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4. Nonhomogeneous Equations

4.1: General Theory. We are now ready to study nonhomogeneous linear equations.
An nth order nonhomogeneous linear ODE has the normal form

L(t)y = f(t) , (4.1)

where the differential operator L(t) has the form

L(t) =
dn

dtn
+ a1(t)

dn−1

dtn−1
+ · · · + an−1(t)

d

dt
+ an(t) . (4.2)

We will assume throughout this section that the coefficients a1, a2, · · · , an and the forcing
f are continuous over an interval (tL, tR), so that Therorem 1.1 can be applied.

We will exploit the following properties of nonhomogeneous equations.

Theorem 4.1: If Y1(t) and Y2(t) are solutions of (4.1) then Z(t) = Y1(t)− Y2(t)
is a solution of the associated homogeneous equation L(t)Z(t) = 0.

Proof: Because L(t)Y1(t) = f(t) and L(t)Y2(t) = f(t) one sees that

L(t)Z(t) = L(t)
(

Y1(t) − Y2(t)
)

= L(t)Y1(t) − L(t)Y2(t) = f(t) − f(t) = 0 .

Theorem 4.2: If YP (t) is a solution of (4.1) and YH(t) is a solution of the
associated homogeneous equation L(t)YH(t) = 0 then Y (t) = YH(t) + YP (t) is
also a solution of (4.1).

Proof: Because L(t)YH(t) = 0 and L(t)YP (t) = f(t) one sees that

L(t)Y (t) = L(t)
(

YH(t) + YP (t)
)

= L(t)YH(t) + L(t)YP (t) = 0 + f(t) = f(t) .

Theorem 4.2 suggests that we can construct general solutions of the nonhomogeneous
equation (4.1) as follows.

(1) Find a general solution YH(t) of the associated homogeneous equation L(t)y = 0.

(2) Find a particular solution YP (t) of equation (4.1).

(3) Then YH(t) + YP (t) is a general solution of (4.1).

Of course, step (1) reduces to finding a fundamental set of solutions of the associated
homogeneous equation, Y1, Y2, · · · , Yn. Then

YH(t) = c1Y1(t) + c2Y2(t) + · · ·+ cnYn(t) .

If L(t) has constant coefficients (so that L(t) = L) then this can be done by the recipe of
Section 3.
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Example. One can check that 1
4 t is a particular solution of

D2y + 4y = t .

This equation has constant coefficients. Its characteristic polynomial is p(z) = z2 + 4,
which has roots ±i2. A general solution is therefore

y = c1 cos(2t) + c2 sin(2t) + 1
4 t .

Example. One can check that −1
2
et is a particular solution of

D2y − Dy − 2y = et .

This equation has constant coefficients. Its characteristic polynomial is p(z) = z2−z−2 =
(z − 2)(z + 1), which has roots −1 and 2. A general solution is therefore

y = c1e
−t + c2c

2t − 1
2et .

These examples show that when L(t) has constant coefficients (so that L(t) = L),
finding YP (t) becomes the crux of matter. If L(t) does not have constant coefficients then
a fundamental set of solutions of the associated homogeneous equation will generally be
given to you. In that case, finding YP (t) again becomes the crux of matter. The remainder
of this section will present methods for finding particular solutions YP (t).

4.2: Undertermined Coefficients. This method can be used to construct a particular
solution of an nth order nonhomogeneous linear ODE in the normal form

Ly = f(t) (4.3)

whenever the following two conditions are met.

(1) The differential operator L has constant coefficients,

L = Dn + a1D
n−1 + · · ·+ an−1D + an . (4.4)

(2) The forcing f(t) has the form

f(t) =
(

f0t
d + f1t

d−1 + · · · + fd

)

ert cos(st)

+
(

g0t
d + g1t

d−1 + · · ·+ gd

)

ert sin(st) ,
(4.5)

for some nonnegative integer d and real numbers r and s. Here we are assuming that
f0, f1, · · · , fd and g0, g1, · · · , gd are all real and that either f0 or sg0 is nonzero.
The integer d is called the degree of the forcing while the number r + is is called its
characteristic.
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The first of these conditions is always easy to verify by inspection. Verification of the
second usually can also be done by inspection, but sometimes it might require the use of a
trigonometric or some other identity. You should be able identify when a forcing f(t) has
the form (4.5), and when it is, to read-off its degree and characteristic.

Example: The forcing of the equation Ly = 2e2t has the form (4.5) with degree d = 0
and characteristic r + is = 2.

Example: The forcing of the equation Ly = t2e−3t has the form (4.5) with degree d = 2
and characteristic r + is = −3.

Example: The forcing of the equation Ly = t e5t sin(3t) has the form (4.5) with degree
d = 1 and characteristic r + is = 5 + i3.

Example: The forcing of the equation Ly = sin(2t) cos(2t) can be put into the form (4.5)
by using the double-angle identity sin(4t) = 2 sin(2t) cos(2t). The equation can thereby be
expressed as Ly = 1

2
sin(4t). The forcing now has the form (4.5) with degree d = 0 and

characteristic r + is = i4.

The method of undetermined coefficients is based on the observation that for any
forcing of the form (4.5) one can construct explicit formulas for a particular solution of
(4.3) by evaluating the KEY identity and some of its derivatives with respect to z at
z = r + is. For example, if p(z) is the characteristic polynomial of L then the KEY
identity and its first four derivatives are

L
(

ezt
)

= p(z)ezt ,

L
(

t ezt
)

= p(z) t ezt + p′(z) ezt ,

L
(

t2ezt
)

= p(z) t2ezt + 2p′(z) t ezt + p′′(z) ezt ,

L
(

t3ezt
)

= p(z) t3ezt + 3p′(z) t2ezt + 3p′′(z) t ezt + p′′′(z) ezt ,

L
(

t4ezt
)

= p(z) t4ezt + 4p′(z) t3ezt + 6p′′(z) t2ezt + 4p′′′(z) t ezt + p(4)(z) ezt .

(4.6)

Notice that when these are evaluated at z = r + is then the terms on the right-hand sides
above have the same form as those appearing in the forcing (4.5).

