t;) = 0, whereby formula (2.16)
becomes

t
y=e A0y + e AOB(#) = e AWy, 4 / e AOTAG) £(5) ds . (2.17)

tr
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The First Fundamental Theorem of Calculus implies that

At) — A(s) = / a(sy)dsy,

whereby formula (2.17) can be expressed as

yzexp(—/tja(s) ds)y;—f—/tjexp(—/:a(sl)dsl) £(s)ds. (2.18)

This shows that if a and f are continuous over an interval (¢, tr) that contains ¢; then the
initial-value problem (2.15) has a unique solution over (t1,tg), which is given by formula
(2.18).

For linear equations one can usually identify the interval of existence for the solution
of the initial-value problem (2.15) by simply looking at a(t) and f(t). Specifically, if Y (¢) is
the solution of the initial value problem (2.15) then its interval of existence will be (¢, tr)
whenever:

e the coefficient a(t) and forcing f(t) are continuous over (tr,tg),
e the initial time ¢; is in (¢, tR),
e cither the coefficient a(t) or the forcing f(¢) is not defined at both ¢t =t and t = tp.

This is because the first two bullets along with the formula (2.18) imply that the interval
of existence will be at least (¢,tr), while the last two bullets along with our definition
(2.2) of solution imply that the interval of existence can be no bigger than (¢, tr) because
the equation breaks down at t = t; and t = tz. This argument works when t;, = —oo or
t R — OQ.

Example: Give the interval of existence for the solution of the initial-value problem

1

B L cot(t) z =
CO z = 10g(t2> )

dt

z2(4) =3.

Solution: The coefficient cot(t) is not defined at t = nm where n is any integer, and is
continuous everywhere else. The forcing 1/log(¢?) is not defined at ¢t = 0 and t = 1, and
is continuous everywhere else. The interval of existence is therefore (7, 27) because: both
cot(t) and 1/log(t?) are continuous over this interval; the initial time is t = 4, which is in
this interval; cot(t) is not defined at ¢t = 7 and ¢t = 27w. [

Example: Give the interval of existence for the solution of the initial-value problem

1

dz + cot(t) z =
cot(t) z = Tog(12) ’

dt

2(2) =3.
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Solution: The interval of existence is (1,7) because: both cot(t) and 1/log(t?) are con-
tinuous over this interval; the initial time is ¢ = 2, which is in this interval; cot(t) is not
defined at t = 7 while 1/log(t?) is not defined at t = 1. O

Remark: If y = Y (¢) is a solution of (2.15) whose interval of existence is (¢r,tr) then
this does not mean that Y (¢) will become singular at either ¢t = t;, or ¢t = tg when those
endpoints are finite. For example, y = t* solves the initial-value problem

dy
t— 4y =0 1) =1
W , y(1) ,

and is defined for every ¢t. However, the interval of existence is just (0,00) because the
initial time is ¢t = 1 and normal form of the equation is

dy 4
dt t

the coefficient of which is undefined at ¢t = 0.

Remark: It is natural to ask why we do not extend our definition of solutions so that
y = t* is considered a solution of the initial-value problem

dy
t— —4y =0, 1)=1,

prt y(1)
for every t. For example, we might say that y = Y (¢) is a solution provided it is differ-
entiable and satisfies the above equation rather than its normal form. However by this
definition the function

tt fort>0
Y(t) =

ct* fort<0

also solves the initial-value problem for any c. This shows that because the equation breaks
down at t = 0, there are many ways to extend the solution y = t* to t < 0. We avoid such
complications by requiring the normal form of the equation to be defined.