If the characteristic r+is is not a root of p(z) then one needs through the dth derivative
of the KEY identity. These should be evaluated at z = r + is. A linear combination of
the resulting d + 1 equations (and their conjugates if s 6= 0) can then be found so that its
right-hand side equals any f(t) given by (4.5). One then finds a particular solution of the
form

YP (t) =
(

A0t
d + A1t

d−1 + · · ·+ Ad

)

ert cos(st)

+
(

B0t
d + B1t

d−1 + · · ·+ Bd

)

ert sin(st) ,
(4.7)

where A0, A1, · · · , Ad, and B0, B1, · · · , Bd are real constants. Notice that when s = 0
the terms involving B0, B1, · · · , Bd all vanish.
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More generally, if the characteristic r + is is a root of p(z) of multiplicity m then one
needs through the (m + d)th derivative of the KEY identity. These should be evaluated at
z = r + is. Because r + is is a root of multiplicity m, the first m of these will vanish when
evaluated at z = r + is. A linear combination of the resulting d + 1 equations (and their
conjugates if s 6= 0) can then be found so that its right-hand side equals any f(t) given by
(4.5). One then finds a particular solution of the form

YP (t) =
(

A0t
m+d + A1t

m+d−1 + · · ·+ Adt
m

)

ert cos(st)

+
(

B0t
m+d + B1t

m+d−1 + · · ·+ Bdt
m

)

ert sin(st) ,
(4.8)

where A0, A1, · · · , Ad, and B0, B1, · · · , Bd are constants. Notice that when s = 0 the
terms involving B0, B1, · · · , Bd all vanish. This case includes the previous one if we
understand “r + is is a root of p(z) of multiplicity 0” to mean that it is not a root of p(z).
When one then sets m = 0 in (4.8), it reduces to (4.7).

Given a nonhomogeneous problem Ly = f(t) in which the forcing f(t) has the form
(4.5) with degree d and characteristic r + is that is a root of p(z) of multiplicity m, the
method of undetermined coefficients will find YP (t) in the form (4.8) with A0, A1, · · · ,
Ad, and B0, B1, · · · , Bd as unknowns to be determined. These are the “undetermined
coefficients” of the method. There are 2d + 2 unknowns when s 6= 0, and only d + 1
unknowns when s = 0 because in that case the terms involving B0, B1, · · · , Bd vanish.
These unknowns can be determined in one of two ways.

1. Direct Substitution. You can substitute the form (4.8) directly into equation (4.3),
collect like terms, and match the coefficients in front of each of the linearly independent
functions in (4.5). In general this leads to a linear algebraic system of either 2d + 2
equations (if s 6= 0) or d+1 equations (if s = 0) that must be solved. This is the only
approach presented in the book.

2. KEY Identity Evaluations. You can evaluate the mth through the (m + d)th

derivative of the KEY identity at z = r + is, then find a linear combination of the
resulting d + 1 equations (and their conjugates if s 6= 0) whose right-hand side equals
any f(t) given by (4.5). This is the approach presented most often in the lectures.

Both of these approaches always work. They are both fairly painless when m and d are
both small and s = 0. When m is not small then the first approach is usually faster. When
m and d are both small and s 6= 0 then the second approach is usually faster. For the
problems you will face both m and d will be small, so m + d will seldom be larger than
3, and more commonly be 0, 1, or 2. Both approaches will be presented in the following
examples.

Example: Find a general solution of

Ly = D2y + 2Dy + 10y = 6e2t .

Solution: The characteristic polynomial is

p(z) = z2 + 2z + 10 = (z + 1)2 + 9 = (z + 1)2 + 32 .
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Its roots are −1 ± i3. Hence,

YH(t) = c1e
−t cos(3t) + c2e

−t sin(3t) .

To find a particular solution, first notice that the forcing is of the form (4.5) with degree
d = 0 and characteristic r + is = 2. Notice that m = 0 because the characteristic 2 is not
a root of p(z).

Direct Substitution. Because m = d = 0 and r + is = 2, we see from (4.8) that YP has
the form

YP (t) = Ae2t .

Because
Y ′

P (t) = 2Ae2t , Y ′′

P (t) = 4Ae2t ,

we see that
LYP (t) = Y ′′

P (t) + 2Y ′

P (t) + 10YP (t)

= 4Ae2t + 4Ae2t + 10Ae2t = 18Ae2t .

If we set LYP (t) = 6e2t then we see that 18A = 6, whereby A = 1
3 . Hence,

YP (t) = 1
3e2t .

A general solution is therefore

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 1
3
e2t .

KEY Identity Evaluations. Because m + d = 0, we will only need the KEY identity:

L
(

ezt
)

= (z2 + 2z + 10)ezt .

Evaluate this at z = 2 to obtain

L
(

e2t
)

= (4 + 4 + 10)e2t = 18e2t .

Dividing this by 3 gives
L
(

1
3e2t

)

= 6e2t ,

from which we read off that
YP (t) = 1

3e2t .

A general solution is therefore

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 1
3
e2t .
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Example: Find a general solution of

Ly = D2y + 2Dy + 10y = 4te2t .

Solution: As before the characteristic polynomial is

p(z) = z2 + 2z + 10 = (z + 1)2 + 32 .

Its roots are −1 ± i3. Hence,

YH(t) = c1e
−t cos(3t) + c2e

−t sin(3t) .

To find a particular solution, first notice that the forcing is of the form (4.5) with degree
d = 1 and characteristic r + is = 2. Notice that m = 0 because the characteristic 2 is not
a root of p(z).

Direct Substitution. Because m = 0, d = 1 and r + is = 2, we see from (4.8) that YP

has the form
YP (t) = (A0t + A1)e

2t .

Because

Y ′

P (t) = 2(A0t + A1)e
2t + A0e

2t , Y ′′

P (t) = 4(A0t + A1)e
2t + 4A0e

2t ,

we see that

LYP (t) = Y ′′

P (t) + 2Y ′

P (t) + 10YP (t)

= 4(A0t + A1)e
2t + 4A0e

2t + 4(A0t + A1)e
2t + 2A0e

2t + 10(A0t + A1)e
2t

= 18(A0t + A1)e
2t + 6A0e

2t

= 18A0te
2t + (18A1 + 6A0)e

2t .

If we set LYP (t) = 4te2t then by equating the coefficients of the linearly independent
functions te2t and e2t we see that

18A0 = 4 , 18A1 + 6A0 = 0 .

Upon solving this linear algebraic system for A0 and A1 we first find that A0 = 2
9 and

then that A1 = −1
3
A0 = − 2

27
. Hence,

YP (t) = 2
9 te2t − 2

27e2t .

A general solution is therefore

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 2
9
te2t − 2

27
e2t .
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KEY Identity Evaluations. Because m + d = 1, we will only need the KEY identity
and its first derivative with respect to z:

L
(

ezt
)

= (z2 + 2z + 10) ezt ,

L
(

t ezt
)

= (z2 + 2z + 10) t ezt + (2z + 2) ezt .

Evaluate these at z = 2 to obtain

L
(

e2t
)

= 18e2t , L
(

t e2t
)

= 18 t e2t + 6 e2t .

Because we want to isolate the t e2t term on the right-hand side, subtract one-third the
first equation from the second to get

L
(

t e2t − 1
3e2t

)

= L
(

t e2t
)

− 1
3L

(

e2t
)

= 18 t e2t .

After multiplying this by 2
9 you can read off that

YP (t) = 2
9 te2t − 2

27e2t .

A general solution is therefore

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 2
9 te2t − 2

27e2t .

We now illustrate an alternative way to use the KEY Identity Evaluations approach
when you have more than one evaluation of the KEY identity and its derivatives, such as
in the previous example.

Example: Find a general solution of

Ly = D2y + 2Dy + 10y = 4te2t .

Alternative KEY Identity Evaluations: Proceed as in the last example up to the
point

L
(

e2t
)

= 18e2t , L
(

t e2t
)

= 18 t e2t + 6 e2t .

If we set YP (t) = A0 t e2t + A1 e2t then we see that

LYP (t) = A0L
(

t e2t
)

+ A1L
(

e2t
)

= A0

(

18 t e2t + 6 e2t
)

+ A118e2t

= 18A0 t e2t + (6A0 + 18A1)e
2t .

If we set LYP (t) = 4te2t then by equating the coefficients of the linearly independent
functions t e2t and e2t we see that

18A0 − 4 , 6A0 + 18A1 = 0 .
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Upon solving this linear algebraic system for A0 and A1 we first find that A0 = 2
9 and

then that A1 = −1
3
A0 = − 2

27
. Hence,

YP (t) = 2
9 te2t − 2

27e2t .

A general solution is therefore

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 2
9 te2t − 2

27e2t .

Remark: Notice that this alternative way to using KEY Identity Evaluations led to
the same linear algebraic system for A0 and A1 that we got for the Direct Substitution
approach. This will generally be the case because they are just two different ways to
evaluate LYP (t) for the same family of YP (t).

Example: Find a general solution of

Ly = D2y + 2Dy + 10y = cos(2t) .

Solution: As before, the characteristic polynomial is

p(z) = z2 + 2z + 10 = (z + 1)2 + 32 .

Its roots are −1 ± i3. Hence,

YH(t) = c1e
−t cos(3t) + c2e

−t sin(3t) .

To find a particular solution, first notice that the forcing is of the form (4.5) with degree
d = 0 and characteristic r + is = i2. Notice that m = 0 because the characteristic i2 is
not a root of p(z).

Direct Substitution. Because m = d = 0 and r + is = i2, we see from (4.8) that YP has
the form

YP (t) = A cos(2t) + B sin(2t) .

Because

Y ′

P (t) = −2A sin(2t) + 2B cos(2t) , Y ′′

P (t) = −4A cos(2t) − 4B sin(2t) ,

we see that

LYP (t) = Y ′′

P (t) + 2Y ′

P (t) + 10YP (t)

= −4A cos(2t) − 4B sin(2t) − 4A sin(2t) + 4B cos(2t) + 10A cos(2t) + 10B sin(2t)

= (6A + 4B) cos(2t) + (6B − 4A) sin(2t) .
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If we set LYP (t) = cos(2t) then by equating the coefficients of the linearly independent
functions cos(2t) and sin(2t) we see that

6A + 4B = 1 , −4A + 6B = 0 .

Upon solving this system we find that A = 3
26 and B = 1

13 , whereby

YP (t) = 3
26 cos(2t) + 1

13 sin(2t) .

A general solution is therefore

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 3
26 cos(2t) + 1

13 sin(2t) .

KEY Identity Evaluations. Because m + d = 0, we will only need the KEY identity:

L
(

ezt
)

= (z2 + 2z + 10)ezt .

Evaluate this at z = i2 to obtain

L
(

ei2t
)

= (−4 + i4 + 10)ei2t = (6 + i4)ei2t .

Dividing this by 6 + i4 gives

L

(

1

6 + i4
ei2t

)

= ei2t = cos(2t) + i sin(2t) .

Taking the real part of each side gives

L

(

Re

(

1

6 + i4
ei2t

))

= cos(2t) ,

from which we read off that

YP (t) = Re

(

1

6 + i4
ei2t

)

= Re

(

6 − i4

62 + 42
ei2t

)

= 1
52 Re

(

(6 − i4)ei2t
)

= 1
52 Re

(

(6 − i4)(cos(2t) + i sin(2t))
)

= 6
52 cos(2t) + 4

52 sin(2t) .

A general solution is therefore

y = c1e
−t cos(3t) + c2e

−t sin(3t) + 3
26

cos(2t) + 1
13

sin(2t) .
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Example: Find a general solution of

Ly = D2y + 4y = t cos(2t) .

Solution: This problem has constant coefficients. Its characteristic polynomial is

p(z) = z2 + 4 = z2 + 22 .

Its roots are ±i2. Hence,

YH(t) = c1 cos(2t) + c2 sin(2t) .

To find a particular solution, first notice that the forcing is of the form (4.5) with degree
d = 1 and characteristic r+ = i2. Notice that m = 1 because the characteristic i2 is a root
of p(z).

KEY Identity Evaluations. Because m + d = 2, we will need the first two derivatives
of the KEY identity:

L
(

ezt
)

= (z2 + 4)ezt ,

L
(

t ezt
)

= (z2 + 4)t ezt + 2z ezt ,

L
(

t2ezt
)

= (z2 + 4)t2ezt + 4z t ezt + 2ezt .

Evaluate these at z = i2 to obtain

L
(

ei2t
)

= 0 , L
(

t ei2t
)

= i4 ei2t , L
(

t2ei2t
)

= i8 t ei2t + 2ei2t .

Because t cos(2t) = Re(t ei2t), we want to isolate the t ei2t term on the right-hand side.
This is done by multiplying the second equation by i1

2 and adding it to the third to find

L
(

(t2 + i1
2 t)ei2t

)

= L
(

t2ei2t
)

+ i1
2L

(

t ei2t
)

= i8 t ei2t .

Now divide this by i8 to obtain

L

(

t2 + i1
2 t

i8
ei2t

)

= t ei2t ,

from which we read off that

YP (t) = Re

(

t2 + i1
2
t

i8
ei2t

)

=
t

16
Re

(

(1 − i2t)ei2t
)

=
t

16

(

cos(2t) + 2t sin(2t)
)

.

A general solution is therefore

y = c1 cos(2t) + c2 sin(2t) + 1
16

t cos(2t) + 1
8
t2 sin(2t) .
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Direct Substitution. Because m = d = 1 and r + is = i2, we see from (4.8) that YP has
the form

YP (t) = (A0t
2 + A1t) cos(2t) + (B0t

2 + B1t) sin(2t) .

Because

Y ′

P (t) = −2(A0t
2 + A1t) sin(2t) + (2A0t + A1) cos(2t)

+ 2(B0t
2 + B1t) cos(2t) + (2B0t + B1) sin(2t)

=
(

2B0t
2 + 2(B1 + A0)t + A1

)

cos(2t) −
(

2A0t
2 + 2(A1 − B0)t − B1

)

sin(2t) ,

Y ′′

P (t) = −2
(

2B0t
2 + 2(B1 + A0)t + A1

)

sin(2t) +
(

4B0t + 2(B1 + A0)
)

cos(2t)

− 2
(

2A0t
2 + 2(A1 − B0)t − B1

)

cos(2t) −
(

4A0t + 2(A1 − B0)
)

sin(2t)

= −
(

4A0t
2 + (4A1 − 8B0)t − 4B1 − 2A0

)

cos(2t)

−
(

4B0t
2 + (4B1 + 8A0)t + 4A1 − 2B0

)

sin(2t) ,

we see that

LYP (t) = Y ′′

P (t) + 4YP (t)

= −
[(

4A0t
2 + (4A1 − 8B0)t − 4B1 − 2A0

)

cos(2t)

+
(

4B0t
2 + (4B1 + 8A0)t + 4A1 − 2B0

)

sin(2t)
]

+ 4
[

(A0t
2 + A1t) cos(2t) + (B0t

2 + B1t) sin(2t)
]

=
(

8B0t + 4B1 + 2A0

)

cos(2t) −
(

8A0t + 4A1 − 2B0

)

sin(2t) .

If we set LYP (t) = t cos(2t) then by equating the coefficients of the linearly independent
functions cos(2t), t cos(2t), sin(2t), and t sin(2t), we see that

4B1 + 2A0 = 0 , 8B0 = 1 , 4A1 − 2B0 = 0 , 8A0 = 0 .

The solution of this system is A0 = 0, B0 = 1
8
, A1 = 1

16
, and B1 = 0, whereby

YP (t) = 1
16 t cos(2t) + 1

8 t2 sin(2t) .

A general solution is therefore

y = c1 cos(2t) + c2 sin(2t) + 1
16

t cos(2t) + 1
8
t2 sin(2t) .

Remark: The above example is typical of a case when the KEY identity evaluations
approach is far faster than direct substitution. This is because the forcing has a positive
degree d = 1 and a conjugate pair characteristic, r± is = ±i2, of small multiplicity, m = 1.
This advantage would be much more dramatic for larger d, but would diminish some for
larger m.
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The method of undetermined coefficients can be applied multiple times to construct
a particular solution of Ly = f(t) whenever

(1) the differential operator L has constant coefficients,

(2) the forcing f(t) is a sum of terms of the form (4.5), each with different characteristics.

The first of these conditions is always easy to verify by inspection. Verification of the
second usually can also be done by inspection, but sometimes it might require the use of a
trigonometric or some other identity. You should be able identify when a forcing f(t) can
be expressed as a sum of terms of the form (4.5), and when it is, to read-off the degree
and characteristic of each component.

Example: The forcing of the equation Ly = cos(t)2 can be written as a sum of terms of
the form (4.5) by using the identity cos(t)2 = (1 + cos(2t))/2. One sees that

Ly = cos(t)2 = 1
2 + 1

2 cos(2t) .

The both terms on the right-hand side above have the form (4.5); the first with degree
d = 0 and characteristic r + is = 0, and the second with degree d = 0 and characteristic
r + is = i2.

Example: The forcing of the equation Ly = sin(2t) cos(3t) can be written as a sum of
terms of the form (4.5) by using the identity

sin(2t) cos(3t) = 1
2

(

sin(3t + 2t) − sin(3t − 2t)
)

= 1
2

(

sin(5t) − sin(t)
)

.

One sees that
Ly = sin(2t) cos(3t) = 1

2 sin(5t) − 1
2 sin(t) .

The both terms on the right-hand side above have the form (4.5); the first with degree
d = 0 and characteristic r + is = i5, and the second with degree d = 0 and characteristic
r + is = i.

Example: The forcing of the equation Ly = tan(t) cannot be written as a sum of term of
the form (4.5) because every such function is smooth (infinitely differentiable) while tan(t)
is not defined at t = π

2 + mπ for every integer m.

Given a nonhomogeneous problem Ly = f(t) in which the forcing f(t) is a sum of
terms that each have the form (4.5), you must first identify the characteristic of each term
and group all the terms with the same characteristic together. You then decompose f(t)
as

f(t) = f1(t) + f2(t) + · · · + fg(t) ,

where each fj(t) contains all the terms of a given characteristic. Each fj(t) will then have
the form (4.5) for some degree d and some characteristic r + is. You then can apply the
method of undetermined coefficients to find particular solutions YjP to each of

LY1P (t) = f1(t) , LY2P (t) = f2(t) , · · · LYgP (t) = fg(t) . (4.9)

Then YP (t) = Y1P (t) + Y2P (t) + · · ·+ YgP (t) is a particular solution of Ly = f(t).
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Example: If Ly = D4y + 25D2y = f(t) with

f(t) = e2t + 9 cos(5t) + 4t2e2t − 7t sin(5t) + 8 − 6t ,

you decompose f(t) as f(t) = f1(t) + f2(t) + f3(t), where

f1(t) = 8 − 6t , f2(t) =
(

1 + 4t2
)

e2t , f3(t) = 9 cos(5t) − 7t sin(5t) .

Here f1(t), f2(t), and f3(t) contain all the terms of f(t) with characteristic 0, 2, and
i5, respectively. They each have the form (4.5) with degree 1, 2, and 1 respectively. The
characteristic polynomial is p(z) = z4+25z2 = z2(z2+52), which has roots 0, 0, −i5, i5. We
thereby see that the characteristics 0, 2, and i5 have multiplicities 2, 0, and 1 respectively.
We can then read off from (4.8) that the method of undertermined coefficients will yield
particular solutions for each of the problems in (4.9) that have the forms

Y1P (t) = A0t
3 + A1t

2 ,

Y2P (t) =
(

A0t
2 + A1t + A2

)

e2t ,

Y3P (t) =
(

A0t
2 + A1t

)

cos(5t) +
(

B0t
2 + B1t

)

sin(5t) .

The KEY identity approach is usually the fastest way to evaluate the undertermined
coefficients in such problems because the KEY identity and its derivatives only have to be
computed once. In the problem at hand, m + d for the characteristics 0, 2, and i5 are 3,
2, and 2. We therefore need the KEY identity and its first three derivatives:

L
(

ezt
)

=
(

z4 + 25z2
)

ezt ,

L
(

t ezt
)

=
(

z4 + 25z2
)

t ezt +
(

4z3 + 50z
)

ezt ,

L
(

t2ezt
)

=
(

z4 + 25z2
)

t2ezt + 2
(

4z3 + 50z
)

t ezt +
(

12z2 + 50
)

ezt ,

L
(

t3ezt
)

=
(

z4 + 25z2
)

t3ezt + 3
(

4z3 + 50z
)

t2ezt + 3
(

12z2 + 50
)

t ezt + 24z ezt ,

For the characteristic 0 one has m = 2 and m + d = 3, so we evaluate the second
through third derivative of the KEY identity at z = 0 to obtain

L
(

t2
)

= 50 , L
(

t3
)

= 150t .

It follows that L
(

2
25

t2 − 1
25

t3
)

= 8 − 6t, whereby Y1P (t) = 2
25

t2 − 1
25

t3.

For the characteristic 2 one has m = 0 and m + d = 2, so we evaluate the zeroth
through second derivative of the KEY identity at z = 2 to obtain

L
(

e2t
)

= 116 e2t ,

L
(

t e2t
)

= 116 t e2t + 132e2t ,

L
(

t2e2t
)

= 116 t2e2t + 264 t e2t + 98 e2t .
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You eliminate t e2t from the right-hand sides by multiplying the second equation by 264
116

and subtracting it from the third equation, thereby obtaining

L
(

t2e2t − 264
116 t e2t

)

= 116 t2e2t +
(

98 − 264
116132

)

e2t .

Dividing this by 29 gives

L
(

1
29

t2e2t − 66
292 t e2t

)

= 4 t2e2t +
(

98
29

− 66·132
292

)

e2t .

You eliminate e2t from the right-hand side above by multiplying the first equation by
1

116

(

98
29 − 66·132

292

)

and subtracting it from the above equation, thereby obtaining

L
(

1
29 t2e2t − 66

292 t e2t − 1
116

(

98
29 − 66·132

292

)

e2t
)

= 4 t2e2t .

Next, by multiplying the first equation by 1
116 and adding it to the above equation you

obtain

L
(

1
29 t2e2t − 66

292 t e2t − 1
116

(

98
29 − 66·132

292 − 1
)

e2t
)

=
(

1 + 4 t2
)

e2t ,

whereby Y2P (t) = 1
29

t2e2t − 66
292 t e2t − 1

116

(

98
29

− 66·132
292 − 1

)

e2t.

For the characteristic i5 one has m = 1 and m+d = 2, so we evaluate the first through
second derivative of the KEY identity at z = i5 to obtain

L
(

t ei5t
)

= −i250 ei5t , L
(

t2ei5t
)

= −i2 · 250 t ei5t − 250 ei5t .

Upon multiplying the first equation by i and adding it to the second we find that

L
(

t2ei5t + it ei5t
)

= −i2 · 250 t ei5t .

The first equation and the above equation imply

L
(

i 1
250 t ei5t

)

= ei5t , L
(

1
500 t2ei5t + i 1

500 t ei5t
)

= −i t ei5t .

The real parts of the above equations are

L
(

− 1
250 t sin(5t)

)

= cos(5t) , L
(

1
500 t2 cos(5t) − 1

500 t sin(5t)
)

= t sin(5t) .

This implies that

L
(

− 9
250

t sin(5t) − 7
500

t2 cos(5t) + 7
500

t sin(5t)
)

= 9 cos(5t) − 7t sin(5t) ,

whereby Y3P (t) = − 11
500

t sin(5t) − 7
500

t2 cos(5t).
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4.3: Green Functions: Constant Coefficient Case. This method can be used to
construct a particular solution of an nth order nonhomogeneous linear ODE in the normal
form

Ly = f(t) (4.10)

whenever the differential operator L has constant coefficients,

L = Dn + a1D
n−1 + · · · + an−1D + an . (4.11)

Specifically, a particular solution of (4.10) is given by

YP (t) =

∫ t

tI

g(t − s)f(s) ds , (4.12)

where tI is any initial time and g(t) is the solution of the homogeneous initial-value problem

Lg = 0 , g(0) = 0 , g′(0) = 0 , · · · g(n−2)(0) = 0 , g(n−1)(0) = 1 . (4.13)

The function g is called the Green function associated with the operator L. Solving the
initial-value problem (4.13) for the Green function is never difficult. The method thereby
reduces the problem of finding a particular solution YP (t) for any forcing f(t) to that of
evaluating the integral in (4.12). However, evaluating this integral explicitly can be quite
difficult or impossible. At worst, you can leave your answer in terms of a definite integral.

Before we verify that YP (t) given by (4.12) is a solution of (4.10), let us work a few
examples to show how the method works.

Example: Find a general solution of

Ly = D2y − y =
2

et + e−t
.

Solution: The operator L has constant coefficients. Its characteristic polynomial is given
by p(z) = z2 −1 = (z−1)(z +1), which has roots ±1. A general solution of the associated
homogeneous equation is therefore

YH(t) = c1e
t + c2e

−t .

By (4.13) the Green function g associated with L is the solution of the initial-value problem

D2g − g = 0 , g(0) = 0 , g′(0) = 1 .

Set g(t) = c1e
t + c2e

−t. The first initial condition implies g(0) = c1 + c2 = 0. Because
g′(t) = c1e

t − c2e
−t, the second condition implies g′(0) = c1 − c2 = 1. Upon solving
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these equations you find that c1 = 1
2 and c2 = −1

2 . The Green function is therefore

g(t) = 1
2
(et − e−t) = sinh(t). The particular solution given by (4.12) with tI = 0 is then

YP (t) =

∫ t

0

et−s − e−t+s

es + e−s
ds = et

∫ t

0

e−s

es + e−s
ds − e−t

∫ t

0

es

es + e−s
ds .

The definite integrals in the above expression can be evaluated as

∫ t

0

e−s

es + e−s
ds =

∫ t

0

e−2s

1 + e−2s
ds = −1

2 log
(

1 + e−2s
)

∣

∣

∣

∣

t

s=0

= −1
2 log

(

1 + e−2t

2

)

,

∫ t

0

es

es + e−s
ds =

∫ t

0

e2s

e2s + 1
ds = 1

2 log
(

e2s + 1
)

∣

∣

∣

∣

t

s=0

= 1
2 log

(

e2t + 1

2

)

.

The above expression for YP (t) thereby becomes

YP (t) = −1
2et log

(

1 + e−2t

2

)

− 1
2e−t log

(

e2t + 1

2

)

.

A general solution is therefore y = YH(t) + YP (t) where YH(t) and YP (t) are given above.

Remark: Notice that in the above example the definite integral in the expression for YP (t)
given by (4.12) splits into two definite integrals over s whose integrands do not involve t.
This kind of splitting always happens. In general, if L is an nth order operator then the
expression for YP (t) given by (4.12) always splits into n definite integrals over s whose
integrands do not involve t.

Example: Find a general solution of

Ly = D2y + 9y =
27

16 + 9 sin(3t)2
.

Solution: The operator L has constant coefficients. Its characteristic polynomial is given
by p(z) = z2 + 9 = z2 + 32, which has roots ±i3. A general solution of the associated
homogeneous equation is therefore

YH(t) = c1 cos(3t) + c2 sin(3t) .

By (4.13) the Green function g associated with L is the solution of the initial-value problem

D2g + 9g = 0 , g(0) = 0 , g′(0) = 1 .

Set g(t) = c1 cos(3t)+ c2 sin(3t). The first initial condition implies g(0) = c1 = 0, whereby
g(t) = c2 sin(3t). Because g′(t) = 3c2 cos(2t), the second condition implies g′(0) = 3c2 = 1,
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whereby c2 = 1
3 . The Green function is therefore g(t) = 1

3 sin(3t). The particular solution
given by (4.12) with tI = 0 is then

YP (t) =

∫ t

0

sin
(

3(t − s)
) 9

16 + 9 sin(3s)2
ds .

Because sin
(

3(t − s)
)

= sin(3t) cos(3s) − cos(3t) sin(3s), you can express YP (t) as

YP (t) = sin(3t)

∫ t

0

9 cos(3s)

16 + 9 sin(3s)2
ds − cos(3t)

∫ t

0

9 sin(3s)

16 + 9 sin(3s)2
ds .

The definite integrals in the above expression can be evaluated as

∫ t

0

9 cos(3s)

16 + 9 sin(3s)2
ds =

∫ t

0

9
16 cos(3s)

1 + 9
16 sin(3s)2

ds

= 1
4

tan−1
(

3
4

sin(3s)
)

∣

∣

∣

∣

t

s=0

= 1
4

tan−1
(

3
4

sin(3t)
)

.

∫ t

0

9 sin(3s)

16 + 9 sin(3s)2
ds =

∫ t

0

9 sin(3s)

25 − 9 cos(3s)2
ds =

∫ t

0

9
25

sin(3s)

1 − 9
25 cos(3s)2

ds

= − 1
10 log

(

1 + 3
5

cos(3s)

1 − 3
5 cos(3s)

)
∣

∣

∣

∣

t

s=0

= − 1
10 log

(

1 + 3
5

cos(3t)

1 − 3
5 cos(3t)

2
5
8
5

)

.

Here the first integral has the form

1
4

∫

du

1 + u2
= 1

4 tan−1(u) + C , where u = 3
4 sin(3s) ,

while by using partial fractions you see that the second has the form

−1
5

∫

du

1 − u2
= − 1

10 log

(

1 + u

1 − u

)

+ C , where u = 3
5 cos(3s) .

The above expression for YP (t) thereby becomes

YP (t) = 1
4

sin(3t) tan−1
(

3
4

sin(3t)
)

+ 1
10

sin(3t) log

(

5 + 3 cos(3t)

5 − 3 cos(3t)

1

4

)

.

A general solution is therefore y = YH(t) + YP (t) where YH(t) and YP (t) are given above.

Remark: One can evaluate any integral whose integrand is a rational function of sine and
cosine. The integrals in the above example are of this type. The next example illustrates
what happens in most instances when the Green function method is applied — namely,
the integrals that arise cannot be evaluated analytically.
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Example: Find a general solution of

Ly = D2y + 2Dy + 5y =
1

1 + t2
.

Solution: The operator L has constant coefficients. Its characteristic polynomial is given
by p(z) = z2 + 2z + 5 = (z + 1)2 + 22, which has roots −1 ± i2. A general solution of the
associated homogeneous equation is therefore

YH(t) = c1e
−t cos(2t) + c2e

−t sin(2t) .

By (4.13) the Green function g associated with L is the solution of the initial-value problem

D2g + 2Dg + 5g = 0 , g(0) = 0 , g′(0) = 1 .

Set g(t) = c1e
−t cos(2t) + c2e

−t sin(2t). The first initial condition implies g(0) = c1 = 0,
whereby g(t) = c2e

−t sin(2t). Because g′(t) = 2c2e
−t cos(2t) − c2e

−t sin(2t), the second
condition implies g′(0) = 2c2 = 1, whereby c2 = 1

2 . The Green function is therefore

g(t) = 1
2e−t sin(2t). The particular solution given by (4.12) with tI = π is then

YP (t) =

∫ t

π

1
2e−t+s sin

(

2(t − s)
) 1

1 + s2
ds .

Because sin
(

2(t − s)
)

= sin(2t) cos(2s) − cos(2t) sin(2s), you can express YP (t) as

YP (t) = 1
2e−t sin(2t)

∫ t

π

es cos(2s)

1 + s2
ds − 1

2e−t cos(2t)

∫ t

π

es sin(2s)

1 + s2
ds .

The above definite integrals cannot be evaluated analytically. You can therefore leave the
answer in terms of these integrals. A general solution is therefore y = YH(t)+YP (t) where
YH(t) and YP (t) are given above.

Remark: One should never use the Green function method when the method of undeter-
mined coefficients can be applied. For example, for the equation

Ly = D2y + 2Dy + 5y = t ,

the Green function method leads to the expression

YP (t) = 1
2e−t sin(2t)

∫ t

0

es cos(2s)s ds − 1
2e−t cos(2t)

∫ t

0

es sin(2s)s ds .

The evaluation of these integrals requires several integration by parts. The time it would
take you to do this is much longer than the time it would take you to carry out the method
of undetermined coefficients!
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Now let us verify that YP (t) given by (4.12) indeed always gives a solution of (4.10)
when g(t) is the solution of the initial-value problem (4.13). We will use the fact from
multivariable calculus that for any continuously differentiable K(t, s) one has

D

∫ t

tI

K(t, s) ds = K(t, t) +

∫ t

tI

∂tK(t, s) ds , where D =
d

dt
.

Because g(0) = 0, you see from (4.12) that

DYP (t) = g(0)f(t) +

∫ t

tI

Dg(t − s)f(s) ds =

∫ t

tI

Dg(t − s)f(s) ds .

If 2 < n then because Dg(0) = g′(0) = 0, you see from the above that

D2YP (t) = g′(0)f(t) +

∫ t

tI

D2g(t − s)f(s) ds =

∫ t

tI

D2g(t − s)f(s) ds .

If you continue to argue this way then because Dk−1g(0) = g(k−1)(0) = 0 for k < n, you
see that for every k < n

DkYP (t) = g(k−1)(0)f(t) +

∫ t

tI

Dkg(t − s)f(s) ds =

∫ t

tI

Dkg(t − s)f(s) ds .

Similarly, because Dn−1g(0) = g(n−1)(0) = 1 then you see that

DnYP (t) = g(n−1)(0)f(t) +

∫ t

tI

Dng(t − s)f(s) ds = f(t) +

∫ t

tI

Dng(t− s)f(s) ds .

Because Lg(t) = 0, it follows that Lg(t− s) = 0. Then by the above formulas for DkYP (t)
you see that

LYP (t) = p(D)YP (t) = DnYP (t) + a1D
n−1YP (t) + · · ·+ an−1DYP (t) + anYP (t)

= f(t) +

∫ t

tI

Dng(t − s)f(s) ds +

∫ t

tI

a1D
n−1g(t − s)f(s) ds

+ · · ·+

∫ t

tI

an−1Dg(t − s)f(s) ds +

∫ t

tI

ang(t − s)f(s) ds

= f(t) +

∫ t

tI

p(D)g(t − s)f(s) ds

= f(t) +

∫ t

tI

Lg(t − s)f(s) ds = f(t) .

Therefore, YP (t) given by (4.12) is a solution of (4.10). Moreover, one sees from the above
calculations that it is the unique solution of (4.10) that satisfies the initial conditions

YP (tI) = 0 , Y ′

P (tI) = 0 , · · · Y
(n−1)
P (tI) = 0 .
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5. Mechanical Vibrations

5.1. Spring-Mass Systems. Consider a spring hanging from a support. When an object
of mass m is attached to the free end of the spring, the object will eventually come to rest
at a lower position. Let yo and yr be the vertical rest positions of the free end of the spring
without and with the mass attached. We will assume that the mass is constrained to only
move vertically and want to describe the vertical postition y(t) of the mass as a function
of time t when the mass is initially displaced from yr, or is given some initial velocity, or
is driven by an external force Fext(t).

The forces acting on the mass that we will consider are the gravitational force Fgrav,
the spring force Fspr, the damping or drag force Fdamp, and the external or driving force
Fext. Newton’s law of motion then states that

m
d2y

dt2
= Fgrav + Fspr + Fdamp + Fext . (5.1)

Always be sure you are working in one of the standard systems of units. In MKS units
length is given in meters (m), time in seconds (sec), mass in kilograms (kg), and force in
Newtons (1 Newton = 1 kg m/sec2). In CGS units length is given in centimeters (cm),
time in seconds (sec), mass in grams (g), and force in dynes (1 dyne = 1 g cm/sec2). In
British units length is given in feet (ft), time in seconds (sec), mass in slugs (sl), and force
in pounds (1 pound = 1 sl ft/sec2).

The gravitational force Fgrav is simply the downward weight of the mass. If we assume
a uniform gravitational acceleration g then

Fgrav = −mg , (5.2)

where g = 980 cm/sec2 in CGS units, g = 9.8 m/sec2 in MKS units, and g = 32 ft/sec2 in
British units.

The spring force is modeled by Hooke’s law

Fspr = −k(y − yo) , (5.3)

where k is the so-called spring constant or spring coefficient. This is a fairly good model
provided y − yo does not get too big. When there is no external driving force, the mass
has a rest position yr < yo that satisfies

0 = Fgrav + Fspr at y = yr .

Hence, we have
mg = −k(yr − yo) = k(yo − yr) = k|yr − yo| . (5.4)

Sometimes you will be given |yr − yo| and have to figure out k from this relation.
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The damping force is modeled by

Fdamp = −γ
dy

dt
, (5.5)

where γ ≥ 0 is the so-called damping coefficient. This is not as good a model for damping
force as Hooke’s Law was for the spring force, but we will use it because of its simplicity.
Sometimes you will be given |Fdamp| at a particular speed and have to determine γ from
this relation.

If we place (5.2), (5.3), and (5.5) into Newton’s law of motion (5.1) and neglect the
external driving, we obtain

m
d2y

dt2
+ γ

dy

dt
+ ky = kyo − mg .

We see from (5.4) that kyo − mg = kyr, whereby

m
d2y

dt2
+ γ

dy

dt
+ ky = kyr .

This clearly has the particular solution y = yr. If we let y(t) = yr +h(t) then h(t) satisfies
the homogeneous equation

m
d2h

dt2
+ γ

dh

dt
+ kh = 0 .

Here h(t) is simply the displacement of the mass from its rest position yr. If the external
driving is present, this becomes

m
d2h

dt2
+ γ

dh

dt
+ kh = Fext(t) . (5.6)

We will study the motion of this spring-mass system building up its complexity from
simplest case.

5.2. Unforced, Undamped Motion (Fext = 0, γ = 0). In this case (5.6) reduces to

m
d2h

dt2
+ kh = 0 ,

or in normal form
d2h

dt2
+

k

m
h = 0 . (5.7)

Its characteristic polynomial is

p(z) = z2 +
k

m
,



23

which has roots ±iωo where

ωo =

√

k

m
. (5.8)

A general solution of equation (5.7) is

h(t) = c1 cos(ωot) + c2 sin(ωot) . (5.9)

For the initial condtions h(0) = h0 and h′(0) = h1 this becomes

h(t) = h0 cos(ωot) + h1
sin(ωot)

ωo

.

Such motion is called simple harmonic motion. It is oscillitory motion with a single fre-
quency ωo.

Because ωo is associated with the spring constant k through (5.8), it is called the
natural frequency of the spring. The associated natural period To is therefore

To =
2π

ωo

.

In CGS, MKS, and British units ωo is given in radians/sec, or simply 1/sec because radians
are considered to be nondimensional. Then To is given in sec.

The simple harmonic motion (5.9) is nontrivial whenever either c1 or c2 is nonzero.
In that case we can express it in the so-called applitude-phase form

h(t) = A cos(ωot − δ) ,

where A > 0 is its amplitude and δ in [0, 2π) is its phase. By the cosine addition formula
the above form can be expanded as

h(t) = A cos(δ) cos(ωot) + A sin(δ) sin(ωot) .

Upon comparing this with (5.9) we see that

A cos(δ) = c1 , A sin(δ) = c2 .

This shows that (A, δ) are simply the polar coordinates of the point in the plane whose

cartesian coordinates are (c1, c2). Clearly A =
√

c 2
1 + c 2

2 > 0 while δ satisfies

cos(δ) =
c1

A
, sin(δ) =

c2

A
.

There is a unique δ in [0, 2π) that satisfies these equations.

Example: A mass of 10 grams stretches a spring 5 cm when at rest. At t = 0 the mass
is set in motion from its rest position with a downward velocity of 35 cm/sec. Neglect
damping and external forces.

a) What is the displacement of the mass as a function of time?

b) What is the amplitude, phase, frequency, and period of the motion?

c) At what positive time does the mass first return to its rest position?
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Solution: Because g = 980 cm/sec2, we can find k by setting

k · 5 = mg = 10 · 980 dynes ,

whereby

k =
10 · 980

5
dynes/cm .

Because we are neglecting damping and external forces, the equation of motion takes the
form

m
d2h

dt2
+ k h = 0 ,

which becomes

10
d2h

dt2
+

10 · 980

5
h = 0 .

Bringing this into normal form gives

d2h

dt2
+

980

5
h = 0 ,

which becomes
d2h

dt2
+ 196 h = 0 .

Because ω 2
o = 196, one sees that ωo = 14 1/sec.

A general solution of the equation of motion is therefore

h(t) = c1 cos(14t) + c2 sin(14t) .

The initial conditions are h(0) = 0 and h′(0) = −35 cm/sec. Because

h′(t) = −14c1 sin(14t) + 14c2 cos(14t) ,

the boundary conditions imply that

h(0) = c1 = 0 , h′(0) = 14c2 = −35 ,

which implies c1 = 0 and c2 = −5
2
. From this you can read off the following.

a) The displacement of the mass as a function of time is

h(t) = −5
2 sin(14t) = 5

2 cos(14t − 3π
2 ) cm .

b) The amplitude of the motion is 5
2 cm, the phase is 3π

2 , the frequency is 14 1/sec, and
the period is π

7
sec.

c) The positive time at which the mass first returns to its rest position is t = π
14 .
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5.3. Unforced, Damped Motion (Fext = 0, γ > 0). In this case (5.6) reduces to

m
d2h

dt2
+ γ

dh

dt
+ kh = 0 ,

or in normal form
d2h

dt2
+

γ

m

dh

dt
+

k

m
h = 0 . (5.10)

Its characteristic polynomial is

p(z) = z2 +
γ

m
z +

k

m
.

If we complete the square this has the form

p(z) = (z + µ)2 + ω 2
o − µ2 . (5.11)

where the positive constants µ and ωo are defined by

µ =
γ

2m
, ωo =

√

k

m
.

It is clear there are three cases to consider.

• When 0 < µ < ωo there is a conjugate pair of roots −µ ± iν where

ν =
√

ω 2
o − µ2 . (5.12)

• When µ = ωo there is a real double root −µ, −µ.

• When µ > ωo there is two simple real roots −µ ±
√

µ2 − ω 2
o .

These are called the under damped, critically damped, and over damped cases respectively.

For the under damped case a general solution is

h(t) = c1e
−µt cos(νt) + c2e

−µt sin(νt) .

Whenever either c1 or c2 is nonzero this can be put into the amplitude-phase form

h(t) = Ae−µt cos(νt − δ) ,

where A =
√

c 2
1 + c 2

2 > 0 and 0 ≤ δ < 2π satisfies

cos(δ) =
c1

A
, sin(δ) =

c2

A
.
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The displacement is therefore an exponentially decaying simple harmonic motion with the
time-dependent amplitude Ae−µt, frequency ν, and phase δ. In this context ν given by
(5.12) is called the quasi frequency of the system and the associated period 2π/ν is called
the quasi period. Notice that

ν < ωo ,
2π

ν
> To .

In other words, the quasi frequency is always less than the natural frequency, while the
quasi period is always greater than the natural period.

For the critically damped case a general solution is

h(t) = c1e
−µt + c2t e−µt .

The displacement therefore has at most one zero and decays like t e−µt whenever c2 6= 0.

For the over damped case a general solution is

h(t) = c1e
−µ+t + c1e

−µ
−

t ,

where
µ± = µ ±

√

µ2 − ω 2
o . (5.13)

Notice that 0 < µ− < µ < µ+. The displacement therefore has at most one zero and
decays like t e−µ

−
t whenever c2 6= 0. Because µ− < µ one sees that in this case the decay

of the displacement is slower than in either the under or critically damped cases.

Remark: This damped spring system is a good model for shock absorbers in a car. When
the shock absorbers are over damped one gets a jarring ride, while when they are under
damped one gets a bouncy ride. Shock absorbers are tuned to be critically damped, which
gives the least jarring and least bouncy ride.

Remark: The spring system is said to be extremely over damped when µ is much greater
than ωo. In that case we can use the approximation

√

µ2 − ω 2
o = µ

√

1 −
ω 2

o

µ2
≈ µ

(

1 −
ω 2

o

2µ2

)

= µ −
ω 2

o

2µ
,

to approximate µ− and µ+ by

µ− ≈
ω 2

o

2µ
, µ+ ≈ 2µ −

ω 2
o

2µ
.

In this regime these decay rates are very different from each other and from µ, with

µ−

µ
≈

µ

µ+
≈

ω 2
o

2µ2
,
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5.4. Forced, Undamped Motion (Fext 6= 0, γ = 0). In this case (5.6) reduces to

m
d2h

dt2
+ kh = Fext(t) .

We will study external forces of the form

Fext(t) = F cos(ωt) .

The equation then has the normal form

d2h

dt2
+ ω 2

o h = a cos(ωt) , (5.14)

where the natural frequency ωo and the driving acceleration a are given by

ωo =

√

k

m
, a =

F

m
.

Equation (5.14) may be solved by the method of undetermined coefficients. The charac-
teristic polynomial is p(z) = z2 +ω 2

o , which has roots ±iωo. The forcing has characteristic
±iω, which has multiplicity 0 when ω 6= ωo and multiplicity 1 when ω = ωo 6= 0.

For ω 6= ωo, if we impose the inital conditions

h(0) = h0 , and h′(0) = h1 ,

then the solution is found to be

h(t; ω) = h0 cos(ωot) + h1
sin(ωot)

ωo

+
a

ω 2
o − ω2

(

cos(ωt) − cos(ωot)
)

. (5.15)

This is not simple harmonic motion because more than one frequency in involved. Such
motion is sometimes called poly harmonic.

For ω = ωo 6= 0, if we impose the inital conditions

h(0) = h0 , and h′(0) = h1 ,

then the solution is found to be

h(t; ωo) = h0 cos(ωot) + h1
sin(ωot)

ωo

+
a

2ωo

t sin(ωot) . (5.16)

This is also not simple harmonic motion. In fact, its amplitude grows linearly in t! This
phenomenon of resonance that occurs when the driving frequency ω becomes equal to the
natural frequency ωo of the system. Because l’Hopital’s rule implies

lim
ω→ωo

cos(ωt) − cos(ωot)

ω 2
o − ω2

= lim
ω→ωo

−t sin(ωt)

−2ω
=

t sin(ωot)

2ωo

,

we see that formula (5.16) is what you obtain by taking the limit ω → ωo in formula (5.15).
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You can understand the onset of resonance as ω → ωo by using the identity

cos(ωt) − cos(ωot) = −2 sin

(

ω − ωo

2
t

)

sin

(

ω + ωo

2
t

)

,

to re-express formula (5.15) as

h(t; ω) = h0 cos(ωot) + h1
sin(ωot)

ωo

+ A(t) sin

(

ω + ωo

2
t

)

,

where

A(t) =
2a

ω2 − ω 2
o

sin

(

ω − ωo

2
t

)

.

When ω − ωo is very small compared to ω and ωo then A(t) will be a very slowly varying
function of t compared to sin

(

(ω+ωo)t/2
)

. In that case sin
(

(ω+ωo)t/2
)

will oscillate very
many times during a period over which A(t) oscillates just once. These rapid oscillations
will have an amplitude of |A(t)|, which slowly oscillates between 0 and 2a/(ω2−ω 2

o ). This
slow oscillation is the phenomenon of beating.


